1
|
Aslam MS, Zaidi SZJ, Toor RH, Gull I, Iqbal MM, Abbas Z, Tipu I, Ahmed A, Athar MA, Harito C, Hassan SU. Interferon α2-Thymosin α1 Fusion Protein (IFNα2-Tα1): A Genetically Engineered Fusion Protein with Enhanced Anticancer and Antiviral Effect. MATERIALS 2021; 14:ma14123318. [PMID: 34203928 PMCID: PMC8232609 DOI: 10.3390/ma14123318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 12/30/2022]
Abstract
Human interferon α2 (IFNα2) and thymosin α1 (Tα1) are therapeutic proteins used for the treatment of viral infections and different types of cancer. Both IFNα2 and Tα1 show a synergic effect in their activities when used in combination. Furthermore, the therapeutic fusion proteins produced through the genetic fusion of two genes can exhibit several therapeutic functions in one molecule. In this study, we determined the anticancer and antiviral effect of human interferon α2-thymosin α1 fusion protein (IFNα2-Tα1) produced in our laboratory for the first time. The cytotoxic and genotoxic effect of IFNα2-Tα1 was evaluated in HepG2 and MDA-MB-231 cells. The in vitro assays confirmed that IFNα2-Tα1 inhibited the growth of cells more effectively than IFNα2 alone and showed an elevated genotoxic effect. The expression of proapoptotic genes was also significantly enhanced in IFNα2-Tα1-treated cells compared to IFNα2-treated cells. Furthermore, the HCV RNA level was significantly reduced in IFNα2-Tα1-treated HCV-infected Huh7 cells compared to IFNα2-treated cells. The quantitative PCR analysis showed that the expression of various genes, the products of which inhibit HCV replication, was significantly enhanced in IFNα2-Tα1-treated cells compared to IFNα2-treated cells. Our findings demonstrate that IFNα2-Tα1 is more effective than single IFNα2 as an anticancer and antiviral agent.
Collapse
Affiliation(s)
- Muhammad Shahbaz Aslam
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.G.); (M.M.I.); (M.A.A.)
- Correspondence: (M.S.A.); (S.Z.J.Z.); (S.-u.H.)
| | - Syed Zohaib Javaid Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan
- Correspondence: (M.S.A.); (S.Z.J.Z.); (S.-u.H.)
| | - Rabail Hassan Toor
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (R.H.T.); (A.A.)
| | - Iram Gull
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.G.); (M.M.I.); (M.A.A.)
| | - Muhammad Mudassir Iqbal
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.G.); (M.M.I.); (M.A.A.)
| | - Zaigham Abbas
- Department of Microbiology & Molecular Genetics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan;
| | - Imran Tipu
- Department of Life Sciences, University of Management & Technology, Lahore 54770, Pakistan;
| | - Aftab Ahmed
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (R.H.T.); (A.A.)
| | - Muhammad Amin Athar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.G.); (M.M.I.); (M.A.A.)
| | - Christian Harito
- Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia;
| | - Sammer-ul Hassan
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Correspondence: (M.S.A.); (S.Z.J.Z.); (S.-u.H.)
| |
Collapse
|
2
|
Zhang Q, Wang C, Ma F, Yao L, Gao H, Zhu L, Zheng L. Development and biological activity of long-acting recombinant human interferon-α2b. BMC Biotechnol 2020; 20:16. [PMID: 32169063 PMCID: PMC7071744 DOI: 10.1186/s12896-020-00605-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The type I human interferon (IFN) family consists of a group of cytokines with a multiplicity of biological activities, including antiviral, antitumor, and immunomodulatory effects. However, because the half-life of IFN is short, its clinical application is limited. Increasing the yield and biological activity of IFN while extending its half-life is currently the focus of IFN research. RESULTS Two novel long-acting recombinant human IFN-α2b (rhIFN-α2b) proteins were designed in which the carboxyl-terminal peptide (CTP) of the human chorionic gonadotropin β su bunit and N-linked glycosylation sequences were linked to rhIFN-α2b. They were designated IFN-1CTPON (fused at the C-terminus of rhIFN-α2b) and IFN-2CTPON (fused at both the C-terminus and N-terminus of rhIFN-α2b). Monoclonal CHO cell strains stably and efficiently expressing the IFNs were successfully selected with methotrexate (MTX), and the highest expression levels were 1468 mg/l and 1196 mg/l for IFN-1CTPON and IFN-2CTPON, respectively. The proteins were purified with affinity chromatography and molecular sieve chromatography. IFN-1CTPON and IFN-2CTPON showed antiviral and antiproliferative activities in vitro. Notably, the half-life of IFN-1CTPON and IFN-2CTPON in vivo were three-fold and two-fold longer than that of commercially available rhIFN-α2b. CONCLUSIONS CHO cell strains stably expressing long-acting rhIFN-α2b were screened. The purified IFN-CTPON protein has biological activity and an extended half-life, and therefore potential applications.
Collapse
Affiliation(s)
- Qian Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Chao Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Fenlian Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Lihong Yao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Hanchun Gao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China
| | - Luyan Zhu
- Beijing Furen Ruihui Biomedical Research Institute Co.,Ltd, Beijing, 100176, China.
| | - Lishu Zheng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China.
| |
Collapse
|
3
|
Liu A, Gui S, Zhang L, Chen Z, Tang Y, Xiao M, Wang J, Liu W, Jin X, Zhu J, Lu X. Production of bioactive liver-targeting interferon Mu-IFN-CSP by soluble prokaryotic expression. AMB Express 2017; 7:192. [PMID: 29086199 PMCID: PMC5662524 DOI: 10.1186/s13568-017-0493-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/25/2017] [Indexed: 12/03/2022] Open
Abstract
A novel liver-targeting interferon (IFN-CSP) was successfully over-expressed in our previous work. The in vitro and in vivo investigation revealed that IFN-CSP has significant anti-hepatitis B virus (HBV) effect and liver-targeting capacity. However, due to the IFN-CSP tends to form inclusion bodies in recombinant Escherichia coli (E. coli), efficient production of the soluble liver-targeting interferon is a challenge. In view of biomedical application, novel strategies for efficiently expressing liver-targeting interferon and overcoming its poor solubility are necessary and important. In the present study, a modified mu-IFN-CSP was designed base on the amino acid mutant of the native IFN-CSP. Meanwhile, the coding sequence of mu-IFN-CSP was optimized for E. coli preferred codon and the induction conditions for expression were optimized by an orthogonal test. After amino acid mutant, codon optimization and induction conditions optimization, the solubility of Mu-IFN-CSP in E. coli was up to 98.4%. The structural comparison and molecular dynamic simulation showed that the Mu-IFN-CSP formed three structure changes and were more stable than the native IFN-CSP. Tissue sections binding assays revealed that Mu-IFN-CSP was also able to specific binding to liver. In vitro anti-HBV activity assays showed that the soluble Mu-IFN-CSP has improved anti-HBV effect in HepG2.2.15 cells compared to the native IFN-CSP. The present study reports for the first time that liver-targeting interferon Mu-IFN-CSP can be expressed as soluble form, and also contributes to further support its application as liver-targeting anti-HBV medicine.
Collapse
|
4
|
Zeng W, Wu C, Wang J, Cao L, Jin X, Zhu J, Lu X. Toxicologic evaluations of recombinant liver-targeting interferon IFN-CSP: Genotoxicity and tegenicratoity. Regul Toxicol Pharmacol 2017; 89:13-19. [PMID: 28709686 DOI: 10.1016/j.yrtph.2017.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
Interferon alpha as the one of FDA recommended drugs for Hepatitis B virus (HBV) infection has many side effects. Targeting IFNα to the liver may be a strategy to increase its efficacy locally and may increase efficacy of IFNα-based therapy of HBV infection. We have prepared a novel liver-targeting fusion interferon (IFN-CSP) combining IFN α2b with plasmodium region I peptide and have revealed it may be an excellent candidate as a liver-targeting anti-HBV agent. In this study, we investigated the genotoxic and teratogenic effects of IFN-CSP. The genotoxicity of IFN-CSP was evaluated by using a standard battery of tests (bacterial reverse mutation assay, mouse bone marrow micronucleus assay, and mouse sperm malformation assay). The results showed that IFN-CSP did not increase the number of revertant colonies in the plates of four strains, had no marked effect on the incidence of mouse bone marrow micronucleus and did not affect sperm deformity proportion at doses up to 8.8 × 108IU/kg, which was 1128.2 folds of the maximum' clinical equivalent dosage. Meanwhile, for teratogenicity test of IFN-CSP in female SD rats at the dosage of 6.3 × 107 IU/kg, no toxicological signs were observed. These results indicated that IFN-CSP has no genotoxicity and teratogenicity under the testing conditions.
Collapse
Affiliation(s)
- Wenting Zeng
- School of Basic Courses, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China
| | - Chunxu Wu
- School of Basic Courses, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China
| | - Jie Wang
- School of Basic Courses, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China
| | - Lingjie Cao
- School of Basic Courses, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China
| | - Xiaobao Jin
- School of Basic Courses, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China
| | - Jiayong Zhu
- School of Basic Courses, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China.
| | - Xuemei Lu
- School of Basic Courses, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Rahpeyma M, Samarbaf-Zadeh A, Makvandi M, Ghadiri AA, Dowall SD, Fotouhi F. Expression and characterization of codon-optimized Crimean-Congo hemorrhagic fever virus Gn glycoprotein in insect cells. Arch Virol 2017; 162:1951-1962. [PMID: 28316015 DOI: 10.1007/s00705-017-3315-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a major cause of tick-borne viral hemorrhagic disease in the world. Despite of its importance as a deadly pathogen, there is currently no licensed vaccine against CCHF disease. The attachment glycoprotein of CCHFV (Gn) is a potentially important target for protective antiviral immune responses. To characterize the expression of recombinant CCHFV Gn in an insect-cell-based system, we developed a gene expression system expressing the full-length coding sequence under a polyhedron promoter in Sf9 cells using recombinant baculovirus. Recombinant Gn was purified by affinity chromatography, and the immunoreactivity of the protein was evaluated using sera from patients with confirmed CCHF infection. Codon-optimized Gn was successfully expressed, and the product had the expected molecular weight for CCHFV Gn glycoprotein of 37 kDa. In time course studies, the optimum expression of Gn occurred between 36 and 48 hours postinfection. The immunoreactivity of the recombinant protein in Western blot assay against human sera was positive and was similar to the results obtained with the anti-V5 tag antibody. Additionally, mice were subjected to subcutaneous injection with recombinant Gn, and the cellular and humoral immune response was monitored. The results showed that recombinant Gn protein was highly immunogenic and could elicit high titers of antigen-specific antibodies. Induction of the inflammatory cytokine interferon-gamma and the regulatory cytokine IL-10 was also detected. In conclusion, a recombinant baculovirus harboring CCHFV Gn was constructed and expressed in Sf9 host cells for the first time, and it was demonstrated that this approach is a suitable expression system for producing immunogenic CCHFV Gn protein without any biosafety concerns.
Collapse
Affiliation(s)
- Mehdi Rahpeyma
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Pasteur Institute, Tehran, Iran
| | - Alireza Samarbaf-Zadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Virology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata A Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Stuart D Dowall
- National Infection Service, Public Health England, Porton Down, Wiltshire, UK
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Pasteur Institute, Tehran, Iran.
| |
Collapse
|
7
|
Ang KS, Kyriakopoulos S, Li W, Lee DY. Multi-omics data driven analysis establishes reference codon biases for synthetic gene design in microbial and mammalian cells. Methods 2016; 102:26-35. [PMID: 26850284 DOI: 10.1016/j.ymeth.2016.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022] Open
Abstract
In this study, we analyzed multi-omics data and subsets thereof to establish reference codon usage biases for codon optimization in synthetic gene design. Specifically, publicly available genomic, transcriptomic, proteomic and translatomic data for microbial and mammalian expression hosts, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Chinese hamster ovary (CHO) cells, were compiled to derive their individual codon and codon pair frequencies. Then, host dependent and -omics specific codon biases were generated and compared by principal component analysis and hierarchical clustering. Interestingly, our results indicated the similar codon bias patterns of the highly expressed transcripts, highly abundant proteins, and efficiently translated mRNA in microbial cells, despite the general lack of correlation between mRNA and protein expression levels. However, for CHO cells, the codon bias patterns among various -omics subsets are not distinguishable, forming one cluster. Thus, we further investigated the effect of different input codon biases on codon optimized sequences using the codon context (CC) and individual codon usage (ICU) design parameters, via in silico case study on the expression of human IFNγ sequence in CHO cells. The results supported that CC is more robust design parameter than ICU for improved heterologous gene design.
Collapse
Affiliation(s)
- Kok Siong Ang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sarantos Kyriakopoulos
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Wei Li
- Sangon Biotech (Shanghai) Co., Ltd., 698 Xiangmin Road, SongJiang District, Shanghai 201611, China
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|