1
|
Tang X, Huang Q, Arai T, Liu X. Cell pairing for biological analysis in microfluidic devices. BIOMICROFLUIDICS 2022; 16:061501. [PMID: 36389274 PMCID: PMC9646252 DOI: 10.1063/5.0095828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cell pairing at the single-cell level usually allows a few cells to contact or seal in a single chamber and provides high-resolution imaging. It is pivotal for biological research, including understanding basic cell functions, creating cancer treatment technologies, developing drugs, and more. Laboratory chips based on microfluidics have been widely used to trap, immobilize, and analyze cells due to their high efficiency, high throughput, and good biocompatibility properties. Cell pairing technology in microfluidic devices provides spatiotemporal research on cellular interactions and a highly controlled approach for cell heterogeneity studies. In the last few decades, many researchers have emphasized cell pairing research based on microfluidics. They designed various microfluidic device structures for different biological applications. Herein, we describe the current physical methods of microfluidic devices to trap cell pairs. We emphatically summarize the practical applications of cell pairing in microfluidic devices, including cell fusion, cell immunity, gap junction intercellular communication, cell co-culture, and other applications. Finally, we review the advances and existing challenges of the presented devices and then discuss the possible development directions to promote medical and biological research.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Zhang X, Xu P, Lu J, Ding Y, Gu J, Shi Y. Erythrokeratodermia variabilis et progressiva due to a novel mutation in GJB4. Exp Dermatol 2021; 31:594-599. [PMID: 34717022 DOI: 10.1111/exd.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/11/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Erythrokeratodermia variabilis et progressiva (EKVP) is a rare genodermatosis of clinical and genetic heterogeneity, characterized by the manifestations of localized or disseminated persistent hyperkeratotic plagues and stationary to migratory transient erythematous patches. The majority of EKVP cases display an autosomal dominant mode of inheritance with incomplete penetrance, although recessive transmission has also been described. Mutations associated with EKVP have been primarily detected in connexin (Cx) genes. We herein reported a Chinese sporadic case of late-onset EKVP with a novel heterozygous missense mutation c.109G>A (p.V37M) in GJB4 (Cx30.3) gene, which resulted in a significant reduction of GJB4 expression in the epidermis of the patient. In accordance, while wild-type GJB4 localized at the cell membrane of HeLa cells forming intercellular junctions and intracellular puncta, V37M mutant variant was diffusely expressed within HeLa cells at a considerably lower level. Our findings reveal an essential role of GJB4 in the pathogenesis of EKVP and provides insights into the therapeutic potential of the disease.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Peng Xu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Jun Gu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
4
|
Gingrich J, Pu Y, Veiga-Lopez A. A modified parachute assay for assessment of gap junction intercellular communication in placental trophoblast cells. Toxicol Mech Methods 2021; 31:393-399. [PMID: 33784946 DOI: 10.1080/15376516.2021.1904072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Gap junction intercellular communication (GJIC) is a necessary process for placental development. GJIC can be assessed with a parachute assay, where fluorescent dye-loaded donor cells are 'parachuted' onto acceptor cells and dye diffuses to adjacent cells with active GJIC. During co-culture, donor cells can attach, but the assay does not allow their distinction from acceptor cells, which presents as a major limitation. We have developed a modified parachute assay that permits distinction between donor and acceptor cells, using the extravillous trophoblast cell line HTR-8/SVneo and a lentiviral transduction technique. Using PKA activator CW008 as a positive control and 12-o-tetradecanoylphorbol-13-acetate as a negative control, this modified parachute assay reliably detects both enhanced and attenuated GJIC. Importantly, the ease and accuracy of quantification over currently available methods makes this modified assay optimal for automation and represents a useful tool for in vitro placental toxicological testing.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yong Pu
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Chicago Center for Health and Environment, Chicago, IL, USA
| |
Collapse
|
5
|
A Cellular Assay for the Identification and Characterization of Connexin Gap Junction Modulators. Int J Mol Sci 2021; 22:ijms22031417. [PMID: 33572565 PMCID: PMC7866863 DOI: 10.3390/ijms22031417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Connexin gap junctions (Cx GJs) enable the passage of small molecules and ions between cells and are therefore important for cell-to-cell communication. Their dysfunction is associated with diseases, and small molecules acting as modulators of GJs may therefore be useful as therapeutic drugs. To identify GJ modulators, suitable assays are needed that allow compound screening. In the present study, we established a novel assay utilizing HeLa cells recombinantly expressing Cx43. Donor cells additionally expressing the Gs protein-coupled adenosine A2A receptor, and biosensor cells expressing a cAMP-sensitive GloSensor luciferase were established. Adenosine A2A receptor activation in the donor cells using a selective agonist results in intracellular cAMP production. The negatively charged cAMP migrates via the Cx43 gap junctions to the biosensor cells and can there be measured by the cAMP-dependent luminescence signal. Cx43 GJ modulators can be expected to impact the transfer of cAMP from the donor to the biosensor cells, since cAMP transit is only possible via GJs. The new assay was validated by testing the standard GJ inhibitor carbenoxolon, which showed a concentration-dependent inhibition of the signal and an IC50 value that was consistent with previously reported values. The assay was demonstrated to be suitable for high-throughput screening.
Collapse
|
6
|
Choi EJ, Palacios-Prado N, Sáez JC, Lee J. Identification of Cx45 as a Major Component of GJs in HeLa Cells. Biomolecules 2020; 10:biom10101389. [PMID: 33003547 PMCID: PMC7650549 DOI: 10.3390/biom10101389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023] Open
Abstract
Gap junctions (GJs) are intercellular channels that connect adjacent cells electrically and metabolically. The iodide-yellow fluorescent protein (I-YFP) gap junctional intercellular communication (GJIC) assay is a recently developed method with high sensitivity. HeLa cells have been widely used as GJ-deficient cells for GJ-related research. Herein, we present evidence showing that HeLa cells have functional GJs comprising connexin (Cx) 45 using the I-YFP GJ assay and CRISPR/Cas9 system. We conducted the I-YFP GJIC assay in HeLa cells, which revealed a weak level of GJIC that could not be detected by the Lucifer yellow scrape-loading assay. The mRNA expression of GJB5 (Cx31.1), GJA1 (Cx43), and GJC1 (Cx45) was detected in HeLa cells by RT-PCR analysis. Knocking out GJC1 (Cx45) abolished GJIC, as analyzed by the I-YFP assay and dual whole-cell patch-clamp assay. These results suggest that HeLa cells express Cx45-based GJs and that the I-YFP GJIC assay can be used for cells with weak GJIC, such as Cx45-expressing HeLa cells. Further, GJC1 (Cx45)-knockout HeLa cells are more suitable as a GJ-null cell model for transfection experiments than wild-type HeLa cells. This experimental design was successfully applied to knock out Cx43 expression and GJIC in A549 lung cancer cells and can thus be used to identify major Cxs in other cell types and to establish GJ assay systems for different Cxs.
Collapse
Affiliation(s)
- Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Nicolás Palacios-Prado
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile; (N.P.-P.); (J.C.S.)
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile; (N.P.-P.); (J.C.S.)
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- Correspondence: ; Tel.: +82-32-749-4161
| |
Collapse
|
7
|
Soleilhac E, Comte M, da Costa A, Barette C, Picoli C, Mortier M, Aubry L, Mouthon F, Fauvarque MO, Charvériat M. Quantitative Automated Assays in Living Cells to Screen for Inhibitors of Hemichannel Function. SLAS DISCOVERY 2020; 26:420-427. [PMID: 32914684 DOI: 10.1177/2472555220954388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In vertebrates, intercellular communication is largely mediated by connexins (Cx), a family of structurally related transmembrane proteins that assemble to form hemichannels (HCs) at the plasma membrane. HCs are upregulated in different brain disorders and represent innovative therapeutic targets. Identifying modulators of Cx-based HCs is of great interest to better understand their function and define new treatments. In this study, we developed automated versions of two different cell-based assays to identify new pharmacological modulators of Cx43-HCs. As HCs remain mostly closed under physiological conditions in cell culture, depletion of extracellular Ca2+ was used to increase the probability of opening of HCs. The first assay follows the incorporation of a fluorescent dye, Yo-Pro, by real-time imaging, while the second is based on the quenching of a fluorescent protein, YFPQL, by iodide after iodide uptake. These assays were then used to screen a collection of 2242 approved drugs and compounds under development. This study led to the identification of 11 candidate hits blocking Cx43-HC, active in the two assays, with 5 drugs active on HC but not on gap junction (GJ) activities. To our knowledge, this is the first screening on HC activity and our results suggest the potential of a new use of already approved drugs in central nervous system disorders with HC impairments.
Collapse
Affiliation(s)
| | - Marjorie Comte
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | - Caroline Barette
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | - Magda Mortier
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | - Laurence Aubry
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | | | | |
Collapse
|
8
|
Fiori MC, Cuello LG, Altenberg GA. A Simple Assay to Evaluate the Function of Human Connexin Hemichannels Expressed in Escherichia coli that Can Be Used for Drug Discovery and Mutant Analysis. ACTA ACUST UNITED AC 2020; 87:e68. [PMID: 31756040 DOI: 10.1002/cpph.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abnormally increased activity of connexin hemichannels contributes to cell damage in many disorders, including deafness, stroke, and cardiac infarct, and therefore hemichannels constitute a potentially important therapeutic target. Unfortunately, the available hemichannel inhibitors are not specific and most are toxic. The absence of a simple and cost-effective screening assay has made the discovery of hemichannel inhibitors difficult. Here, we present an optimized assay where human connexins are expressed in genetically modified Escherichia coli cells deficient in potassium uptake (LB2003 cells). These cells cannot grow in low-potassium medium, and hemichannel function is assayed by the reversion of the no-growth phenotype. Since functional hemichannels are permeable to potassium, they allow for its uptake and cell growth. The simple reading of bacterial growth in low-potassium medium distinguishes functional hemichannels (growth) from those inhibited (no growth). This assay is simple, robust, inexpensive, and reliable, and is easily scaled to high-throughput multiwell platforms. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of competent LB2003 cells resistant to kanamycin Basic Protocol 2: Growth complementation assay Support Protocol: Evaluation of cytotoxic effects of potential connexin hemichannel inhibitors.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
9
|
Dydowiczová A, Brózman O, Babica P, Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci Rep 2020; 10:730. [PMID: 31959888 PMCID: PMC6971000 DOI: 10.1038/s41598-020-57536-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) is a vital cellular process required for maintenance of tissue homeostasis. In vitro assessment of GJIC represents valuable phenotypic endpoint that could be effectively utilized as an integral component in modern toxicity testing, drug screening or biomedical in vitro research. However, currently available methods for quantifying GJIC with higher-throughputs typically require specialized equipment, proprietary software and/or genetically engineered cell models. To overcome these limitations, we present here an innovative adaptation of traditional, fluorescence microscopy-based scrape loading-dye transfer (SL-DT) assay, which has been optimized to simultaneously evaluate GJIC, cell density and viability. This multiparametric method was demonstrated to be suitable for various multiwell microplate formats, which facilitates an automatized image acquisition. The assay workflow is further assisted by an open source-based software tools for batch image processing, analysis and evaluation of GJIC, cell density and viability. Our results suggest that this approach provides a simple, fast, versatile and cost effective way for in vitro high-throughput assessment of GJIC and other related phenotypic cellular events, which could be included into in vitro screening and assessment of pharmacologically and toxicologically relevant compounds.
Collapse
Affiliation(s)
- Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Ondřej Brózman
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
10
|
Yeo JH, Choi EJ, Lee J. Inhibition of gap junctional intercellular communication by an anti-migraine agent, flunarizine. PLoS One 2019; 14:e0222326. [PMID: 31513635 PMCID: PMC6742374 DOI: 10.1371/journal.pone.0222326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023] Open
Abstract
Gap junctions (GJs), which consist of proteins called connexins, are intercellular channels that allow the passage of ions, second messengers, and small molecules. GJs and connexins are considered as emerging therapeutic targets for various diseases. Previously, we screened numerous compounds using our recently developed iodide yellow fluorescent protein gap junctional intercellular communication (I-YFP GJIC) assay and found that flunarizine (FNZ), used for migraine prophylaxis and as an add-on therapy for epilepsy, inhibits GJIC in LN215 human glioma cells. In this study, we confirmed that FNZ inhibits GJIC using the I-YFP GJIC assay. We demonstrated that FNZ inhibits GJ activities via a mechanism that is independent of calcium channels and dopaminergic D2, histaminergic H1, or 5-HT receptors. In addition, we showed that FNZ significantly increases connexin 43 (Cx43) phosphorylation on the cell surface, but does not alter the total amount of Cx43. The beneficial effects of FNZ on migraines and epilepsy might be related to GJ inhibition.
Collapse
Affiliation(s)
- Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| | - Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Korea
| |
Collapse
|
11
|
Choi EJ, Yeo JH, Yoon SM, Lee J. Gambogic Acid and Its Analogs Inhibit Gap Junctional Intercellular Communication. Front Pharmacol 2018; 9:814. [PMID: 30104974 PMCID: PMC6077758 DOI: 10.3389/fphar.2018.00814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
Gap junctions (GJs) are intercellular channels composed of connexins. Cellular molecules smaller than 1 kDa can diffuse through GJs by a process termed gap junctional intercellular communication (GJIC), which plays essential roles in various pathological and physiological conditions. Gambogic acid (GA), a major component of a natural yellow dye, has been used as traditional medicine and has been reported to have various therapeutic effects, including an anti-cancer effect. In this study, two different GJ assay methods showed that GA and its analogs inhibited GJIC. The inhibition was rapidly reversible and was not mediated by changes in surface expression or S368 phosphorylation of Cx43, cellular calcium concentration, or redox state. We also developed an assay system to measure the intercellular communication induced by Cx40, Cx30, and Cx43. Dihydrogambogic acid (D-GA) potently inhibited GJIC by Cx40 (IC50 = 5.1 μM), whereas the IC50 value of carbenoxolone, which is known as a broad spectrum GJIC inhibitor, was 105.2 μM. Thus, D-GA can act as a pharmacological tool for the inhibition of Cx40.
Collapse
Affiliation(s)
- Eun J Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Joo H Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Sei M Yoon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.,Department of Integrated OMICS for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| |
Collapse
|
12
|
Yin X, Feng L, Ma D, Yin P, Wang X, Hou S, Hao Y, Zhang J, Xin M, Feng J. Roles of astrocytic connexin-43, hemichannels, and gap junctions in oxygen-glucose deprivation/reperfusion injury induced neuroinflammation and the possible regulatory mechanisms of salvianolic acid B and carbenoxolone. J Neuroinflammation 2018; 15:97. [PMID: 29587860 PMCID: PMC5872583 DOI: 10.1186/s12974-018-1127-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Glia-mediated neuroinflammation is related to brain injury exacerbation after cerebral ischemia/reperfusion (I/R) injury. Astrocytic hemichannels or gap junctions, which were mainly formed by connexin-43, have been implicated in I/R damage. However, the exact roles of astrocytic hemichannels and gap junction in neuroinflammatory responses induced by I/R injury remain unknown. Methods Primary cultured astrocytes were subjected to OGD/R injury, an in vitro model of I/R injury. Salvianolic acid B (SalB) or carbenoxolone (CBX) were applied for those astrocytes. Besides, Cx43 mimetic peptides Gap19 or Gap26 were also applied during OGD/R injury; Cx43 protein levels were determined by western blot and cytoimmunofluorescene staining, hemichannel activities by Ethidium bromide uptake and ATP concentration detection, and gap junction intercellular communication (GJIC) permeability by parachute assay. Further, astrocyte-conditioned medium (ACM) was collected and incubated with microglia. Meanwhile, ATP or apyrase were applied to explore the role of ATP during OGD/R injury. Microglial activation, M1/M2 phenotypes, and M1/M2-related cytokines were detected. Also, microglia-conditioned medium (MEM) was collected and incubated with astrocytes to further investigate its influence on astrocytic hemichannel activity and GJIC permeability. Lastly, effects of ACM and MCM on neuronal viability were detected by flow cytometry. Results We found that OGD/R induced abnormally opened hemichannels with increased ATP release and EtBr uptake but reduced GJIC permeability. WB tests showed decreased astrocytic plasma membrane’s Cx43, while showing an increase in cytoplasma. Treating OGD/R-injured microglia with ATP or OGD/R-ACM induced further microglial activation and secondary pro-inflammatory cytokine release, with the M1 phenotype predominating. Conversely, astrocytes incubated with OGD/R-MCM exhibited increased hemichannel opening but reduced GJIC coupling. Both SalB and CBX inhibited abnormal astrocytic hemichannel opening and ATP release and switched the activated microglial phenotype from M1 to M2, thus providing effective neuroprotection. Application of Gap19 or Gap26 showed similar results with CBX. We also found that OGD/R injury caused both plasma membrane p-Cx43(Ser265) and p-Src(Tyr416) significantly upregulated; application of SalB may be inhibiting Src kinase and attenuating Cx43 internalization. Meanwhile, CBX treatment induced obviously downregulation of p-Cx43(Ser368) and p-PKC(Ser729) protein levels in plasma membrane. Conclusions We propose a vicious cycle exists between astrocytic hemichannel and microglial activation after OGD/R injury, which would aggravate neuroinflammatory responses and neuronal damage. Astrocytic Cx43, hemichannels, and GJIC play critical roles in OGD/R injury-induced neuroinflammatory responses; treatment differentially targeting astrocytic Cx43, hemichannels, and GJIC may provide novel avenues for therapeutics during cerebral I/R injury. Electronic supplementary material The online version of this article (10.1186/s12974-018-1127-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Yin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Di Ma
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Ping Yin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Xinyu Wang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Jingdian Zhang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Meiying Xin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China.
| |
Collapse
|
13
|
Kim J, Heo Y, Jung Y, Lee J, Kim I. Diversity-oriented functionalization of indolizines at the C3 position via multicomponent Kabachnik-Fields reaction. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Tellez-Gabriel M, Charrier C, Brounais-Le Royer B, Mullard M, Brown HK, Verrecchia F, Heymann D. Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip. Eur J Cell Biol 2017; 96:110-118. [DOI: 10.1016/j.ejcb.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/29/2016] [Accepted: 01/09/2017] [Indexed: 01/20/2023] Open
|
15
|
Krishnan S, Fiori MC, Cuello LG, Altenberg GA. A Cell-Based Assay to Assess Hemichannel Function. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:87-95. [PMID: 28356896 PMCID: PMC5369048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
Activation of connexin hemichannels is involved in the pathophysiology of disorders that include deafness, stroke, and cardiac infarct. This aspect makes hemichannels an attractive therapeutic target. Unfortunately, most available inhibitors are not selective or isoform specific, which hampers their translational application. The absence of a battery of useful inhibitors is due in part to the absence of simple screening assays for the discovery of hemichannel-active drugs. Here, we present an assay that we have recently developed to assess hemichannel function. The assay is based on the expression of functional human connexins in a genetically modified bacterial strain deficient in K+ uptake. These modified cells do not grow in low-K+ medium, but functional expression of connexin hemichannels allows K+ uptake and growth. This cell-growth-based assay is simple, robust, and easily scalable to high-throughput multi-well platforms.
Collapse
Affiliation(s)
- Srinivasan Krishnan
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Luis G. Cuello
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
16
|
Krishnan S, Fiori MC, Whisenant TE, Cortes DM, Altenberg GA, Cuello LG. An Escherichia coli-Based Assay to Assess the Function of Recombinant Human Hemichannels. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:135-143. [PMID: 27789753 DOI: 10.1177/1087057116675321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Connexins form the gap junctional channels that mediate cell-to-cell communication, and also form hemichannels present at the plasma membrane. Hemichannels are permeable to small hydrophilic compounds, including molecules involved in autocrine and paracrine signaling. An abnormal hemichannel opening causes or contributes to cell damage in common human disorders (e.g., cardiac infarct, cerebrovascular accidents, deafness, skin diseases, and cataracts) and is therefore a potential pharmacological target. The discovery of useful hemichannels inhibitors has been hampered in part by the lack of suitable high-throughput functional assays. Here, we developed and characterized an assay useful to assess the function of hemichannels formed by human connexins expressed in a genetically modified Escherichia coli strain. The LB2003 cells, devoid of three key K+ uptake transport mechanisms, cannot grow in low-[K+] medium, but expression of Cx26, Cx43, or Cx46 rescues their growth defect (growth complementation). We developed a protocol for a simple, inexpensive, easily scalable, reproducible, and sensitive assay that should be useful for the discovery of new and better hemichannel inhibitors based on the analysis of small-compound libraries.
Collapse
Affiliation(s)
- Srinivasan Krishnan
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ty E Whisenant
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - D Marien Cortes
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guillermo A Altenberg
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Luis G Cuello
- 1 Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
17
|
Lee JY, Yoon SM, Choi EJ, Lee J. Terbinafine inhibits gap junctional intercellular communication. Toxicol Appl Pharmacol 2016; 307:102-107. [DOI: 10.1016/j.taap.2016.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/14/2016] [Accepted: 07/30/2016] [Indexed: 11/28/2022]
|
18
|
Chung WY, Song M, Park J, Namkung W, Lee J, Kim H, Lee MG, Kim JY. Generation of ΔF508-CFTR T84 cell lines by CRISPR/Cas9-mediated genome editing. Biotechnol Lett 2016; 38:2023-2034. [DOI: 10.1007/s10529-016-2190-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022]
|