1
|
Lu M, Xu J, Wang Z, Wang Y, Wu J, Yang L. In silico mining and identification of a novel lipase from Paenibacillus larvae: Rational protein design for improving catalytic performance. Enzyme Microb Technol 2024; 179:110472. [PMID: 38889604 DOI: 10.1016/j.enzmictec.2024.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Lipases play a vital role in various biological processes, from lipid metabolism to industrial applications. However, the ever-evolving challenges and diverse substrates necessitate the continual exploration of novel high-performance lipases. In this study, we employed an in silico mining approach to search for lipases with potential high sn-1,3 selectivity and catalytic activity. The identified novel lipase, PLL, from Paenibacillus larvae subsp. larvae B-3650 exhibited a specific activity of 111.2 ± 5.5 U/mg towards the substrate p-nitrophenyl palmitate (pNPP) and 6.9 ± 0.8 U/mg towards the substrate olive oil when expressed in Escherichia coli (E. coli). Computational design of cysteine mutations was employed to enhance the catalytic performance of PLL. Superior stability was achieved with the mutant K7C/A386C/H159C/K108C (2M3/2M4), showing an increase in melting temperature (Tm) by 1.9°C, a 2.05-fold prolonged half-life at 45°C, and no decrease in enzyme activity. Another mutant, K7C/A386C/A174C/A243C (2M1/2M3), showed a 4.9-fold enhancement in specific activity without compromising stability. Molecular dynamics simulations were conducted to explore the mechanisms of these two mutants. Mutant 2M3/2M4 forms putative disulfide bonds in the loop region, connecting the N- and C-termini of PLL, thus enhancing overall structural rigidity without impacting catalytic activity. The cysteines introduced in mutant 2M1/2M3 not only form new intramolecular hydrogen bonds but also alter the polarity and volume of the substrate-binding pocket, facilitating the entry of large substrate pNPP. These results highlight an efficient in silico exploration approach for novel lipases, offering a rapid and efficient method for enhancing catalytic performance through rational protein design.
Collapse
Affiliation(s)
- Mengyao Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Ziyuan Wang
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yong Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| |
Collapse
|
4
|
Omrane Benmrad M, Mechri S, Zaraî Jaouadi N, Ben Elhoul M, Rekik H, Sayadi S, Bejar S, Kechaou N, Jaouadi B. Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom Pleurotus sajor-caju strain CTM10057 with industrial interest. BMC Biotechnol 2019; 19:43. [PMID: 31262286 PMCID: PMC6604391 DOI: 10.1186/s12896-019-0536-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/17/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Proteases are hydrolytic enzymes that catalyze peptide linkage cleavage reactions at the level of proteins and peptides with different degrees of specificity. This group draws the attention of industry. More than one protease in three is a serine protease. Classically, they are active at neutral to alkaline pH. The serine proteases are researched for industrial uses, especially detergents. They are the most commercially available enzyme group in the world market. Overall, fungi produced extracellular proteases, easily separated from mycelium by filtration. RESULTS A new basidiomycete fungus CTM10057, a hyperproducer of a novel protease (10,500 U/mL), was identified as Pleurotus sajor-caju (oyster mushroom). The enzyme, called SPPS, was purified to homogeneity by heat-treatment (80 °C for 20 min) followed by ammonium sulfate precipitation (35-55%)-dialysis, then UNO Q-6 FPLC ion-exchange chromatography and finally HPLC-ZORBAX PSM 300 HPSEC gel filtration chromatography, and submitted to biochemical characterization assays. The molecular mass was estimated to be 65 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion by HPLC. A high homology with mushroom proteases was displayed by the first 26 amino-acid residues of the NH2-terminal aminoacid sequence. Phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP) strongly inhibit SPPS, revealing that it is a member of the serine-proteases family. The pH and temperature optima were 9.5 and 70 °C, respectively. Interestingly, SPPS possesses the most elevated hydrolysis level and catalytic efficiency in comparison with SPTC, Flavourzyme® 500 L, and Thermolysin type X proteases. More remarkably, a high tolerance towards organic solvent tolerance was exhibited by SPPS, together with considerable detergent stability compared to the commercial proteases Thermolysin type X and Flavourzyme® 500 L, respectively. CONCLUSIONS This proves the excellent proprieties characterizing SPPS, making it a potential candidate for industrial applications especially detergent formulations.
Collapse
Affiliation(s)
- Maroua Omrane Benmrad
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
- Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Mouna Ben Elhoul
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
- Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hatem Rekik
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
- Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses (LEBP), LMI COSYS-Med, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
- Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Nabil Kechaou
- Research Group of Agro-Food Processing Engineering (GP2A), Laboratory of Applied Fluid Mechanics, Process Engineering and Environment, National School of Engineers of Sfax (ENIS), University of Sfax, Road of Soukra Km 4, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
- Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|