1
|
Donoso C, Raluca MA, Chávez-Jinez S, Vera E. Hass Avocado ( Persea americana Mill) Peel Extract Reveals Antimicrobial and Antioxidant Properties against Verticillium theobromae, Colletotrichum musae, and Aspergillus niger Pathogens Affecting Musa acuminata Colla Species, in Ecuador. Microorganisms 2024; 12:1929. [PMID: 39338603 PMCID: PMC11434585 DOI: 10.3390/microorganisms12091929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The utilization of agroindustrial residues, such as avocado peel, as a source of bioactive compounds with antioxidant properties has garnered significant attention. In this study, we investigated the antioxidant potential using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) methods, along with the antimicrobial activity of phenolic compounds extracted from Hass avocado peel. These soluble polyphenols were quantified and identified using high-performance liquid chromatography (HPLC). The research focused on their effects against three fungal pathogens, Verticillium theobromae, Colletotrichum musae, and Aspergillus niger, which significantly impact banana crops, an essential agricultural commodity in Ecuador. The results have revealed that the application of 80% ethanol as an organic solvent led to increased soluble polyphenol content compared to 96% ethanol. Extraction time significantly influenced the phenolic content, with the highest values obtained at 90 min. Interestingly, despite substantial mycelial growth observed across all extract concentrations, the antifungal effect varied among the pathogens. Specifically, V. theobromae exhibited the highest sensitivity, while C. musae and A. niger were less affected. These results underscore the importance of considering both antioxidant and antimicrobial properties when evaluating natural extracts for potential applications in plant disease management.
Collapse
Affiliation(s)
- Caterine Donoso
- Departamento de Ciencias de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional EPN, Quito 170143, Ecuador; (C.D.); (E.V.)
| | - Mihai A. Raluca
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador;
| | - Stephanie Chávez-Jinez
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador;
| | - Edwin Vera
- Departamento de Ciencias de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional EPN, Quito 170143, Ecuador; (C.D.); (E.V.)
| |
Collapse
|
2
|
Singhania RR, Patel AK, Singh A, Haldar D, Soam S, Chen CW, Tsai ML, Dong CD. Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges. BIORESOURCE TECHNOLOGY 2022; 354:127153. [PMID: 35421566 DOI: 10.1016/j.biortech.2022.127153] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Consolidated bioprocessing (CBP) is characterized by a single-step production of value-added compounds directly from biomass in a single vessel. This strategy has the capacity to revolutionize the whole biorefinery concept as it can significantly reduce the infrastructure input and use of chemicals for various processing steps which can make it economically and environmentally benign. Although the proof of concept has been firmly established in the past, commercialization has been limited due to the low conversion efficiency of the technology. Either a native single microbe, genetically modified microbe or a consortium can be employed. The major challenge in developing a cost-effective and feasible CBP process is the recognition of bifunctional catalysts combining the capability to use the substrates and transform them into value-added products with high efficiency. This article presents an in-depth analysis of the current developments in CBP around the globe and the possibilities of advancements in the future.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Shveta Soam
- Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, Kungsbäcksvägen 47, 80176 Gävle, Sweden
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
3
|
Lehenberger M, Benkert M, Biedermann PHW. Ethanol-Enriched Substrate Facilitates Ambrosia Beetle Fungi, but Inhibits Their Pathogens and Fungal Symbionts of Bark Beetles. Front Microbiol 2021; 11:590111. [PMID: 33519728 PMCID: PMC7838545 DOI: 10.3389/fmicb.2020.590111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022] Open
Abstract
Bark beetles (sensu lato) colonize woody tissues like phloem or xylem and are associated with a broad range of micro-organisms. Specific fungi in the ascomycete orders Hypocreales, Microascales and Ophistomatales as well as the basidiomycete Russulales have been found to be of high importance for successful tree colonization and reproduction in many species. While fungal mutualisms are facultative for most phloem-colonizing bark beetles (sensu stricto), xylem-colonizing ambrosia beetles are long known to obligatorily depend on mutualistic fungi for nutrition of adults and larvae. Recently, a defensive role of fungal mutualists for their ambrosia beetle hosts was revealed: Few tested mutualists outcompeted other beetle-antagonistic fungi by their ability to produce, detoxify and metabolize ethanol, which is naturally occurring in stressed and/or dying trees that many ambrosia beetle species preferentially colonize. Here, we aim to test (i) how widespread beneficial effects of ethanol are among the independently evolved lineages of ambrosia beetle fungal mutualists and (ii) whether it is also present in common fungal symbionts of two bark beetle species (Ips typographus, Dendroctonus ponderosae) and some general fungal antagonists of bark and ambrosia beetle species. The majority of mutualistic ambrosia beetle fungi tested benefited (or at least were not harmed) by the presence of ethanol in terms of growth parameters (e.g., biomass), whereas fungal antagonists were inhibited. This confirms the competitive advantage of nutritional mutualists in the beetle’s preferred, ethanol-containing host material. Even though most bark beetle fungi are found in the same phylogenetic lineages and ancestral to the ambrosia beetle (sensu stricto) fungi, most of them were highly negatively affected by ethanol and only a nutritional mutualist of Dendroctonus ponderosae benefited, however. This suggests that ethanol tolerance is a derived trait in nutritional fungal mutualists, particularly in ambrosia beetles that show cooperative farming of their fungi.
Collapse
Affiliation(s)
- Maximilian Lehenberger
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Markus Benkert
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Peter H W Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.,Chair of Forest Entomology and Protection, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Vinayavekhin N, Kongchai W, Piapukiew J, Chavasiri W. Aspergillus niger upregulated glycerolipid metabolism and ethanol utilization pathway under ethanol stress. Microbiologyopen 2019; 9:e00948. [PMID: 31646764 PMCID: PMC6957411 DOI: 10.1002/mbo3.948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022] Open
Abstract
The knowledge of how Aspergillus niger responds to ethanol can lead to the design of strains with enhanced ethanol tolerance to be utilized in numerous industrial bioprocesses. However, the current understanding about the response mechanisms of A. niger toward ethanol stress remains quite limited. Here, we first applied a cell growth assay to test the ethanol tolerance of A. niger strain ES4, which was isolated from the wall near a chimney of an ethanol tank of a petroleum company, and found that it was capable of growing in 5% (v/v) ethanol to 30% of the ethanol‐free control level. Subsequently, the metabolic responses of this strain toward ethanol were investigated using untargeted metabolomics, which revealed the elevated levels of triacylglycerol (TAG) in the extracellular components, and of diacylglycerol, TAG, and hydroxy‐TAG in the intracellular components. Lastly, stable isotope labeling mass spectrometry with ethanol‐d6 showed altered isotopic patterns of molecular ions of lipids in the ethanol‐d6 samples, compared with the nonlabeled ethanol controls, suggesting the ability of A. niger ES4 to utilize ethanol as a carbon source. Together, the studies revealed the upregulation of glycerolipid metabolism and ethanol utilization pathway as novel response mechanisms of A. niger ES4 toward ethanol stress, thereby underlining the utility of untargeted metabolomics and the overall approaches as tools for elucidating new biological insights.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wimonsiri Kongchai
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Jittra Piapukiew
- Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Olguin-Maciel E, Larqué-Saavedra A, Lappe-Oliveras PE, Barahona-Pérez LF, Alzate-Gaviria L, Chablé-Villacis R, Domínguez-Maldonado J, Pacheco-Catalán D, Ruíz HA, Tapia-Tussell R. Consolidated Bioprocess for Bioethanol Production from Raw Flour of Brosimum alicastrum Seeds Using the Native Strain of Trametes hirsuta Bm-2. Microorganisms 2019; 7:microorganisms7110483. [PMID: 31652874 PMCID: PMC6920830 DOI: 10.3390/microorganisms7110483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Consolidated bioprocessing (CBP), which integrates biological pretreatment, enzyme production, saccharification, and fermentation, is a promising operational strategy for cost-effective ethanol production from biomass. In this study, the use of a native strain of Trametes hirsuta (Bm-2) was evaluated for bioethanol production from Brosimum alicastrum in a CBP. The raw seed flour obtained from the ramon tree contained 61% of starch, indicating its potential as a raw material for bioethanol production. Quantitative assays revealed that the Bm-2 strain produced the amylase enzyme with activity of 193.85 U/mL. The Bm-2 strain showed high tolerance to ethanol stress and was capable of directly producing ethanol from raw flour at a concentration of 13 g/L, with a production yield of 123.4 mL/kg flour. This study demonstrates the potential of T. hirsuta Bm-2 for starch-based ethanol production in a consolidated bioprocess to be implemented in the biofuel industry. The residual biomass after fermentation showed an average protein content of 22.5%, suggesting that it could also be considered as a valuable biorefinery co-product for animal feeding.
Collapse
Affiliation(s)
- Edgar Olguin-Maciel
- Renewable Energy Department, Yucatan Center for Scientific Research, Merida 97302, Mexico.
| | | | - Patricia E Lappe-Oliveras
- Mycology Laboratory, Biology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| | - Luis F Barahona-Pérez
- Renewable Energy Department, Yucatan Center for Scientific Research, Merida 97302, Mexico.
| | - Liliana Alzate-Gaviria
- Renewable Energy Department, Yucatan Center for Scientific Research, Merida 97302, Mexico.
| | - Rubí Chablé-Villacis
- Renewable Energy Department, Yucatan Center for Scientific Research, Merida 97302, Mexico.
| | | | | | - Hector A Ruíz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo 25280, Mexico.
| | - Raúl Tapia-Tussell
- Renewable Energy Department, Yucatan Center for Scientific Research, Merida 97302, Mexico.
| |
Collapse
|
6
|
Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation5010004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the health and environment impacts of fossil fuels utilization, biofuels have been investigated as a potential alternative renewable source of energy. Bioethanol is currently the most produced biofuel, mainly of first generation, resulting in food-fuel competition. Second generation bioethanol is produced from lignocellulosic biomass, but a costly and difficult pretreatment is required. The pulp and paper industry has the biggest income of biomass for non-food-chain production, and, simultaneously generates a high amount of residues. According to the circular economy model, these residues, rich in monosaccharides, or even in polysaccharides besides lignin, can be utilized as a proper feedstock for second generation bioethanol production. Biorefineries can be integrated in the existing pulp and paper industrial plants by exploiting the high level of technology and also the infrastructures and logistics that are required to fractionate and handle woody biomass. This would contribute to the diversification of products and the increase of profitability of pulp and paper industry with additional environmental benefits. This work reviews the literature supporting the feasibility of producing ethanol from Kraft pulp, spent sulfite liquor, and pulp and paper sludge, presenting and discussing the practical attempt of biorefineries implementation in pulp and paper mills for bioethanol production.
Collapse
|
7
|
Ueda M, Konemori Y, Nakazawa M, Sakamoto T, Sakaguchi M. Heterologous expression and characterization of a cold-adapted endo-1,4−β−glucanase gene from Bellamya chinensis laeta. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Dey P, Pal P, Kevin JD, Das DB. Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process – a critical review. REV CHEM ENG 2018. [DOI: 10.1515/revce-2018-0014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To meet the worldwide rapid growth of industrialization and population, the demand for the production of bioethanol as an alternative green biofuel is gaining significant prominence. The bioethanol production process is still considered one of the largest energy-consuming processes and is challenging due to the limited effectiveness of conventional pretreatment processes, saccharification processes, and extreme use of electricity in common fermentation and purification processes. Thus, it became necessary to improve the bioethanol production process through reduced energy requirements. Membrane-based separation technologies have already gained attention due to their reduced energy requirements, investment in lower labor costs, lower space requirements, and wide flexibility in operations. For the selective conversion of biomasses to bioethanol, membrane bioreactors are specifically well suited. Advanced membrane-integrated processes can effectively contribute to different stages of bioethanol production processes, including enzymatic saccharification, concentrating feed solutions for fermentation, improving pretreatment processes, and finally purification processes. Advanced membrane-integrated simultaneous saccharification, filtration, and fermentation strategies consisting of ultrafiltration-based enzyme recycle system with nanofiltration-based high-density cell recycle fermentation system or the combination of high-density cell recycle fermentation system with membrane pervaporation or distillation can definitely contribute to the development of the most efficient and economically sustainable second-generation bioethanol production process.
Collapse
Affiliation(s)
- Pinaki Dey
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Karunya Nagar Coimbatore 641114 , India
| | - Parimal Pal
- Department of Chemical Engineering , National Institute of Technology , Durgapur , India
| | - Joseph Dilip Kevin
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Diganta Bhusan Das
- Department of Chemical Engineering, School of AACME , Loughborough University , Loughborough, Leicestershire , UK
| |
Collapse
|
9
|
Liu H, Sun J, Chang JS, Shukla P. Engineering microbes for direct fermentation of cellulose to bioethanol. Crit Rev Biotechnol 2018; 38:1089-1105. [DOI: 10.1080/07388551.2018.1452891] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Jianliang Sun
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, China
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
10
|
Anasontzis GE, Kourtoglou E, Villas-Boâs SG, Hatzinikolaou DG, Christakopoulos P. Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability. Front Microbiol 2016; 7:632. [PMID: 27199958 PMCID: PMC4854878 DOI: 10.3389/fmicb.2016.00632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium oxysporum is one of the few filamentous fungi capable of fermenting ethanol directly from plant cell wall biomass. It has the enzymatic toolbox necessary to break down biomass to its monosaccharides and, under anaerobic and microaerobic conditions, ferments them to ethanol. Although these traits could enable its use in consolidated processes and thus bypass some of the bottlenecks encountered in ethanol production from lignocellulosic material when Saccharomyces cerevisiae is used—namely its inability to degrade lignocellulose and to consume pentoses—two major disadvantages of F. oxysporum compared to the yeast—its low growth rate and low ethanol productivity—hinder the further development of this process. We had previously identified phosphoglucomutase and transaldolase, two major enzymes of glucose catabolism and the pentose phosphate pathway, as possible bottlenecks in the metabolism of the fungus and we had reported the effect of their constitutive production on the growth characteristics of the fungus. In this study, we investigated the effect of their constitutive production on ethanol productivity under anaerobic conditions. We report an increase in ethanol yield and a concomitant decrease in acetic acid production. Metabolomics analysis revealed that the genetic modifications applied did not simply accelerate the metabolic rate of the microorganism; they also affected the relative concentrations of the various metabolites suggesting an increased channeling toward the chorismate pathway, an activation of the γ-aminobutyric acid shunt, and an excess in NADPH regeneration.
Collapse
Affiliation(s)
- George E Anasontzis
- Microbial Biotechnology Unit, Sector of Botany, Department of Biology, National and Kapodistrian University of Athens Zografou, Greece
| | - Elisavet Kourtoglou
- BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens Zografou, Greece
| | - Silas G Villas-Boâs
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland Auckland, New Zealand
| | - Dimitris G Hatzinikolaou
- Microbial Biotechnology Unit, Sector of Botany, Department of Biology, National and Kapodistrian University of Athens Zografou, Greece
| | - Paul Christakopoulos
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| |
Collapse
|