1
|
Cui Q, Zhang Y, Wang J, Wang J, Zhao Q, Song F, Wang L, Zhang W, Huang Y. Comparative Genomics, Transcriptome, and Prokaryotic Expression Analysis of alkB1_1 in Acinetobacter vivianii KJ-1: Revealing the Mechanism of Petroleum Hydrocarbon Degradation. Int J Mol Sci 2025; 26:4083. [PMID: 40362324 PMCID: PMC12071677 DOI: 10.3390/ijms26094083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The present study aimed to comprehensively dissect the petroleum hydrocarbon degradation mechanism of Acinetobacter vivianii KJ-1. The isolated and identified strain was able to proliferate using diesel as the sole carbonaceous substrate. Via comparative genomics, an in-depth analysis was performed to elucidate the genome similarities and disparities between this strain and related strains, thereby uncovering a core genome as well as genes with uncharacterized functions. Transcriptome analysis, carried out under different substrate conditions (C16, diesel, sodium acetate) manifested distinct gene expression modalities. A multitude of genes associated with alkane metabolism were differentially expressed, among which alkB1_1 and alkB1_2 was conspicuously upregulated. Prokaryotic expression of alkB1_1 was implemented, and the enzyme activity of the recombinant protein peaked at a pH level of approximately 7.0 and within a temperature range of 30 to 40 °C. The recombinant strain was shown to possess the ability to degrade n-hexadecane. Collectively, this research not only augments the understanding of the degradation mechanism of A. vivianii KJ-1 but also provides a fundamental basis for developing bioremediation strategies targeting petroleum hydrocarbon-contaminated environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yujie Huang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (Q.C.); (Y.Z.); (J.W.); (J.W.); (Q.Z.); (F.S.); (L.W.); (W.Z.)
| |
Collapse
|
2
|
Tao W, Lu J, Lin J, Ding M, Wang W, Li S. High-efficiency biodegradation of crude oil and p-hydroxybenzoic acid by Acinetobacter haemolyticus JS-1: Integrated characterization and genomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117780. [PMID: 39953689 DOI: 10.1016/j.ecoenv.2025.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
Crude oil contamination is a major threat to both the environment and human health. Acinetobacter haemolyticus strain JS-1 was isolated from oil-contaminated soil in Jiangsu Oilfield, China, which exhibits exceptional biodegradation capabilities for crude oil and p-hydroxybenzoic acid (PHBA). This strain can degrade 70-80 % of crude oil at concentrations of 10-20 g/L within 15 days at 30 °C. Strain JS-1 does not produce surfactants but absorbs crude oil through cell surface hydrophobicity. RT-qPCR analysis has identified five types of alkane hydroxylase genes in strain JS-1, including two AlkB-types, one AlmA-type, one LadA-type, and a cytochrome P450 monooxygenase. These genes are likely contributed to its high degradation efficiency. Notably, the CYP153 enzyme is crucial for metabolizing hexadecane and octadecane. We further investigated the PHBA degradation pathway, revealing both the protocatechuate ortho-cleavage pathway and a potential ubiquinone biosynthesis pathway. The remarkable efficiency of strain JS-1 in crude oil biodegradation positions it as a promising candidate for mitigating crude oil pollution. Moreover, its effective PHBA degradation provides new opportunities for the application of microorganism in agricultural management.
Collapse
Affiliation(s)
- Weiyi Tao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jijie Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - Mingshan Ding
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Okla MK, Javed S, Tahir MF, Anas M, Saleem MH, Ahmed T, Saleh IA, Zomot N, Alwasel YA, Abdel-Maksoud MA, Ali S, Fahad S. Evaluating the potential of Acinetobacter calcoaceticus in alleviation of aluminium stress in Triticum aestivum. 3 Biotech 2025; 15:34. [PMID: 39781215 PMCID: PMC11704110 DOI: 10.1007/s13205-024-04192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of Acinetobacter calcoaceticus (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.e., no Al), 50 µM, and 100 µM] using aluminum sulfate [Al2(SO4)3] in wheat (Triticum aestivum L.). Results from the present study revealed that the Al toxicity induced a substantial decreased in shoot length, root length, number of leaves, leaf area, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid content, net photosynthesis, stomatal conductance, transpiration rate, soluble sugar, reducing sugar, non-reducing sugar contents, calcium (Ca2+), magnesium (Mg2+), iron (Fe2+), and phosphorus (P) contents in the roots and shoots of the plants. In contrast, increasing levels of Al in the soil signifcantly (P < 0.05) increased Al concentration in the roots and shoots of the plants, phenolic content, malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), fumaric acid, acetic acid, citric acid, formic acid, malic acid, oxalic acid contents in the roots of the plants. Although, the activities of enzymatic antioxidants such as superoxidase dismutase, peroxidase, catalase, ascorbate peroxidase and their specific gene expression in the roots and shoots of the plants and non-enzymatic such as phenolic, favonoid, ascorbic acid, and anthocyanin contents were initially increased with the exposure of 50 µM Al, but decreased by the increasing the Al concentration 100 µM in the soil. Addition of A. calcoaceticus into the soil signifcantly alleviated Al toxicity effects on T. aestivum by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in A. calcoaceticus-treated plants seem to play a role in capturing stress-induced reactive oxygen species as was evident from lower levels of MDA, H2O2, MDA, and EL in A. calcoaceticus-treated plants. Research findings, therefore, suggested that A. calcoaceticus application can ameliorate Al toxicity in T. aestivum seedlings and resulted in improved plant growth and composition under metal stress as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Sadia Javed
- Department of Biochemistry, Government College University, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Faran Tahir
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040 Punjab Pakistan
| | - Muhammad Anas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Temoor Ahmed
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- Advanced Research Centre, European University of Lefke, Lefke Northern Cyprus, TR-10 Mersin, Turkey
- Department of Plant Biotechnology, Korea Universtiy, Seoul, 02481 South Korea
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa, 13110 Jordan
| | - Yasmeen A. Alwasel
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000 Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, 23200 Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
4
|
Cycoń M, Żmijowska A, Klim M. Enhanced Dissipation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Soil by the Bioaugmentation with Newly Isolated Strain Acinetobacter johnsonii MC5. Int J Mol Sci 2024; 26:190. [PMID: 39796047 PMCID: PMC11720006 DOI: 10.3390/ijms26010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The presented study investigated the possibility of using the Acinetobacter johnsonii MC5 strain, isolated from raw sewage by the enrichment culture method, in the bioremediation of soil contaminated with selected NSAIDs, i.e., ibuprofen (IBF), diclofenac (DCF), and naproxen (NPX), using the bioaugmentation technique. The degradation potential of A. johnsonii MC5 was first evaluated using a mineral salt medium containing drugs as the only sources of carbon and energy. The results show that the strain MC5 was capable of utilizing the tested compounds in medium, indicating that the drugs might be metabolically degraded. IBF and NPX were degraded with a similar rate and DT50 values were determined to be approximately 5 days, while the degradation process for DCF was slower, and the DT50 value was about 5 times higher (22.7 days) compared to those calculated for IBF and NPX. Bioaugmentation of non-sterile soil with A. johnsonii MC5 increased the rate of disappearance of the tested drugs, and DT50 values decreased 5.4-, 3.6-, or 6.5-fold for IBF, DCF, or NPX, respectively, in comparison with the values obtained for the soil with indigenous microorganisms only. The obtained results suggest that A. johnsonii MC5 may have potential for use in bioremediation of NSAID-contaminated soils; however, detailed studies are needed before using this strain in such process on a larger scale.
Collapse
Affiliation(s)
- Mariusz Cycoń
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Agnieszka Żmijowska
- Laboratory of Analytical Chemistry, Ecotoxicology Research Group, Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland;
| | - Magdalena Klim
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| |
Collapse
|
5
|
Nil S, Abi-Ayad SMEA. Biodegradation of used engine oil by lead-resistant bacteria Acinetobacter sp.HAR20 newly isolated from harbour seawater (Oran, Algeria ). ENVIRONMENTAL TECHNOLOGY 2024; 45:5912-5927. [PMID: 38325427 DOI: 10.1080/09593330.2024.2311084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
This paper focuses on the degrading capacity of various hydrocarbon fractions of used engine oils (UEO) by marine microorganisms, as well as the biosorption of heavy metals. A bacterial strain with a significant capability to grow on UEO as a sole source of carbon and energy was isolated from harbour seawater samples (Oran, Algeria). The molecular identification by sequencing the 16S rDNA gene revealed that the bacterium matched Acinetobacter baumanii with 96.84% homology similarity. Thus, strain HAR20 was named Acinetobacter sp.HAR20. The degradation rate of UEO (at 1%, v/v) obtained after 15 days of incubation was about 53.4 ± 4.2%. The results of GC-MS analysis of the biodegraded residual motor oil indicate that strain Acinetobacter sp.HAR20 degrades alkanes with chain lengths ranging from C4 to C48 completely or to shorter fractions. The bacterium was also able to degrade all aromatic compounds of UEO, including polycyclic aromatic hydrocarbons (alkylated and no alkylated naphthalene, alkylated phenanthrene, and fluorene). The strain Acinetobacter sp.HAR20 exhibited different degrees of resistance to the heavy metals tested (Cd, Zn, Ni, Cu, Fe, and Pb). The highest tolerance was obtained for Pb (600 mg.l-1). The study of lead biosorption at a concentration of 300 mg.l-1 revealed that the bacterium displayed a removal rate of 57.47 ± 7.5%. The strain Acinetobacter sp.HAR20 has shown an interesting biodegradation potential; therefore, it could be proposed as a choice for the bioremediation of contaminated seawater by used engine oils.
Collapse
Affiliation(s)
- Soumia Nil
- Laboratory of Aquaculture and Bioremediation (AquaBior), Department of Biotechnology, Faculty of Natural and Life Sciences (Campus I.G.M.O.), University Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Sidi-Mohammed El-Amine Abi-Ayad
- Laboratory of Aquaculture and Bioremediation (AquaBior), Department of Biotechnology, Faculty of Natural and Life Sciences (Campus I.G.M.O.), University Oran1 Ahmed Ben Bella, Oran, Algeria
| |
Collapse
|
6
|
Pandolfo E, Durán-Wendt D, Martínez-Cuesta R, Montoya M, Carrera-Ruiz L, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Martin M, Rivilla R. Metagenomic analyses of a consortium for the bioremediation of hydrocarbons polluted soils. AMB Express 2024; 14:105. [PMID: 39341984 PMCID: PMC11438761 DOI: 10.1186/s13568-024-01764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
A bacterial consortium was isolated from a soil in Noblejas (Toledo, Spain) with a long history of mixed hydrocarbons pollution, by enrichment cultivation. Serial cultures of hydrocarbons polluted soil samples were grown in a minimal medium using diesel (1 mL/L) as the sole carbon and energy source. The bacterial composition of the Noblejas Consortium (NC) was determined by sequencing 16S rRNA gene amplicon libraries. The consortium contained around 50 amplicon sequence variants (ASVs) and the major populations belonged to the genera Pseudomonas, Enterobacter, Delftia, Stenotrophomonas, Achromobacter, Acinetobacter, Novosphingobium, Allorhizobium-Neorhizobium-Rhizobium, Ochrobactrum and Luteibacter. All other genera were below 1%. Metagenomic analysis of NC has shown a high abundance of genes encoding enzymes implicated in aliphatic and (poly) aromatic hydrocarbons degradation, and almost all pathways for hydrocarbon degradation are represented. Metagenomic analysis has also allowed the construction of metagenome assembled genomes (MAGs) for the major players of NC. Metatranscriptomic analysis has shown that several of the ASVs are implicated in hydrocarbon degradation, being Pseudomonas, Acinetobacter and Delftia the most active populations.
Collapse
Affiliation(s)
- Emiliana Pandolfo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - David Durán-Wendt
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Ruben Martínez-Cuesta
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Mónica Montoya
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Departamento de Química y Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Laura Carrera-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Quiñones-Cerna C, Castañeda-Aspajo A, Tirado-Gutierrez M, Salirrosas-Fernández D, Rodríguez-Soto JC, Cruz-Monzón JA, Hurtado-Butrón F, Ugarte-López W, Gutiérrez-Araujo M, Quezada-Alvarez MA, Gálvez-Rivera JA, Esparza-Mantilla M. Efficacy of Indigenous Bacteria in the Biodegradation of Hydrocarbons Isolated from Agricultural Soils in Huamachuco, Peru. Microorganisms 2024; 12:1896. [PMID: 39338570 PMCID: PMC11434379 DOI: 10.3390/microorganisms12091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Pollution from crude oil and its derivatives poses a serious threat to human health and ecosystems, with accidental spills causing substantial damage. Biodegradation, using microorganisms to break down these contaminants, presents a promising and cost-effective solution. Exploring and utilizing new bacterial strains from underexplored habitats could improve remediation efforts at contaminated sites. This study aimed to evaluate the hydrocarbon biodegradation capacity of bacteria isolated from agricultural soils in Huamachuco, Peru. Soil samples from Oca crops were collected and bacteria were isolated. Biodegradation assays were conducted using diesel as the sole carbon source in the Bushnell Haas Mineral medium. Molecular characterization of the 16S rRNA gene identified four strains. Diesel biodegradation assays at 1% concentration were performed under agitation conditions at 150 rpm and 30 °C, and monitored on day 10 by measuring cellular biomass (OD600), with hydrocarbons analyzed by gas chromatography. The results showed Pseudomonas protegens (PROM2) achieved the highest efficiency in removing total hydrocarbons (91.5 ± 0.7%). Additionally, Pseudomonas citri PROM3 and Acinetobacter guillouiae ClyRoM5 also demonstrated high capacity in removing several individual hydrocarbons. Indigenous bacteria from uncontaminated agricultural soils present a high potential for hydrocarbon bioremediation, offering an ecological and effective solution for soil decontamination.
Collapse
Affiliation(s)
- Claudio Quiñones-Cerna
- Laboratorio de Biotecnología e Ingeniería Genética, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru
| | - Alina Castañeda-Aspajo
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - Marycielo Tirado-Gutierrez
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - David Salirrosas-Fernández
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - Juan Carlos Rodríguez-Soto
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - José Alfredo Cruz-Monzón
- Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Fernando Hurtado-Butrón
- Laboratorio Multidisciplinario de Nanociencia y Nanotecnología “Oswaldo Sánchez Rosales”, Facultad de Ciencias Físicas y Matemáticas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Wilmer Ugarte-López
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - Mayra Gutiérrez-Araujo
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - Medardo Alberto Quezada-Alvarez
- Laboratorio de Investigación y Desarrollo en Ciencias Ambientales, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Julieta Alessandra Gálvez-Rivera
- Escuela Profesional de Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional de Piura, Juan Pablo II Av., Trujillo 13008, Peru;
| | | |
Collapse
|
8
|
Dohare S, Rawat HK, Bhargava Y, Kango N. Characterization of Diesel Degrading Indigenous Bacterial Strains, Acinetobacter pittii and Pseudomonas aeruginosa, Isolated from Oil Contaminated Soils. Indian J Microbiol 2024; 64:749-757. [PMID: 39011005 PMCID: PMC11246406 DOI: 10.1007/s12088-024-01317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 07/17/2024] Open
Abstract
In this study, 13 diesel degrading bacteria were isolated from the oil contaminated soils and the promising strains identified as Acinetobacter pittii ED1 and Pseudomonas aeruginosa BN were evaluated for their diesel degrading capabilities. These strains degraded the diesel optimally at 30 °C, pH 7.0 and 1% diesel concentration. Both the strains produced biofilm at 1% diesel concentration indicating their ability to tolerate diesel induced abiotic stress. Gravimetric analysis of the spent medium after 7 days of incubation showed that A. pittii ED1 and P. aeruginosa BN degraded 68.61% and 76% diesel, respectively, while biodegradation reached more than 90% after 21 days. Fourier Transform Infrared (FTIR) analysis of the degraded diesel showed 1636.67 cm-1 (C=C stretch, N-H bond) peak corresponding to alkenes and primary amines, while GC-TOF-MS analysis showed decline in hydrocarbon intensities after 7 days of incubation. The present study revealed that newly isolated A. pittii ED1 and P. aeruginosa BN were able to degrade diesel hydrocarbons (C11-C18, and C19-C24) efficiently and have potential for bioremediation of the oil-contaminated sites. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01317-3.
Collapse
Affiliation(s)
- Sonam Dohare
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Hemant Kumar Rawat
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Yogesh Bhargava
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| | - Naveen Kango
- Department of Microbiology, Doctor Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003 India
| |
Collapse
|
9
|
Yang Y, Zhong W, Wang Y, Yue Z, Zhang C, Sun M, Wang Z, Xue X, Gao Q, Wang D, Zhang Y, Zhang J. Isolation, identification, degradation mechanism and exploration of active enzymes in the ochratoxin A degrading strain Acinetobacter pittii AP19. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133351. [PMID: 38150759 DOI: 10.1016/j.jhazmat.2023.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Ochratoxin A (OTA) is a polyketide mycotoxin that commonly contaminates agricultural products and causes significant economic losses. In this study, the efficient OTA-degrading strain AP19 was isolated from vineyard soil and was identified as Acinetobacter pittii. Compared with growth in nutrient broth supplemented with OTA (OTA-NB), strain AP19 grew faster in nutrient broth (NB), but the ability of the resulting cell lysates to remove OTA was weaker. After cultivation in NB, the cell lysate of strain AP19 was able to remove 100% of 1 mg/L OTA within 18 h. The cell lysate fraction > 30 kDa degraded 100% of OTA within 12 h, while the fractions < 30 kDa were practically unable to degrade OTA. Further anion exchange chromatography of the > 30 kDa fraction yielded two peaks exhibiting significant OTA degradation activity. The degradation product was identified as OTα. Amino acid metabolism exhibited major transcriptional trends in the response of AP19 to OTA. The dacC gene encoding carboxypeptidase was identified as one of the contributors to OTA degradation. Soil samples inoculated with strain AP19 showed significant OTA degradation. These results provide significant insights into the discovery of novel functions in A. pittii, as well as its potential as an OTA decomposer.
Collapse
Affiliation(s)
- Yan Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weitong Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanning Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiwen Yue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mi Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xianli Xue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
10
|
Kadnikov VV, Ravin NV, Sokolova DS, Semenova EM, Bidzhieva SK, Beletsky AV, Ershov AP, Babich TL, Khisametdinov MR, Mardanov AV, Nazina TN. Metagenomic and Culture-Based Analyses of Microbial Communities from Petroleum Reservoirs with High-Salinity Formation Water, and Their Biotechnological Potential. BIOLOGY 2023; 12:1300. [PMID: 37887010 PMCID: PMC10604348 DOI: 10.3390/biology12101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
The reserves of light conditional oil in reservoirs with low-salinity formation water are decreasing worldwide, necessitating the extraction of heavy oil from petroleum reservoirs with high-salinity formation water. As the first stage of defining the microbial-enhanced oil recovery (MEOR) strategies for depleted petroleum reservoirs, microbial community composition was studied for petroleum reservoirs with high-salinity formation water located in Tatarstan (Russia) using metagenomic and culture-based approaches. Bacteria of the phyla Desulfobacterota, Halanaerobiaeota, Sinergistota, Pseudomonadota, and Bacillota were revealed using 16S rRNA-based high-throughput sequencing in halophilic microbial communities. Sulfidogenic bacteria predominated in the studied oil fields. The 75 metagenome-assembled genomes (MAGs) of prokaryotes reconstructed from water samples were assigned to 16 bacterial phyla, including Desulfobacterota, Bacillota, Pseudomonadota, Thermotogota, Actinobacteriota, Spirochaetota, and Patescibacteria, and to archaea of the phylum Halobacteriota (genus Methanohalophilus). Results of metagenomic analyses were supported by the isolation of 20 pure cultures of the genera Desulfoplanes, Halanaerobium, Geotoga, Sphaerochaeta, Tangfeifania, and Bacillus. The isolated halophilic fermentative bacteria produced oil-displacing metabolites (lower fatty acids, alcohols, and gases) from sugar-containing and proteinaceous substrates, which testify their potential for MEOR. However, organic substrates stimulated the growth of sulfidogenic bacteria, in addition to fermenters. Methods for enhanced oil recovery should therefore be developed, combining the production of oil-displacing compounds with fermentative bacteria and the suppression of sulfidogenesis.
Collapse
Affiliation(s)
- Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (N.V.R.); (A.V.B.); (A.V.M.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (N.V.R.); (A.V.B.); (A.V.M.)
| | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Ekaterina M. Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Salimat K. Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (N.V.R.); (A.V.B.); (A.V.M.)
| | - Alexey P. Ershov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Tamara L. Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| | - Marat R. Khisametdinov
- Tatar Scientific Research and Design Institute of Oil “Tatneft”, 423236 Bugulma, Russia;
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (N.V.R.); (A.V.B.); (A.V.M.)
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (A.P.E.); (T.L.B.)
| |
Collapse
|
11
|
Giovanella P, Taketani RG, Gil-Solsona R, Saldanha LL, Naranjo SBE, Sancho JV, Portolés T, Andreote FD, Rodríguez-Mozaz S, Barceló D, Sette LD. A comprehensive study on diesel oil bioremediation under microcosm conditions using a combined microbiological, enzymatic, mass spectrometry, and metabarcoding approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101250-101266. [PMID: 37648922 DOI: 10.1007/s11356-023-29474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days. For the same period, a 72 to 92% removal of short-chain alkanes (C12 to C19) was obtained by BA/BS, while only 3 to 65% removal was achieved by NA. BA/BS also showed high degradation efficiency of long-chain alkanes (C20 to C24) at 120 days, reaching 90 and 92% of degradation of icosane and heneicosane, respectively. In contrast, an increase in the levels of cyclosiloxanes (characterized as bacterial bioemulsifiers and biosurfactants) was observed in the soil treated by the consortium. Conversely, the NA presented a maximum of 37% of degradation of these alkane fractions. The 5-ringed PAH benzo(a)pyrene, was removed significantly better with the BA/BS treatment than with the NA (48 vs. 38 % of biodegradation, respectively). Metabarcoding analysis revealed that BA/BS caused a decrease in the soil microbial diversity with a concomitant increase in the abundance of specific microbial groups, including hydrocarbon-degrading (bacteria and fungi) and also an enhancement in soil microbial activity. Our results highlight the great potential of this consortium for soil treatment after diesel spills, as well as the relevance of the massive sequencing, enzymatic, microbiological and GC-HRMS analyses for a better understanding of diesel bioremediation.
Collapse
Affiliation(s)
- Patricia Giovanella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Rodrigo Gouvêa Taketani
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Luiz Leonardo Saldanha
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Samantha Beatríz Esparza Naranjo
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino Americana, Parque tecnológico Itaipu, Foz do Iguaçu, PR, Brazil
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón de la Plana, Spain
| | - Tania Portolés
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón de la Plana, Spain
| | - Fernando Dini Andreote
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Lara Durães Sette
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
12
|
Sulbaran-Bracho Y, Orellana-Saez M, Castro-Severyn J, Galbán-Malagón C, Castro-Nallar E, Poblete-Castro I. Continuous bioreactors enable high-level bioremediation of diesel-contaminated seawater at low and mesophilic temperatures using Antarctic bacterial consortia: Pollutant analysis and microbial community composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121139. [PMID: 36702434 DOI: 10.1016/j.envpol.2023.121139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
In 2020, more than 21,000 tons of diesel oil were released accidently into the environment with most of it contaminating water bodies. There is an urgent need for sustainable technologies to clean up rivers and oceans to protect wildlife and human health. One solution is harnessing the power of bacterial consortia; however isolated microbes from different environments have shown low diesel bioremediation rates in seawater thus far. An outstanding question is whether Antarctic microorganisms that thrive in environments polluted with hydrocarbons exhibit better diesel degrading activities when propagated at higher temperatures than those encountered in their natural ecosystems. Here, we isolated bacterial consortia, LR-30 (30 °C) and LR-10 (10 °C), from the Antarctic rhizosphere soil of Deschampsia antarctica (Livingston Island), that used diesel oil as the only carbon substrate. We found that LR-30 and LR-10 batch bioreactors metabolized nearly the entire diesel content when the initial concentration was 10 (g/L) in seawater. Increasing the initial diesel concentration to 50 gDiesel/L, LR-30 and LR-10 bioconverted 33.4 and 31.2 gDiesel/L in 7 days, respectively. The 16S rRNA gene sequencing profiles revealed that the dominant bacterial genera of the inoculated LR-30 community were Achromobacter (50.6%), Pseudomonas (25%) and Rhodanobacter (14.9%), whereas for LR-10 were Pseudomonas (58%), Candidimonas (10.3%) and Renibacterium (7.8%). We also established continuous bioreactors for diesel biodegradation where LR-30 bioremediated diesel at an unprecedent rate of (34.4 g/L per day), while LR-10 achieved (24.5 g/L per day) at 10 °C for one month. The abundance of each bacterial genera present significantly fluctuated at some point during the diesel bioremediation process, yet Achromobacter and Pseudomonas were the most abundant member at the end of the batch and continuous bioreactors for LR-30 and LR-10, respectively.
Collapse
Affiliation(s)
- Yoelvis Sulbaran-Bracho
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile
| | - Matias Orellana-Saez
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada Y Extremófilos, Facultad de Ingeniería Y Ciencias Geológicas, Universidad Católica Del Norte, Antofagasta, Chile
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago, Chile.
| |
Collapse
|
13
|
Khalid S, Iqbal A, Javed A, Rashid J, ul Haq I, Barakat MAEF, Kumar R. Analysis of diesel hydrocarbon decomposition using efficient indigenous bacterial isolate: Bacterial growth and biodegradation kinetics. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Shaker RAE, Nagy YI, Adly ME, Khattab RA, Ragab YM. Acinetobacter baumannii, Klebsiella pneumoniae and Elizabethkingia miricola isolated from wastewater have biodegradable activity against fluoroquinolone. World J Microbiol Biotechnol 2022; 38:187. [PMID: 35972564 PMCID: PMC9381475 DOI: 10.1007/s11274-022-03367-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Ciprofloxacin (CIP) and levofloxacin (LEV), widely used fluoroquinolone antibiotics, are often found in sewage from the sewage treatment plants and marine environment. In this study, CIP and LEV biodegrading bacterial consortia were obtained from industrial wastewater. Microorganisms in these consortia were identified as Acinetobacter baumannii (A. baumannii), Klebsiella pneumoniae (K. pneumoniae) and Elizabethkingia miricola (E. miricola). The impacts of the critical operating parameters on the elimination of CIP and LEV by bacterial consortia have been investigated and optimized to achieve the maximum levels of CIP and LEV biodegradation. Using liquid chromatography with tandem mass spectrometry (LC-MS-MS), possible degradation pathways for CIP and LEV were suggested by analyzing the intermediate degradation products. The role of the enzymes fluoroquinolone-acetylating aminoglycoside (6'-N-acetyltransferase) and cytochrome P450 (CYP450) in the breakdown of fluoroquinolones (FQs) was investigated as well. According to our findings, various biodegradation mechanisms have been suggested, including cleavage of piperazine ring, substitution of F atom, hydroxylation, decarboxylation, and acetylation, as the main biotransformation reactions. This study discovers the ability of non-reported bacterial strains to biodegrade both CIP and LEV as a sole carbon source, providing new insights into the biodegradation of CIP and LEV.
Collapse
Affiliation(s)
- Reham Alaa Eldin Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt.
| | - Mina E Adly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| | - Rania Abdelmonem Khattab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| |
Collapse
|
15
|
Malik G, Arora R, Chaturvedi R, Paul MS. Implementation of Genetic Engineering and Novel Omics Approaches to Enhance Bioremediation: A Focused Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:443-450. [PMID: 33837794 DOI: 10.1007/s00128-021-03218-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Bioremediation itself is considered to be a cost effective soil clean-up technique and preferred over invasive physical and chemical treatments. Besides increasing efficiency, application of genetic engineering has led to reduction in the time duration required to achieve remediation, overcoming the so called 'Achilles heel' of Bioremediation. Omics technologies, namely genomics, transcriptomics, proteomics, and metabolomics, are being employed extensively to gain insights at genetic level. A wise synchronised application of these approaches can help scrutinize complex metabolic pathways, and molecular changes in response to heavy metal stress, and also its fate i.e., uptake, transport, sequestration and detoxification. In the present review, an account of some latest achievements made in the field is presented.
Collapse
Affiliation(s)
| | - Rahul Arora
- The Francis Crick Institute, London, United Kingdom
- Division of Biosciences, University College London, London, United Kingdom
| | | | - Manoj S Paul
- Department of Botany, St. John's College, Agra, U.P, India
| |
Collapse
|
16
|
Tashan H, Harighi B, Rostamzadeh J, Azizi A. Characterization of Arsenic-Resistant Endophytic Bacteria From Alfalfa and Chickpea Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:696750. [PMID: 34367218 PMCID: PMC8341903 DOI: 10.3389/fpls.2021.696750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/24/2021] [Indexed: 06/02/2023]
Abstract
The present investigation was carried out to isolate arsenic (As)-resistant endophytic bacteria from the roots of alfalfa and chickpea plants grown in arsenic-contamination soil, characterize their As tolerance ability, plant growth-promoting characteristics, and their role to induce As resistance by the plant. A total of four root endophytic bacteria were isolated from plants grown in As-contaminated soil (160-260-mg As kg-1 of soil). These isolates were studied for plant growth-promoting (PGP) characteristics through siderophore, phosphate solubilization, nitrogen fixation, protease, and lipase production, and the presence of the arsenate reductase (arsC) gene. Based on 16S rDNA sequence analysis, these isolates belong to the genera Acinetobacter, Pseudomonas, and Rahnella. All isolates were found As tolerant, of which one isolate, Pseudomonas sp. QNC1, showed the highest tolerance up to 350-mM concentration in the LB medium. All isolates exhibited phosphate solubilization activity. Siderophore production activity was shown by only Pseudomonas sp. QNC1, while nitrogen fixation activity was shown by only Rahnella sp. QNC2 isolate. Acinetobacter sp. QNA1, QNA2, and Rahnella sp. QNC2 exhibited lipase production, while only Pseudomonas sp. QNC1 was able to produce protease. The presence of the arsC gene was detected in all isolates. The effect of endophytic bacteria on biomass production of alfalfa and chickpea in five levels of arsenic concentrations (0-, 10-, 50-, 75-, and 100-mg kg-1 soil) was evaluated. The fresh and dry weights of roots of alfalfa and chickpea plants were decreased as the arsenic concentration of the soil was increased. Results indicate that the fresh and dry root weights of alfalfa and chickpea plants were significantly higher in endophytic bacteria-treated plants compared with non-treated plants. Inoculation of chickpea plants with Pseudomonas sp. QNC1 and Rahnella sp. QNC2 induced lower NPR3 gene expression in chickpea roots grown in soil with the final concentration of 100-mg kg-1 sodium arsenate compared with the non-endophyte-treated control. The same results were obtained in Acinetobacter sp. QNA2-treated alfalfa plants grown in the soil plus 50-mg kg-1 sodium arsenate. These results demonstrated that arsenic-resistant endophytic bacteria are potential candidates to enhance plant-growth promotion in As contamination soils. Characterization of bacterial endophytes with plant growth potential can help us apply them to improve plant yield under stress conditions.
Collapse
Affiliation(s)
- Hazhir Tashan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
17
|
Acinetobacter tandoii ZM06 Assists Glutamicibacter nicotianae ZM05 in Resisting Cadmium Pressure to Preserve Dipropyl Phthalate Biodegradation. Microorganisms 2021; 9:microorganisms9071417. [PMID: 34209156 PMCID: PMC8307640 DOI: 10.3390/microorganisms9071417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Dipropyl phthalate (DPrP) coexists with cadmium as cocontaminants in environmental media. A coculture system including the DPrP-degrading bacterium Glutamicibacter nicotianae ZM05 and the nondegrading bacterium Acinetobacter tandoii ZM06 was artificially established to degrade DPrP under Cd(II) stress. Strain ZM06 relieved the pressure of cadmium on strain ZM05 and accelerated DPrP degradation in the following three ways: first, strain ZM06 adsorbed Cd(II) on the cell surface (as observed by scanning electron microscopy) to decrease the concentration of Cd(II) in the coculture system; second, the downstream metabolites of ZM05 were utilized by strain ZM06 to reduce metabolite inhibition; and third, strain ZM06 supplied amino acids and fatty acids to strain ZM05 to relieve stress during DPrP degradation, which was demonstrated by comparative transcriptomic analysis. This study provides an elementary understanding of how microbial consortia improve the degradation efficiency of organic pollutants under heavy metals contamination.
Collapse
|