1
|
Kandell J, Milian S, Snyder R, Lakshmipathy U. Universal ddPCR-based assay for the determination of lentivirus infectious titer and lenti-modified cell vector copy number. Mol Ther Methods Clin Dev 2023; 31:101120. [PMID: 37841416 PMCID: PMC10568280 DOI: 10.1016/j.omtm.2023.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
The translation of cell-based therapies from research to clinical setting requires robust analytical methods that successfully adhere to current good manufacturing practices and regulatory guidelines. Lentiviral vectors are commonly used for gene delivery to generate genetically modified therapeutic cell products. For some cell therapy products, standardized characterization assays for potency and safety have gained momentum. Translational applications benefit from assays that can be deployed broadly, such as for lentiviral vectors with various transgenes of interest. Development of a universal method to determine lentivirus infectious titer and vector copy number (VCN) of lenti-modified cells was performed using droplet digital PCR (ddPCR). Established methods relied on a ubiquitous lenti-specific target and a housekeeping gene that demonstrated comparability among flow cytometry-based methods. A linearized plasmid control was used to determine assay linearity/range, sensitivity, accuracy, and limits of quantification. Implementing this assay, infectious titer was assessed for various production runs that demonstrated comparability to the flow cytometry titer. The ddPCR assay described here also indicates suitability in the determination of VCN for genetically modified CAR-T cell products. Overall, the development of these universal assays supports the implementation of standardized characterization methods for quality control.
Collapse
Affiliation(s)
- Jennifer Kandell
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, San Diego, CA 92121, USA
| | - Steven Milian
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, Alachua, FL 32615, USA
| | - Richard Snyder
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, Alachua, FL 32615, USA
| | - Uma Lakshmipathy
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, San Diego, CA 92121, USA
| |
Collapse
|
2
|
Putriana NA, Rusdiana T, Puspitadewi N, Rahayu D, Saputri FA. Validation of bioanalytical method for quantification of Vitamin K2 (MK-4) in human plasma by high-performance liquid chromatography-ultraviolet. J Adv Pharm Technol Res 2023; 14:345-350. [PMID: 38107456 PMCID: PMC10723175 DOI: 10.4103/japtr.japtr_139_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/03/2023] [Accepted: 07/31/2023] [Indexed: 12/19/2023] Open
Abstract
Vitamin K can reduce warfarin's anticoagulant action, causing a variance in response among individuals taking warfarin. Vitamin K comes in two forms, namely Vitamin K1 (phylloquinone) and K2 (menaquinones). Menaquinone-4 (MK-4) is a kind of Vitamin K2 found in meat and dairy products. Analysis of MK-4 levels in human plasma is very useful for patients who receive warfarin therapy. High-performance liquid chromatography (HPLC) can be used for warfarin's bioanalysis, and it must be validated. The purpose of this study was to validate the bioanalytical method for quantification of Vitamin K2 (MK-4) in human plasma according to the 2019 European Medicines Agency (EMA) guideline. Vitamin K2 (MK-4) was extracted using acetonitrile. HPLC with an ultraviolet detector at 245 nm, using a T3 column set at 30°C and an isocratic mobile phase containing methanol: phosphate buffer (95:5) at pH 3, a flow rate of 1 mL/min was used in this study. The warfarin concentration of 0.5-3 µg/mL was used. About 5.50%-17.42% and 6.18%-8.74%, respectively, were the average ranges of percentage coefficient of variation and percentage difference. There was no response at the analyte's retention time in the six blank plasmas and at the analyte's retention time in the blank after the injection of upper limit of quantification, indicates that the procedure was very selective and did not result in any carryover. This bioanalytical method fulfills the parameters of selectivity, accuracy, precision, and carryover based on the 2019 EMA guidelines.
Collapse
Affiliation(s)
- Norisca Aliza Putriana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang
| | - Nurhanifah Puspitadewi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang
| | - Driyanti Rahayu
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang
| | | |
Collapse
|
3
|
Yu Z, Xu J, She Q. Harnessing the LdCsm RNA Detection Platform for Efficient microRNA Detection. Int J Mol Sci 2023; 24:ijms24032857. [PMID: 36769177 PMCID: PMC9918065 DOI: 10.3390/ijms24032857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
In cancer diagnosis, diverse microRNAs (miRNAs) are used as biomarkers for carcinogenesis of distinctive human cancers. Thus, the detection of these miRNAs and their quantification are very important in prevention of cancer diseases in human beings. However, efficient RNA detection often requires RT-PCR, which is very complex for miRNAs. Recently, the development of CRISPR-based nucleic acid detection tools has brought new promises to efficient miRNA detection. Three CRISPR systems can be explored for miRNA detection, including type III, V, and VI, among which type III (CRISPR-Cas10) systems have a unique property as they recognize RNA directly and cleave DNA collaterally. In particular, a unique type III-A Csm system encoded by Lactobacillus delbrueckii subsp. bulgaricus (LdCsm) exhibits robust target RNA-activated DNase activity, which makes it a promising candidate for developing efficient miRNA diagnostic tools. Herein, LdCsm was tested for RNA detection using fluorescence-quenched DNA reporters. We found that the system is capable of specific detection of miR-155, a microRNA implicated in the carcinogenesis of human breast cancer. The RNA detection system was then improved by various approaches including assay conditions and modification of the 5'-repeat tag of LdCsm crRNAs. Due to its robustness, the resulting LdCsm detection platform has the potential to be further developed as a better point-of-care miRNA diagnostics relative to other CRISPR-based RNA detection tools.
Collapse
Affiliation(s)
| | | | - Qunxin She
- Correspondence: ; Tel.: +86-532-58631522
| |
Collapse
|
4
|
Asogawa M. Framework for qPCR modeling and analysis of low copy number sample. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2022. [DOI: 10.1016/j.fsigss.2022.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
van der Hoeven AE, van Waaij K, Bijlenga D, Roelandse FWC, Overeem S, Bakker JA, Fronczek R, Lammers GJ. Hypocretin-1 measurements in cerebrospinal fluid using radioimmunoassay: within and between assay reliability and limit of quantification. Sleep 2022; 45:6581446. [PMID: 35512685 PMCID: PMC9272241 DOI: 10.1093/sleep/zsac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Study Objectives The most sensitive and specific investigative method for the diagnosis of narcolepsy type 1 (NT1) is the determination of hypocretin-1 (orexin-A) deficiency (≤110 pg/mL) in cerebrospinal fluid using a radioimmunoassay (RIA). We aimed to assess the reliability of the Phoenix Pharmaceuticals hypocretin-1 RIA, by determining the lower limit of quantification (LLOQ), the variability around the cutoff of 110 pg/mL, and the inter- and intra-assay variability. Methods Raw data of 80 consecutive hypocretin-1 RIAs were used to estimate the intra- and inter-assay coefficient of variation (CV). The LLOQ was established and defined as the lowest converted concentration with a CV <25%; the conversion is performed using a harmonization sample which is internationally used to minimize variation between RIAs. Results The mean intra-assay CV was 4.7%, while the unconverted inter-assay CV was 28.3% (18.5% excluding 2 outliers) and 7.5% when converted to international values. The LLOQ was determined as 27.9 pg/mL. The intra-assay CV of RIAs with lower specific radioactive activity showed a median of 5.6% (n = 41, range 1.6%–17.0%), which was significantly higher than in RIAs with higher specific activity (n = 36; median 3.2%, range 0.4%–11.6%, p = .013). The CV around the 110 pg/mL cutoff was <7%. Conclusions Hypocretin-1 RIAs should always be harmonized using standard reference material. The specific activity of an RIA has a significant impact on its reliability, because of the decay of 125I radioactivity. Values around the hypocretin-1 cut-off can reliably be measured. Hypocretin-1 concentrations below 28 pg/mL should be reported as “undetectable” when measured with the Phoenix Pharmaceuticals RIA. Clinical Trial Information This study is not registered in a clinical trial register, as it has a retrospective database design
Collapse
Affiliation(s)
- Adrienne Elisabeth van der Hoeven
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | - Kevin van Waaij
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
| | - Denise Bijlenga
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | | | | | - Jaap Adriaan Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center , Leiden , the Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| |
Collapse
|
6
|
Neugebauer M, Grundmann CE, Lehnert M, von Stetten F, Früh SM, Süss R. Analyzing siRNA Concentration, Complexation and Stability in Cationic Dendriplexes by Stem-Loop Reverse Transcription-qPCR. Pharmaceutics 2022; 14:pharmaceutics14071348. [PMID: 35890243 PMCID: PMC9320460 DOI: 10.3390/pharmaceutics14071348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
RNA interference (RNAi) is a powerful therapeutic approach for messenger RNA (mRNA) level regulation in human cells. RNAi can be triggered by small interfering RNAs (siRNAs) which are delivered by non-viral carriers, e.g., dendriplexes. siRNA quantification inside carriers is essential in drug delivery system development. However, current siRNA measuring methods either are not very sensitive, only semi-quantitative or not specific towards intact target siRNA sequences. We present a novel reverse transcription real-time PCR (RT-qPCR)-based application for siRNA quantification in drug formulations. It enables specific and highly sensitive quantification of released, uncomplexed target siRNA and thus also indirect assessment of siRNA stability and concentration inside dendriplexes. We show that comparison with a dilution series allows for siRNA quantification, exclusively measuring intact target sequences. The limit of detection (LOD) was 4.2 pM (±0.2 pM) and the limit of quantification (LOQ) 77.8 pM (±13.4 pM) for uncomplexed siRNA. LOD and LOQ of dendriplex samples were 31.6 pM (±0 pM) and 44.4 pM (±9.0 pM), respectively. Unspecific non-target siRNA sequences did not decrease quantification accuracy when present in samples. As an example of use, we assessed siRNA complexation inside dendriplexes with varying nitrogen-to-phosphate ratios. Further, protection of siRNA inside dendriplexes from RNase A degradation was quantitatively compared to degradation of uncomplexed siRNA. This novel application for quantification of siRNA in drug delivery systems is an important tool for the development of new siRNA-based drugs and quality checks including drug stability measurements.
Collapse
Affiliation(s)
- Maximilian Neugebauer
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence:
| | - Clara E. Grundmann
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany; (C.E.G.); (R.S.)
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Susanna M. Früh
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany; (C.E.G.); (R.S.)
| |
Collapse
|
7
|
Cheng YJ, Wang CH, Hsu KF, Lee GB. Isolation and Quantification of Methylated Cell-Free DNA in Plasma on an Integrated Microfluidic System. Anal Chem 2022; 94:2134-2141. [DOI: 10.1021/acs.analchem.1c04471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yu-Jen Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Gwo-Bin Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Pereira-da-Silva T, Napoleão P, Costa MC, Gabriel AF, Selas M, Silva F, Enguita FJ, Cruz Ferreira R, Mota Carmo M. Association between miR-146a and Tumor Necrosis Factor Alpha (TNF-α) in Stable Coronary Artery Disease. ACTA ACUST UNITED AC 2021; 57:medicina57060575. [PMID: 34199767 PMCID: PMC8230353 DOI: 10.3390/medicina57060575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Tumor necrosis factor alpha (TNF-α) is proatherogenic and associated with the risk of acute ischemic events, although the mechanisms that regulate TNF-α expression in stable coronary artery disease (SCAD) are not fully understood. We investigated whether metabolic, inflammatory, and epigenetic (microRNA (miRNA)) markers are associated with TNF-α expression in SCAD. Materials and Methods: Patients with SCAD were prospectively recruited and their metabolic and inflammatory profiles were assessed. TNF-α levels were assessed using an enzyme-linked immunosorbent assay. The relative expression of six circulating miRNAs associated with the regulation of inflammation and/or atherosclerosis was determined. Results: Of the 24 included patients with the mean age of 65 (9) years, 88% were male, and 54% were diabetic. The TNF-α levels were (median (interquartile range)) 1.0 (0.7–1.1) pg/mL. The percentage of glycosylated hemoglobin (r = 0.418, p = 0.042), serum triglyceride levels (r = 0.429, p = 0.037), and C-reactive protein levels (r = 0.407, p = 0.048) were positively correlated with TNF-α levels. Of the candidate miRNAs, miR-146a expression levels were negatively correlated with TNF-α levels (as indicated by r = 0.500, p = 0.035 for correlation between delta cycle threshold (ΔCt) miR-146a and TNF-α levels). In multivariate analysis, serum triglyceride levels and miR-146a expression levels were independently associated with TNF-α levels. miR-146 expression levels were not associated with metabolic or other inflammatory parameters and were negatively correlated with the number of coronary vessels with obstructive disease (as indicated by r = 0.556, p = 0.017 for correlation between ΔCt miR-146a and number of diseased vessels). Conclusions: miR-146a expression levels were negatively correlated with TNF-α levels in patients with SCAD, irrespective of other metabolic or inflammatory markers, and with the severity of coronary artery disease. The results add to the knowledge on the role of miR-146a in TNF-α-based inflammation in SCAD and support future research on the potential therapeutic use of miR-146a in such a clinical scenario.
Collapse
Affiliation(s)
- Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
- NOVA Doctoral School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: ; Tel.: +351-919908505
| | - Patrícia Napoleão
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mafalda Selas
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Filipa Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Miguel Mota Carmo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
9
|
Chorley BN, Atabakhsh E, Doran G, Gautier JC, Ellinger-Ziegelbauer H, Jackson D, Sharapova T, Yuen PST, Church RJ, Couttet P, Froetschl R, McDuffie J, Martinez V, Pande P, Peel L, Rafferty C, Simutis FJ, Harrill AH. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit Rev Toxicol 2021; 51:264-282. [PMID: 34038674 DOI: 10.1080/10408444.2021.1907530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | - David Jackson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Church
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Pereira-da-Silva T, Napoleão P, Costa MC, Gabriel AF, Selas M, Silva F, Enguita FJ, Ferreira RC, Carmo MM. Cigarette Smoking, miR-27b Downregulation, and Peripheral Artery Disease: Insights into the Mechanisms of Smoking Toxicity. J Clin Med 2021; 10:jcm10040890. [PMID: 33671744 PMCID: PMC7926909 DOI: 10.3390/jcm10040890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoking is a risk factor for the development of peripheral artery disease (PAD), although the proatherosclerotic mediators of cigarette smoking are not entirely known. We explored whether circulating microRNAs (miRNAs) are dysregulated in cigarette smokers and associated with the presence of PAD. Ninety-four participants were recruited, including 58 individuals without and 36 with PAD, 51 never smokers, 28 prior smokers, and 15 active smokers. The relative expression of six circulating miRNAs with distinct biological roles (miR-21, miR-27b, miR-29a, miR-126, miR-146, and miR-218) was assessed. Cigarette smoking was associated with the presence of PAD in multivariate analysis. Active smokers, but not prior smokers, presented miR-27b downregulation and higher leukocyte, neutrophil, and lymphocyte counts; miR-27b expression levels were independently associated with active smoking. Considering the metabolic and/or inflammatory abnormalities induced by cigarette smoking, miR-27b was independently associated with the presence of PAD and downregulated in patients with more extensive PAD. In conclusion, the atheroprotective miR-27b was downregulated in active smokers, but not in prior smokers, and miR-27b expression was independently associated with the presence of PAD. These unreported data suggest that the proatherogenic properties of cigarette smoking are mediated by a downregulation of miR-27b, which may be attenuated by smoking cessation.
Collapse
Affiliation(s)
- Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
- NOVA Doctoral School, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: ; Tel.: +351-919908505
| | - Patrícia Napoleão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mafalda Selas
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Filipa Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Miguel Mota Carmo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
11
|
Pereira-da-Silva T, Napoleão P, Costa MC, Gabriel AF, Selas M, Silva F, Enguita FJ, Ferreira RC, Carmo MM. Circulating miRNAs Are Associated with the Systemic Extent of Atherosclerosis: Novel Observations for miR-27b and miR-146. Diagnostics (Basel) 2021; 11:318. [PMID: 33669374 PMCID: PMC7920287 DOI: 10.3390/diagnostics11020318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
The mechanisms that regulate the systemic extent of atherosclerosis are not fully understood. We investigated whether the expression of circulating miRNAs is associated with the extent of stable atherosclerosis to a single territory or multiple territories (polyvascular) and with the severity of atherosclerosis in each territory. Ninety-four participants were prospectively recruited and divided into five age- and sex-matched groups: presenting no atherosclerosis, isolated coronary atherosclerosis, coronary and lower extremity atherosclerosis, coronary and carotid atherosclerosis, and atherosclerosis of the coronary, lower extremity, and carotid territories. The expression of six circulating miRNAs with distinct biological roles was assessed. The expression of miR-27b and miR-146 differed across groups (p < 0.05), showing a decrease in the presence of atherosclerosis, particularly in the three territories. miR-27b and miR-146 expression decreased in association with a higher severity of coronary, lower extremity, and carotid atherosclerosis. Polyvascular atherosclerosis involving the three territories was independently associated with a decreased miR-27b and miR-146 expression. Both miRNAs presented an area under the curve of ≥0.75 for predicting polyvascular atherosclerosis involving the three territories. To conclude, miR-27b and miR-146 were associated with the presence of severe polyvascular atherosclerosis and with the atherosclerosis severity in each territory. Both are potential biomarkers of severe systemic atherosclerosis.
Collapse
Affiliation(s)
- Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Patrícia Napoleão
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mafalda Selas
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Filipa Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Miguel Mota Carmo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
12
|
Tetreau G, Dhinaut J, Galinier R, Audant-Lacour P, Voisin SN, Arafah K, Chogne M, Hilliou F, Bordes A, Sabarly C, Chan P, Walet-Balieu ML, Vaudry D, Duval D, Bulet P, Coustau C, Moret Y, Gourbal B. Deciphering the molecular mechanisms of mother-to-egg immune protection in the mealworm beetle Tenebrio molitor. PLoS Pathog 2020; 16:e1008935. [PMID: 33057453 PMCID: PMC7591081 DOI: 10.1371/journal.ppat.1008935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.
Collapse
Affiliation(s)
- Guillaume Tetreau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Julien Dhinaut
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Richard Galinier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Pascaline Audant-Lacour
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | - Karim Arafah
- Plateforme BioPark d'Archamps, ArchParc, Saint Julien en Genevois, France
| | - Manon Chogne
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Frédérique Hilliou
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Anaïs Bordes
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Camille Sabarly
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Philippe Chan
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Marie-Laure Walet-Balieu
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - David Vaudry
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - David Duval
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Philippe Bulet
- Plateforme BioPark d'Archamps, ArchParc, Saint Julien en Genevois, France
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, La Tronche, France
| | - Christine Coustau
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Yannick Moret
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
13
|
Disparate miRNA expression in serum and plasma of patients with acute myocardial infarction: a systematic and paired comparative analysis. Sci Rep 2020; 10:5373. [PMID: 32214121 PMCID: PMC7096393 DOI: 10.1038/s41598-020-61507-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Despite the promising value of miRNAs in the diagnostic and prognostic of cardiovascular disease (CVD), recent meta-analyses did not support their potential. Methodological variances in studies may interfere with miRNA profile and affect their results. This study determines if the blood starting material is a source of variance in miRNA profile by performing a paired comparison in plasma and serum of the expression of primary miRNAs associated with CVD. Circulating miRNA yield was similar in both plasma and serum, although a significant increase was observed in patients with Non-ST-elevation myocardial infarction (NSTEMI) compared to control volunteers. When normalized by the expression of miR-484, different patterns of miRNA expression between serum and plasma. Although NSTEMI modified the expression of miR-1 and miR-208 in both serum and plasma, plasma displayed a higher variance than serum (Levene’s test p < 0.01). For miR-133a and miR-26a, differences were only detected in serum (p = 0.0240), and conversely, miR-499a showed differences only in plasma of NSTEMI (p = 0.001). Interestingly, miR-21 showed an opposite pattern of expression, being increased in serum (2−ΔΔCt: 5.7, p = 0.0221) and decreased in plasma (2−ΔΔCt: 0.5, p = 0.0107). Plasma and serum exhibit different patterns of circulating miRNA expression in NSTEMI and suggest that results from studies with different starting material could not be comparable.
Collapse
|
14
|
Selection of the Reference Gene for Expression Normalization in Papaver s omniferum L. under Abiotic Stress and Hormone Treatment. Genes (Basel) 2020; 11:genes11020124. [PMID: 31979407 PMCID: PMC7074096 DOI: 10.3390/genes11020124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/21/2023] Open
Abstract
Papaver somniferum L. is an important medical plant that produces analgesic drugs used for the pain caused by cancers and surgeries. Recent studies have focused on the expression genes involved in analgesic drugs biosynthesis, and the real-time quantitative polymerase chain reaction (RT-qPCR) technique is the main strategy. However, no reference genes have been reported for gene expression normalization in P. somniferum. Herein, nine reference genes (actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclophilin 2 (CYP2), elongation factor 1-alpha (EF-1α), glyceraldehyde-3-phosphate dehydrogenase 2, cytosolic (GAPC2), nuclear cap-binding protein subunit 2 (NCBP2), protein phosphatase 2A (PP2A), TIP41-like protein (TIP41), and tubulin beta chain (TUB)) of P. somniferum were selected and analyzed under five different treatments (cold, drought, salt, heavy metal, and hormone stress). Then, BestKeeper, NormFinder, geNorm, and RefFinder were employed to analyze their gene expression stability. The results reveal that NCBP2 is the most stable reference gene under various experimental conditions. The work described here is the first report regarding on reference gene selection in P. somniferum, which could be used for the accurate normalization of the gene expression involved in analgesic drug biosynthesis.
Collapse
|
15
|
Analytics of Cerebrospinal Fluid MicroRNA Quantitative PCR Studies. Mol Neurobiol 2018; 56:4988-4999. [PMID: 30430409 DOI: 10.1007/s12035-018-1422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate post-transcriptional gene expression. Recent studies have shown that human disease states correlate with measurable differences in the level of circulating miRNAs relative to healthy controls. Thus, there is great interest in developing clinical miRNA assays as diagnostic or prognostic biomarkers for diseases, and as surrogate measures for therapeutic outcomes. Our studies have focused on miRNAs in human cerebral spinal fluid (CSF) as biomarkers for central nervous system (CNS) diseases. Our objective here was to examine factors that may affect the outcome of quantitative PCR (qPCR) studies on CSF miRNAs, in order to guide planning and interpretation of future CSF miRNA TaqMan® low-density array (TLDA) studies. We obtained CSF from neurologically normal (control) donors and used TLDAs to measure miRNA expression. We examined sources of error in the TLDA outcomes due to (1) nonspecific amplification of products in total RNA, (2) variations in RNA isolations performed on different days, (3) miRNA primer probe efficiency, and (4) variations in individual TLDA cards. We also examined the utility of card-to-card TLDA corrections and use of an unchanged "reference standard" to remove batch processing effects in large-scale studies.
Collapse
|