1
|
Dueñas ME, Peltier‐Heap RE, Leveridge M, Annan RS, Büttner FH, Trost M. Advances in high-throughput mass spectrometry in drug discovery. EMBO Mol Med 2023; 15:e14850. [PMID: 36515561 PMCID: PMC9832828 DOI: 10.15252/emmm.202114850] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
High-throughput (HT) screening drug discovery, during which thousands or millions of compounds are screened, remains the key methodology for identifying active chemical matter in early drug discovery pipelines. Recent technological developments in mass spectrometry (MS) and automation have revolutionized the application of MS for use in HT screens. These methods allow the targeting of unlabelled biomolecules in HT assays, thereby expanding the breadth of targets for which HT assays can be developed compared to traditional approaches. Moreover, these label-free MS assays are often cheaper, faster, and more physiologically relevant than competing assay technologies. In this review, we will describe current MS techniques used in drug discovery and explain their advantages and disadvantages. We will highlight the power of mass spectrometry in label-free in vitro assays, and its application for setting up multiplexed cellular phenotypic assays, providing an exciting new tool for screening compounds in cell lines, and even primary cells. Finally, we will give an outlook on how technological advances will increase the future use and the capabilities of mass spectrometry in drug discovery.
Collapse
Affiliation(s)
- Maria Emilia Dueñas
- Laboratory for Biomedical Mass Spectrometry, Biosciences InstituteNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Rachel E Peltier‐Heap
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Melanie Leveridge
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Roland S Annan
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Frank H Büttner
- Drug Discovery Sciences, High Throughput BiologyBoehringer Ingelheim Pharma GmbH&CoKGBiberachGermany
| | - Matthias Trost
- Laboratory for Biomedical Mass Spectrometry, Biosciences InstituteNewcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
2
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
3
|
Xie P, Zhao C, Liang X, Huang W, Chen Y, Cai Z. Preparation of Frozen Sections of Multicellular Tumor Spheroids Coated with Ice for Mass Spectrometry Imaging. Anal Chem 2020; 92:7413-7418. [PMID: 32374161 DOI: 10.1021/acs.analchem.9b05812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing studies have utilized mass spectrometry imaging (MSI) that is a label-free tool to investigate drug penetration and drug biotransformation in multicellular tumor spheroids (MCTS). Currently, the gelatin-assisted sectioning method is widely used to prepare frozen sections of MCTS for MSI. However, owing to the limited transparency of frozen gelatin, MCTS with diameters less than 500 μm that closely mimic solid tumors are difficult to be detected when cryosectioning. In order to identify the presence of MCTS, hematoxylin and eosin staining for frozen sections and dye pretreatment for MCTS were employed in previous works, which either increased the analytical time and cost in sample preparation or caused signal suppression in sample analysis. Herein, a new sectioning method was developed to prepare MCTS frozen sections. MCTS was coated with ice to ensure good visibility for small-size MCTS. The optimal cutting temperature compound was added around the ice block to assist the formation of frozen sections. A precast frozen mold was prepared to allow the acquisition of complete MCTS frozen sections. The developed method was applied to investigate lipid distribution in MCTS by using matrix-assisted laser desorption/ionization MSI. Compared to the gelatin-assisted sectioning method, our method did not cause signal suppression and analyte delocalization. Thus, this method provides an easy, universal, and innovative strategy to prepare MCTS frozen sections for further MSI analysis. Besides, we applied our method to investigate the penetration of bisphenol A in MCTS.
Collapse
Affiliation(s)
- Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Xiaoping Liang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| |
Collapse
|
4
|
Intact cell MALDI-TOF mass spectrometry, a promising proteomic profiling method in farm animal clinical and reproduction research. Theriogenology 2020; 150:113-121. [PMID: 32284210 DOI: 10.1016/j.theriogenology.2020.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
The objective of this review is to provide new insights into the possible use of a proteomic method known as Intact Cell Matrix-Assisted Laser Desorption-ionization Time-Of-Flight Mass Spectrometry (ICM-MS) in animal clinical research. Here, we give an overview of the basics of this technique, its advantages and disadvantages compared with other proteomic approaches, past applications and future perspectives. A special emphasis on its implementation in animal reproduction science is given, including examples of the reliable use of ICM-MS on fertility screening. In mammals, the ICM-MS profiles from pig epididymal spermatozoa reflect the proteome changes that they undergo during epididymal maturation and could be associated with the acquisition of fertilizing ability. In chicken, using adequate pre-processing and bioinformatics analysis tools, sperm ICM-MS profiles showed characteristic spectral features that allowed their classification according to their actual fertilizing ability. The association of ICM-MS and Top-down proteomic strategies allowed the identification of chicken fertility biomarkers candidates such as protein vitelline membrane outer layer protein 1 (VMO-1) and avian beta-defensin 10 (AvBD10). In female reproduction, a similar approach on ovarian follicular cells allowed the identification of specific markers of oocyte maturation in the oocyte and surrounding cumulus cells. Altogether, these results indicate that ICM-MS profiling could be a suitable approach for molecular phenotyping of male and female gametes.
Collapse
|
5
|
Heap RE, Segarra-Fas A, Blain AP, Findlay GM, Trost M. Profiling embryonic stem cell differentiation by MALDI TOF mass spectrometry: development of a reproducible and robust sample preparation workflow. Analyst 2020; 144:6371-6381. [PMID: 31566633 DOI: 10.1039/c9an00771g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MALDI TOF mass spectrometry (MS) is widely used to characterise and biotype bacterial samples, but a complementary method for profiling of mammalian cells is still underdeveloped. Current approaches vary dramatically in their sample preparation methods and are not suitable for high-throughput studies. In this work, we present a universal workflow for mammalian cell MALDI TOF MS analysis and apply it to distinguish ground-state naïve and differentiating mouse embryonic stem cells (mESCs), which can be used as a model for drug discovery. We employed a systematic approach testing many parameters to evaluate how efficiently and reproducibly each method extracted unique mass features from four different human cell lines. These data enabled us to develop a unique mammalian cell MALDI TOF workflow involving a freeze-thaw cycle, methanol fixing and a CHCA matrix to generate spectra that robustly phenotype different cell lines and are highly reproducible in peak identification across replicate spectra. We applied our optimised workflow to distinguish naïve and differentiating populations using multivariate analysis and reproducibly identify unique features. We were also able to demonstrate the compatibility of our optimised method for current automated liquid handling technologies. Consequently, our MALDI TOF MS profiling method enables identification of unique features and robust phenotyping of mESC differentiation in under 1 hour from culture to analysis, which is significantly faster and cheaper when compared with conventional methods such as qPCR. This method has the potential to be automated and can in the future be applied to profile other cell types and expanded towards cellular MALDI TOF MS screening assays.
Collapse
Affiliation(s)
- Rachel E Heap
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK.
| | | | | | | | | |
Collapse
|
6
|
Povey JF, Saintas E, Aderemi AV, Rothweiler F, Zehner R, Dirks WG, Cinatl J, Racher AJ, Wass MN, Smales CM, Michaelis M. Intact-Cell MALDI-ToF Mass Spectrometry for the Authentication of Drug-Adapted Cancer Cell Lines. Cells 2019; 8:cells8101194. [PMID: 31581737 PMCID: PMC6830094 DOI: 10.3390/cells8101194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
The use of cell lines in research can be affected by cell line misidentification. Short tandem repeat (STR) analysis is an effective method, and the gold standard, for the identification of the genetic origin of a cell line, but methods that allow the discrimination between cell lines of the same genetic origin are lacking. Here, we use intact cell MALDI-ToF mass spectrometry analysis, routinely used for the identification of bacteria in clinical diagnostic procedures, for the authentication of a set of cell lines consisting of three parental neuroblastoma cell lines (IMR-5, IMR-32 and UKF-NB-3) and eleven drug-adapted sublines. Principal component analysis (PCA) of intact-cell MALDI-ToF mass spectrometry data revealed clear differences between most, but not all, of the investigated cell lines. Mass spectrometry whole-cell fingerprints enabled the separation of IMR-32 and its clonal subline IMR-5. Sublines that had been adapted to closely related drugs, for example, the cisplatin- and oxaliplatin-resistant UKF-NB-3 sublines and the vincristine- and vinblastine-adapted IMR-5 sublines, also displayed clearly distinctive patterns. In conclusion, intact whole-cell MALDI-ToF mass spectrometry has the potential to be further developed into an authentication method for mammalian cells of a common genetic origin.
Collapse
Affiliation(s)
- Jane F. Povey
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
| | - Emily Saintas
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
| | - Adewale V. Aderemi
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, 60596 Frankfurt am Main, Germany; (F.R.)
| | - Richard Zehner
- Institut für Rechtsmedizin, Klinikum der Goethe-Universität, 60596 Frankfurt am Main, Germany;
| | - Wilhelm G. Dirks
- Leibniz-Institute Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, 38124 Braunschweig, Germany;
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, 60596 Frankfurt am Main, Germany; (F.R.)
| | | | - Mark N. Wass
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
| | - C. Mark Smales
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
- Correspondence: (C.M.S); (M.M.); Tel.: +44-1227-82-3746 (C.M.S); Tel.: +44-1227-82-7804 (M.M.)
| | - Martin Michaelis
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.F.P.); (E.S.); (A.V.A.); (M.N.W.)
- Correspondence: (C.M.S); (M.M.); Tel.: +44-1227-82-3746 (C.M.S); Tel.: +44-1227-82-7804 (M.M.)
| |
Collapse
|
7
|
Winter M, Bretschneider T, Thamm S, Kleiner C, Grabowski D, Chandler S, Ries R, Kley JT, Fowler D, Bartlett C, Binetti R, Broadwater J, Luippold AH, Bischoff D, Büttner FH. Chemical Derivatization Enables MALDI-TOF-Based High-Throughput Screening for Microbial Trimethylamine (TMA)-Lyase Inhibitors. SLAS DISCOVERY 2019; 24:766-777. [PMID: 31059309 DOI: 10.1177/2472555219838216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial-dependent trimethylamine (TMA) generation from dietary precursors such as choline was recently linked to cardiovascular diseases (CVDs) as well as chronic kidney disease (CKD). Inhibition of TMA-generating enzymes in gut bacteria would be an innovative approach to treat these diseases. The potential to accurately quantify secreted TMA levels highlights the capacity of mass spectrometry (MS) for tracking microbial TMA-lyase activity. However, high-throughput screening (HTS) by conventional MS instrumentation is hampered by limited sample throughput. Recent advancement in liquid handling and instrumentation of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS provides an HTS-compatible MS technology. The deciphering of enzymatic reactions using this label-free readout has been successfully applied but has thus far been limited to peptide/protein-centric activity assays. Here, we demonstrate the versatile applicability of MALDI-TOF by tracking a small molecule within a highly complex sample background. The key to success for this concept was chemical derivatization of the target molecule enabling quantitative assessment of microbial TMA formation. Further, its potential was demonstrated in a side-by-side comparison to RapidFire-MS in a primary screen and subsequent dose-response experiments. Overall, the established assay enables the screening for microbial TMA-lyase inhibitors and serves as a proof of concept for the applicability of MALDI-TOF for demanding assay concepts per se.
Collapse
Affiliation(s)
- Martin Winter
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Tom Bretschneider
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Sven Thamm
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carola Kleiner
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Grabowski
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Sarah Chandler
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Robert Ries
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jörg T Kley
- 2 Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Danielle Fowler
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Christina Bartlett
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Ralph Binetti
- 4 Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - John Broadwater
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Andreas H Luippold
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Bischoff
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H Büttner
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
8
|
Petukhova VZ, Young AN, Wang J, Wang M, Ladanyi A, Kothari R, Burdette JE, Sanchez LM. Whole Cell MALDI Fingerprinting Is a Robust Tool for Differential Profiling of Two-Component Mammalian Cell Mixtures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:344-354. [PMID: 30353292 PMCID: PMC6347503 DOI: 10.1007/s13361-018-2088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 05/09/2023]
Abstract
MALDI fingerprinting was first described two decades ago as a technique to identify microbial cell lines. Microbial fingerprinting has since evolved into an automated platform for microorganism identification and classification, which is now routinely used in clinical and environmental sectors. The extension of fingerprinting to mammalian cells has yet to progress partly due to compartmentalization of eukaryotic cells and overall higher cellular complexity. A number of publications on mammalian whole cell fingerprinting suggest that the method could be useful for classification of different cell types, cell states, and monitoring cell differentiation. We report the optimization of MALDI fingerprinting workflow parameters for mammalian cells and its application for differential profiling of mammalian cell lines and two-component cell line mixtures. Murine fallopian tube cells and high-grade ovarian carcinoma cell lines and their mixtures are used as model mammalian cell lines. Two-component cell mixtures serve to determine the method's feasibility for complex biological samples as the ability to detect cancer cells in a mixed cell population. The level of detection of cancer cells in the two-component mixture by principle component analysis (PCA) starts to deteriorate at 5% but with application of a different statistical approach, Wilcoxon rank sum test, the level of detection was determined to be 1%. The ability to differentiate heterogeneous cell mixtures will help further extend whole cell MALDI fingerprinting to complex biological systems. Graphical Abstract.
Collapse
Affiliation(s)
- Valentina Z Petukhova
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S Wood St., MC 781, Room 539, Chicago, IL, 60612, USA
| | - Alexandria N Young
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S Wood St., MC 781, Room 539, Chicago, IL, 60612, USA
| | - Jian Wang
- Ometa Labs, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Mingxun Wang
- Ometa Labs, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Andras Ladanyi
- Department of Obstetrics & Gynecology, Rush University Medical Center, 1653 W Congress Pkwy, Chicago, IL, 60612, USA
| | - Rajul Kothari
- Department of Obstetrics & Gynecology-Division of Gynecologic Oncology, University of Illinois at Chicago, 820 S Wood St., Chicago, IL, 60612, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S Wood St., MC 781, Room 539, Chicago, IL, 60612, USA
| | - Laura M Sanchez
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S Wood St., MC 781, Room 539, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent progress in genomics and mass spectrometry have led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry-based, DNA-based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of protein antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Daumas A, Alingrin J, Ouedraogo R, Villani P, Leone M, Mege JL. MALDI-TOF MS monitoring of PBMC activation status in sepsis. BMC Infect Dis 2018; 18:355. [PMID: 30064357 PMCID: PMC6069833 DOI: 10.1186/s12879-018-3266-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/23/2018] [Indexed: 01/13/2023] Open
Abstract
Background MALDI-TOF mass spectrometry (MS) on whole cells enables the detection of different cell types and cell activation. Here, we wondered whether this approach would be useful to investigate the host response in sepsis. Methods Peripheral blood mononuclear cells (PBMCs) from patients with severe sepsis and healthy donors were analyzed with MALDI-TOF MS. PBMCs from healthy donors were also stimulated with lipopolysaccharide, peptidoglycan, CpG oligonucleotides, polyinosinic polycytidylic acid, and with heat-inactivated bacteria. Averaged spectra of PBMCs stimulated in vitro by different agonists were generated from the database using the Biotyper software and matching scores between each spectrum from patients and averaged spectra from the database were calculated. Results We show that the MALDI-TOF MS signature of PBMCs from septic patients was specific, compared with healthy controls. As the fingerprints observed in patients may be related to PBMC activation, PBMCs from healthy controls were stimulated with cytokines, soluble Pathogen-Associated Molecular Patterns (PAMPs) and heat-killed bacteria, and we created a database of reference spectra. The MALDI-TOF MS profiles of PBMCs from septic patients were then compared with the database. No differences were found between patients with documented infection (n = 6) and those without bacteriological documentation (n = 6). The spectra of PBMCs from septic patients matched with those of interferon-γ- and interleukin-10-stimulated PBMCs, confirming that sepsis is characterized by both inflammatory and immunoregulatory features. Interestingly, the spectra of PBMCs from septic patients without documented infection matched with the reference spectrum of PBMCs stimulated by CpG oligonucleotides, suggesting a bacterial etiology in these patients. Conclusions Despite the limits of this preliminary study, these results indicate that the monitoring of functional status of PBMCs in peripheral blood by whole cell MALDI-TOF MS could provide unique opportunities to assess disease progression or resolution in clinical settings. Electronic supplementary material The online version of this article (10.1186/s12879-018-3266-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurélie Daumas
- Aix-Marseille Université, URMITE, IHU Méditerranée Infection, UMR CNR 7278, IRD 198, INSERM 1095, Marseille, France. .,Service de Médecine Interne et Thérapeutique, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| | - Julie Alingrin
- Aix-Marseille Université, URMITE, IHU Méditerranée Infection, UMR CNR 7278, IRD 198, INSERM 1095, Marseille, France.,Service d'Anesthésie et Réanimation polyvalente, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Richard Ouedraogo
- Aix-Marseille Université, URMITE, IHU Méditerranée Infection, UMR CNR 7278, IRD 198, INSERM 1095, Marseille, France
| | - Patrick Villani
- Service de Médecine Interne et Thérapeutique, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Marc Leone
- Aix-Marseille Université, URMITE, IHU Méditerranée Infection, UMR CNR 7278, IRD 198, INSERM 1095, Marseille, France.,Service d'Anesthésie et Réanimation polyvalente, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Université, URMITE, IHU Méditerranée Infection, UMR CNR 7278, IRD 198, INSERM 1095, Marseille, France
| |
Collapse
|
11
|
Sampath P, Moideen K, Ranganathan UD, Bethunaickan R. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection. Front Immunol 2018; 9:1726. [PMID: 30105020 PMCID: PMC6077267 DOI: 10.3389/fimmu.2018.01726] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Monocytes are critical defense components that play an important role in the primary innate immune response. The heterogeneous nature of monocytes and their ability to differentiate into either monocyte-derived macrophages or monocyte-derived dendritic cells allows them to serve as a bridge between the innate and adaptive immune responses. Current studies of monocytes based on immunofluorescence, single-cell RNA sequencing and whole mass spectrometry finger printing reveals different classification systems for monocyte subsets. In humans, three circulating monocyte subsets are classified based on relative expression levels of CD14 and CD16 surface proteins, namely classical, intermediate and non-classical subsets. Transcriptomic analyses of these subsets help to define their distinct functional properties. Tuberculosis (TB) is a disease instigated by the deadly pathogen Mycobacterium tuberculosis. Current research on monocytes in TB has indicated that there are alterations in the frequency of intermediate and non-classical subsets suggesting their impact in bacterial persistence. In this review, we will focus on these monocyte subsets, including their classification, frequency distribution, cytokine profiles, role as a biomarker and will comment on future directions for understanding the salient phenotypic and functional properties relevant to TB pathogenesis.
Collapse
Affiliation(s)
- Pavithra Sampath
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai, India
| | - Kadar Moideen
- International Center of Excellence in Research, National Institute for Research in Tuberculosis, National Institutes for Health, Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai, India
| | | |
Collapse
|
12
|
Jang KS, Kim YH. Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their diverse applications. J Microbiol 2018; 56:209-216. [PMID: 29492868 DOI: 10.1007/s12275-018-7457-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 10/25/2022]
Abstract
in mass spectrometry have enabled the investigation of various biological systems by directly analyzing diverse sets of biomolecules (i.e., proteins, lipids, and carbohydrates), thus making a significant impact on the life sciences field. Over the past decade, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely utilized as a rapid and reliable method for the identification of microorganisms. MALDI-TOF MS has come into widespread use despite its relatively low resolving power (full width at half maximum, FWHM: < 5,000) and its incompatibility with tandem MS analysis, features with which other high-resolution mass spectrometers are equipped. Microbial identification is achieved by searching databases containing mass spectra of peptides and proteins extracted from microorganisms of interest, using scoring algorithms to match analyzed spectra with reference spectra. In this paper, we give a brief overview of the diverse applications of rapid and robust MALDI-TOF MS-based techniques for microbial identification in a variety of fields, such as clinical diagnosis and environmental and food monitoring. We also describe the fundamental principles of MALDI-TOF MS. The general specifications of the two major MS-based microbial identification systems available in the global market (BioTyper® and VITEK® MS Plus) and the distribution of these instruments in Republic of Korea are also discussed. The current review provides an understanding of this emerging microbial identification and classification technology and will help bacteriologists and cell biologists take advantage of this powerful technique.
Collapse
Affiliation(s)
- Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Young Hwan Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
13
|
Characterization of promoter of the tuberculosis-resistant gene intracellular pathogen resistance 1. Immunol Res 2016; 64:143-54. [PMID: 26590945 DOI: 10.1007/s12026-015-8732-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which most commonly affects the lungs and causes over 1.3 million people die annually. Variation in host genes is known to influence susceptibility to tuberculosis. Expression of the intracellular pathogen resistance 1 (Ipr1) gene could enhance the host resistance to mycobacterium. Here, we analyzed the coding region sequence and promoter of Ipr1 gene of mouse strains C57BL/6 and BALB/c. We found that the coding sequences of Ipr1 gene both in C57BL/6 and in BALB/c mice encode the same protein, while the Ipr1 promoter of BALB/c exists a short deletion and showed a slight of decreased transcriptional activity when compared with C57BL/6. Moreover, the optimal and minimal Ipr1 promoter was identified by luciferase assays using truncated reporter constructs, and the region from -293 to +95 bp showed the highest transcriptional activity and responsible for IFN-γ stimulation. Furthermore, the results showed that IFN-γ activates JAK/STAT and NF-κB signaling pathways to induce Ipr1 expression, and the signal transducer and activator of transcription 1 (Stat1) are critical for IFN-γ-induced Ipr1 expression, because overexpression of Stat1 promotes Ipr1 transcription, but knockdown of Stat1 reduced Ipr1 expression. Collectively, for the first time, our study characterizes Ipr1 promoter and investigates the positive and negative regulation of Ipr1 expression, providing basic data for application of Ipr1 in animal breeding.
Collapse
|
14
|
Holzlechner M, Strasser K, Zareva E, Steinhäuser L, Birnleitner H, Beer A, Bergmann M, Oehler R, Marchetti-Deschmann M. In Situ Characterization of Tissue-Resident Immune Cells by MALDI Mass Spectrometry Imaging. J Proteome Res 2016; 16:65-76. [PMID: 27755872 DOI: 10.1021/acs.jproteome.6b00610] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue-resident immune cells differ from their corresponding blood cells in many functional aspects. Although the proteome of blood immune cells has been well-investigated, there are almost no data on tissue-resident immune cells. Here, we explored the potential of using MALDI-TOF-MS imaging (MSI) to investigate these cells in colon tissue, which exhibits a strong infiltration of immune cells. MSI identified several proteinaceous markers that colocalized with specific structures of the colon, such as mucosa or muscularis mucosae, in six patients. In addition, we showed that certain m/z values have the same spatial distribution as CD3+ T lymphocytes in the lymphoid follicular structures or as CD206+ macrophages in the lamina propria. For further corroboration, blood lymphocytes and monocytes from 10 healthy volunteers were analyzed by intact cell mass spectrometry (ICMS). Furthermore, we analyzed monocyte-derived macrophages that had been polarized in vitro into proinflammatory M1 and anti-inflammatory M2 phenotypes. The mass spectra differed clearly among all immune cell types. Additionally, it was found that distinct signals from ICMS analysis were identical to the m/z values found in the MSI experiment in lymphoid follicular structures. These data show for the first time that MSI is well-suited to visualize the spatial distribution of immune cells in human colon tissue. We consider MALDI mass spectrometry imaging to be a technique with high potential for use in rapid investigations of tissue-specific features of cells.
Collapse
Affiliation(s)
- Matthias Holzlechner
- Institute of Chemical Technologies and Analytics (CTA), TU Wien , 1060 Vienna, Austria
| | - Katharina Strasser
- CBmed GmbH-Center for Biomarker Research in Medicine , 8020 Graz, Austria
| | - Elitsa Zareva
- Institute of Chemical Technologies and Analytics (CTA), TU Wien , 1060 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
15
|
Karger A. Current developments to use linear MALDI-TOF spectra for the identification and typing of bacteria and the characterization of other cells/organisms related to infectious diseases. Proteomics Clin Appl 2016; 10:982-993. [PMID: 27400768 DOI: 10.1002/prca.201600038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
Within the past few years identification of bacteria by MALDI-TOF MS has become a standard technique in bacteriological laboratories for good reasons. MALDI-TOF MS identification is rapid, robust, automatable, and the per-sample costs are low. Yet, the spectra are very informative and the reliable identification of bacterial species is usually possible. Recently, new MS-based approaches for the identification of bacteria are emerging that are based on the detailed analysis of the bacterial proteome by high-resolution MS. These "proteotyping" approaches are highly discriminative and outperform MALDI-TOF MS-based identification in terms of specificity, but require a laborious proteomic workflow and far more expertise and sophisticated instrumentation than identification on basis of MALDI-TOF MS spectra, which can be obtained with relative simple and uncostly linear MALDI-TOF mass spectrometers. Thus MALDI-TOF MS identification of bacteria remains an attractive option for routine diagnostics. Additionally, MALDI-TOF MS identification protocols have been extended and improved in many respects making linear MALDI-TOF MS a versatile tool that can be useful beyond the identification of a bacterial species, e.g. for the characterization of leucocytes and arthropod vectors of infectious diseases. This review focuses on such improvements and extensions of the typical MALDI-TOF MS workflow in the field of infectious diseases.
Collapse
Affiliation(s)
- Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, , Federal Research Institute for Animal Health Südufer, Greifswald-Insel Riems, Germany.
| |
Collapse
|