1
|
J L BJ, Dhanasingh I. An update on thermostable keratinases for protein engineering against feather pollutants. Appl Microbiol Biotechnol 2025; 109:75. [PMID: 40131452 PMCID: PMC11937091 DOI: 10.1007/s00253-025-13459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Every year, the poultry business worldwide produces at least 8.5 billion tonnes of chicken feathers, making it one of the major landfill pollutants in the world. Biodegradation and recycling of native feathers is difficult due to the presence of numerous disulfide linkages in the feather's major constituent, keratin. Denaturation of such recalcitrant protein is thermodynamically favored at high temperatures. Therefore, the lookout for the enzymes that degrade keratin (keratinases) from thermophilic bacteria resulted in the identification of thermostable enzymes favoring feather degradation at high temperatures. This review presents a comprehensive analysis of the biochemical properties and structural attributes of thermostable keratinases, emphasizing their catalytic mechanisms, stability at high temperatures, and substrate specificity. Our exploration of structural features enables us to understand the molecular architecture of these enzymes for protein engineering that might enhance the keratinolytic activity and thermostability further. As the field of protein engineering advances, there exists a pressing requirement for integration of structural data with pragmatic engineering applications. Our review addresses for the first time the detailed structural aspects of thermostable bacterial keratinolytic enzymes that will facilitate the development of modified keratinases through protein engineering for a broad range of industrial applications, such as in the production of biofuels, leather processing, and waste management. KEYPOINTS: • Efficient eco-friendly bioremediation of feather landfill pollutant using thermophilic keratinases. • Detailed structural and biochemical aspects of different thermophilic bacterial keratinases. • Combinations of thermostable keratinases for the enhanced feather degradation process.
Collapse
Affiliation(s)
- Bhagya Jyothi J L
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Immanuel Dhanasingh
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Vikash VL, Kamini NR, Ponesakki G, Anandasadagopan SK. Microbial disintegration of wool: An effective and sustainable approach for keratin extraction. Int J Biol Macromol 2025; 290:138806. [PMID: 39701225 DOI: 10.1016/j.ijbiomac.2024.138806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Keratin is an important biopolymer used to develop biomaterials for biomedical and industrial applications. Traditional keratin extraction methods involve the removal of surface lipids using organic solvents, detergents, and energy-intensive processes that often compromise the purity of the extracted keratin. In the present study, wool fibers were microbially disintegrated to isolate cortical cells, achieving a maximum yield of 61.43 % ± 2.02 % at a wool concentration of 3.5 % (w/v). The average length and diameter of the cortical cells were 93.50 ± 5.11 μm and 3.93 ± 0.36 μm, respectively. This microbial process effectively removed surface lipids and cuticle proteins, making it suitable for keratin extraction. The extracted keratin was characterized using FT-IR and XRD, confirming the presence of characteristic chemical groups. Thermal stability, assessed through DSC and TGA, demonstrated the stability of cortical cells. Secondary structure analysis revealed the presence of both α-helix and β-sheet conformations. The molecular weight of the extracted keratin was determined to be between 35 and 63 kDa, with two distinct protein bands. Additionally, the extracted keratin exhibited biocompatibility with NIH3T3 cell lines. This method provides a sustainable approach to isolating pure keratin from wool cortex for biomaterial development.
Collapse
Affiliation(s)
- Vijan Lal Vikash
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Numbi Ramudu Kamini
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ganesan Ponesakki
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh Kumar Anandasadagopan
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Fan X, Lin Y, Wang S, Zhao Q, Chen Y, Zhang Q, Qiu J. Biodegradation of different keratin waste by newly isolated thermophilic Brevibacillus gelatini LD5: Insights into the degradation mechanism based on genomic analysis and keratin structural changes. Int J Biol Macromol 2024; 283:137757. [PMID: 39577518 DOI: 10.1016/j.ijbiomac.2024.137757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Keratin is an abundant environmental solid waste. This work isolated a thermophilic strain from a hot spring with efficient keratinolytic ability. The strain was identified and named as Brevibacillus gelatini LD5 based on whole-genome sequence analysis. The strain has genes related to keratin degradation, including disulfide reduction, keratin denaturation, protein proteolysis and metabolism of amino acids. The keratinases derived from this strain were the endo-acting M4, M16 and S8 proteases, exo-acting S9 protease and oligo-acting M3 and M32 peptidases via Conserved Unique Peptide Patterns (CUPP) prediction. The LD5 can degrade different keratin biomass, e.g. chicken feathers (CF), goose feathers (GF), pig hair (PH), cat hair (CH) and dog hair (DH). The degradation rate of CF was 62.45 % after 24-h fermentation. The hydrolysates from different keratin biomass have all shown keratinolytic activity, antioxidant and antiradical activities. The random structure of keratin was easier to be degraded by LD5 from Fourier transform infrared (FT-IR) analysis. The optimum temperature-pH conditions of the keratinases were 79.8 °C and pH 7.5, and thermal stability of the keratinases reached 71.5 min at 70 °C. These results demonstrated that B. gelatini LD5 has potential application in keratin wastes biodegradation and thermal stable keratinase production.
Collapse
Affiliation(s)
- Xuefen Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yicen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shaobin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qianbin Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jingwen Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
4
|
Aktayeva S, Khassenov B. High keratinase and other types of hydrolase activity of the new strain of Bacillus paralicheniformis. PLoS One 2024; 19:e0312679. [PMID: 39453952 PMCID: PMC11508186 DOI: 10.1371/journal.pone.0312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024] Open
Abstract
Keratinases, a subclass of proteases, are used to degrade keratin thereby forming peptones and free amino acids. Bacillus paralicheniformis strain T7 was isolated from soil and exhibited high keratinase, protease, collagenase, amylase, xylanase, lipase, and phosphatase activities. Keratinases of the strain showed maximum activity at 70°C and pH 9.0 as well as high thermal stability. A mass-spectrometric analysis identified seven peptidases with molecular masses of 26.8-154.8 kDa in the secretory proteome. These peptidases are members of S8 and S41 serine peptidase families and of M14, M42, and M55 metallopeptidase families. Additionally, α-amylase (55.2 kDa), alkaline phosphatase (59.8 kDa), and esterase (26.8 kDa) were detected. The strong keratinolytic properties of the strain were confirmed by degradation of chicken and goose feathers, which got completely hydrolyzed within 4 days. Submerged fermentation by strain B. paralicheniformis T7 was carried out in a pilot bioreactor, where the highest keratinase production was noted after 19 h of cultivation. After the fermentation, in the culture fluid, the keratinase activity toward keratin azure was 63.6 ± 5.8 U/mL. The protease activity against azocasein was 715.7 ± 40.2 U/mL. The possibility of obtaining enzyme preparations in liquid and powder form was demonstrated, and their comparative characteristics are given. In the concentrate, the keratinase, protease, α-amylase, phosphatase, and esterase/lipase activities were 2,656.7 ± 170.4, 29,886.7 ± 642.9, 176.1 ± 16.3, 23.9 ± 1.8, and 510.9 ± 12.2 U/mL, respectively. In the lyophilizate, these activities were 57,733.3 ± 8,911.4, 567,066.7 ± 4,822.2, 2,823.0 ± 266.8, 364.2 ± 74.8, and 17,618.0 ± 610.3 U/g, respectively. In the preparation obtained by air flow drying at 55°C, these activities were 53,466.7 ± 757.2, 585,333.3 ± 4,277.1, 2,395.8 ± 893.7, 416.7 ± 52.4, and 15,328.1 ± 528.6 U/g, respectively. The results show high potential of B. paralicheniformis strain T7 as a producer of keratinases and other enzymes for applications in agricultural raw materials and technologies for processing of keratin-containing animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, Astana, Kazakhstan
| | - Bekbolat Khassenov
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
5
|
Aktayeva S, Khassenov B. New Bacillus paralicheniformis strain with high proteolytic and keratinolytic activity. Sci Rep 2024; 14:22621. [PMID: 39349615 PMCID: PMC11444040 DOI: 10.1038/s41598-024-73468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Bacillus paralicheniformis T7, which exhibits high proteolytic and keratinolytic activities, was isolated from soil in Kazakhstan. Its secreted proteases were thermostable and alkaline, demonstrating maximum activity at 70 °C and pH 9.0. The proteases and keratinases of this strain were sensitive to Ni2+, Co2+, Mn2+, and Cd2+, with Cu2+, Co2+ and Cd2+ negatively affecting keratinolytic activity, and Fe3+ ions have a strong inhibitory effect on proteolytic and keratinolytic activity. Seven proteases were identified in the enzymatic extract of B. paralicheniformis T7: four from the serine peptidase family and three from the metallopeptidase family. The proteases hydrolyzed 1 mg of casein, hemoglobin, gelatin, ovalbumin, bovine serum albumin, or keratin within 15 s to 30 min. The high keratinolytic activity of this strain was confirmed through the degradation of chicken feathers, horns, hooves, wool, and cattle hide. Chicken feathers were hydrolyzed in 4 days, and the degrees of hydrolysis for cattle hide, wool, hoof, and horn after 7 days of cultivation were 97.2, 34.5, 29.6, and 3.6%, respectively. During submerged fermentation with feather medium in a laboratory bioreactor, the strain secreted enzymes with 249.20 ± 7.88 U/mL protease activity after 24 h. Thus, B. paralicheniformis T7 can be used to produce proteolytic and keratinolytic enzymes for application in processing proteinaceous raw materials and keratinous animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, 010000, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, 010008, Astana, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, 010000, Astana, Kazakhstan.
| |
Collapse
|
6
|
Revankar AG, Bagewadi ZK, Bochageri NP, Yunus Khan T, Mohamed Shamsudeen S. Response surface methodology based optimization of keratinase from Bacillus velezensis strain ZBE1 and nanoparticle synthesis, biological and molecular characterization. Saudi J Biol Sci 2023; 30:103787. [PMID: 37705700 PMCID: PMC10495650 DOI: 10.1016/j.sjbs.2023.103787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV-Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Archana G. Revankar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Neha P. Bochageri
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic dental science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
7
|
Rahimnahal S, Meimandipour A, Fayazi J, Asghar Karkhane A, Shamsara M, Beigi Nassiri M, Mirzaei H, Hamblin MR, Tarrahimofrad H, Bakherad H, Zamani J, Mohammadi Y. Biochemical and molecular characterization of novel keratinolytic protease from Bacillus licheniformis (KRLr1). Front Microbiol 2023; 14:1132760. [PMID: 37234543 PMCID: PMC10206251 DOI: 10.3389/fmicb.2023.1132760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
The keratin-degrading bacterium Bacillus licheniformis secretes a keratinase with potential industrial interest. Here, the Keratinase gene was intracellularly expressed in Escherichia coli BL21(DE3) using pET-21b (+) vector. Phylogenetic tree analysis showed that KRLr1 is closely related to Bacillus licheniformis keratinase that belongs to the serine peptidase/subtilisin-like S8 family. Recombinant keratinase appeared on the SDS-PAGE gel with a band of about 38 kDa and was confirmed by western blotting. Expressed KRLr1 was purified by Ni-NTA affinity chromatography with a yield of 85.96% and then refolded. It was found that this enzyme has optimum activity at pH 6 and 37°C. PMSF inhibited the KRLr1 activity and Ca2+ and Mg2+ increased the KRLr1 activity. Using keratin 1% as the substrate, the thermodynamic values were determined as Km 14.54 mM, kcat 912.7 × 10-3 (S-1), and kcat/Km 62.77 (M-1 S-1). Feather digestion by recombinant enzyme using HPLC method, showed that the amino acids cysteine, phenylalanine, tyrosine and lysine had the highest amount compared to other amino acids obtained from digestion. Molecular dynamics (MD) simulation of HADDOCK docking results exhibited that KRLr1 enzyme was able to interact strongly with chicken feather keratine 4 (FK4) compared to chicken feather keratine 12 (FK12). These properties make keratinase KRLr1 a potential candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Somayyeh Rahimnahal
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Amir Meimandipour
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Jamal Fayazi
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Ali Asghar Karkhane
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Mohammadtaghi Beigi Nassiri
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Faculty of Health Science, Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Hossein Tarrahimofrad
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | | |
Collapse
|
8
|
Research progress on the degradation mechanism and modification of keratinase. Appl Microbiol Biotechnol 2023; 107:1003-1017. [PMID: 36633625 DOI: 10.1007/s00253-023-12360-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: •The research status and mechanism of keratinase were reviewed. •The new direction of keratinase application and modification is discussed. •The existing modification methods and future modification strategies of keratinases are reviewed.
Collapse
|
9
|
Kokwe L, Nnolim NE, Ezeogu LI, Sithole B, Nwodo UU. Thermoactive metallo-keratinase from Bacillus sp. NFH5: Characterization, structural elucidation, and potential application as detergent additive. Heliyon 2023; 9:e13635. [PMID: 36852054 PMCID: PMC9957710 DOI: 10.1016/j.heliyon.2023.e13635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
In recent times, robust green technological developments have advanced the goal of a circular economy by minimizing waste generation. The study was undertaken to explore the keratinolytic activity of chicken feather-degrading bacteria from South African soil. Isolates coded as SSN-01 and HSN-01 were identified as Bacillus sp. NFH5 and Bacillus sp. FHNM and their sequences were deposited in GenBank, with accession numbers MW165830.1 and MW165831.1, respectively. Extracellular enzyme production and thiol group generation by Bacillus sp. NFH5 peaked at 120 h with 1879.09 ± 88.70 U/mL and 9.49 ± 0.78 mM, respectively. Glutamic acid (4.44%), aspartic acid (3.50%), arginine (3.23%), glycine (2.61%), serine (2.08%), and proline (2.08%) were relatively higher in concentration. Keratinase (KerBAN) activity was highest at pH 8.0 and 90 °C but was inhibited by both EDTA and 1,10-phenanthroline. In addition, the keratinase-encoding gene (kerBAN) accessioned OK033360 had 362 amino acid residues, with molecular weight and theoretical isoelectric point of 39 kDa and 8.81, respectively. Findings from this study highlight the significance of Bacillus sp. NFH5 in the bio-recycling of recalcitrant keratinous wastes to protein hydrolysates - potential dietary supplements for livestock feeds. The properties of KerBAN underscore its application potential in green biotechnological processes.
Collapse
Affiliation(s)
- Lupho Kokwe
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Private Bag X1314, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Nonso E Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Private Bag X1314, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Lewis I Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Bruce Sithole
- The Biorefinery Industry Development Facility, Chemicals Cluster, Council for Scientific and Industrial Research, 359 Mazisi Kunene Road, 4001, Glenwood, Durban, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Private Bag X1314, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
10
|
Bokveld A, Nnolim NE, Digban TO, Okoh AI, Nwodo UU. Chryseobacterium aquifrigidense keratinase liberated essential and nonessential amino acids from chicken feather degradation. ENVIRONMENTAL TECHNOLOGY 2023; 44:293-303. [PMID: 34397312 DOI: 10.1080/09593330.2021.1969597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Keratinous biomass valorization for value-added products presents a high prospect in ecological management and the advancement of the bio-economy. Consequently, soil samples from the poultry dumpsite were collected. The bacteria isolated on the basal salt medium were screened for keratinolytic activity. The potent chicken feathers degrading bacteria were identified through 16S rRNA gene sequencing and phylogenetic analysis. Fermentation process conditions were optimized, and the amino acid compositions of the feather hydrolysate were likewise quantified. Ten (10) proteolytic bacteria evaluated on skimmed milk agar showed intact chicken feather degradation ranging from 33% (WDS-03) to 88% (FPS-09). The extracellular keratinase activity ranged from 224.52 ± 42.46 U/mL (WDS-03) to 834.55 ± 66.86 U/mL (FPS-07). Based on 16S rRNA gene sequencing and phylogenetic analysis, the most potent keratinolytic isolates coded as FPS-07, FPS-09, FPS-01, and WDS-06 were identified as Chryseobacterium aquifrigidense FANN1, Chryseobacterium aquifrigidense FANN2, Stenotrophomonas maltophilia ANNb, and Bacillus sp. ANNa, respectively. C aquifrigidense FANN2 maximally produced keratinase (1460.90 ± 26.99 U/mL) at 72 h of incubation under optimal process conditions of pH (6), inoculum side (5%; v/v), temperature (30°C), and chicken feather (25 g/L). The feather hydrolysate showed a protein value of 67.54%, with a relative abundance of arginine (2.84%), serine (3.14%), aspartic acid (3.33%), glutamic acid (3.73%), and glycine (2.81%). C. aquifrigidense FANN2 yielded high keratinase titre and dismembered chicken feathers into amino acids-rich hydrolysate, highlighting its significance in the beneficiation of recalcitrant keratinous wastes into dietary proteins as potential livestock feed supplements.
Collapse
Affiliation(s)
- Amahle Bokveld
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Nonso E Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Tennison O Digban
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
11
|
Akram F, Aqeel A, Shoaib M, Haq IU, Shah FI. Multifarious revolutionary aspects of microbial keratinases: an efficient green technology for future generation with prospective applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86913-86932. [PMID: 36271998 DOI: 10.1007/s11356-022-23638-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Since the dawn of century, tons of keratin bio-waste is generated by the poultry industry annually, and they end up causing environmental havoc. Keratins are highly flexible fibrous proteins which exist in α- and β- forms and provide mechanical strength and stability to structural appendages. The finding of broad-spectrum protease, keratinase, from thermophilic bacteria and fungi, has provided an eco-friendly solution to hydrolyze the peptide bonds in highly recalcitrant keratinous substances such as nails, feathers, claws, and horns into valuable amino acids. Microorganisms produce these proteolytic enzymes by techniques of solid-state and submerged fermentation. However, solid-state fermentation is considered as a yielding approach for the production of thermostable keratinases. This review prioritized the molecular and biochemical properties of microbial keratinases, and the role of keratinases in bringing prodigious impact for the sustainable progress of the economy. It also emphasizes on the current development in keratinase production with the focus to improve the biochemical properties related to enzyme's catalytic activity and stability, and production of mutant and cloned microbial strains to improve the yield of keratinases. Recently, multitude molecular approaches have been employed to enhance enzyme's productivity, activity, and thermostability which makes them suitable for pharmaceutical industry and for the production of animal feed, organic fertilizers, biogas, clearing of animal hides, and detergent formulation. Hence, it can be surmised that microbial keratinolytic enzymes are the conceivable candidates for numerous commercial and industrial applications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Minahil Shoaib
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
12
|
Hendrick Q, Nnolim NE, Nontongana N, Nwodo UU. Sphingobacterium multivorum HNFx produced thermotolerant and chemostable keratinase on chicken feathers. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Valorization of Livestock Keratin Waste: Application in Agricultural Fields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116681. [PMID: 35682267 PMCID: PMC9180014 DOI: 10.3390/ijerph19116681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
Livestock keratin waste is a rich source of protein. However, the unique structure of livestock keratin waste makes its valorization a great challenge. This paper reviews the main methods for the valorization of livestock keratin waste, which include chemical, biological, and other novel methods, and summarizes the main agricultural applications of keratin-based material. Livestock keratin waste is mainly used as animal feed and fertilizer. However, it has promising potential for biosorbents and in other fields. In the future, researchers should focus on the biological extraction and carbonization methods of processing and keratin-based biosorbents for the soil remediation of farmland.
Collapse
|
14
|
Feather-Degrading Bacillus cereus HD1: Genomic Analysis and Its Optimization for Keratinase Production and Feather Degradation. Curr Microbiol 2022; 79:166. [PMID: 35460448 DOI: 10.1007/s00284-022-02861-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 01/15/2023]
Abstract
Keratinase is an important enzyme that is used to degrade feather wastes produced by poultry industries and slaughterhouses that accumulate rapidly over time. The search for keratinase-producing microorganisms is important to potentially substitute physicochemical treatments of feather waste. In this study, the genome of Bacillus cereus HD1 and its keratinolytic prowess was investigated. The whole-genome shotgun size is 5,668,864 bp consisting of 6083 genes, 69 tRNAs, and 10 rRNAs. The genomic analyses revealed 15 potential keratinase genes and other enzymes that might assist keratin degradation, such as disulfide reductase and cysteine dioxygenase. The optimal conditions for feather degradation and keratinase production by B. cereus HD1 such as incubation time, pH, temperature, yeast extract, and glycerol concentrations were determined to be 5 days, pH 8, 37 °C, 0.05% (w/v), and 0.1% (v/v), respectively. Under optimized conditions, B. cereus HD1 exhibited feather degradation of 65%, with bacterial growth and maximum keratinase activity of 1.3 × 1011 CFU/mL and 41 U/mL, respectively, after 5 days of incubation in a feather basal medium. The findings obtained from this study may facilitate further research into utilizing B. cereus HD1 as a prominent keratinolytic enzymes production host and warrant potential biotechnological applications.
Collapse
|
15
|
Hydrolyzed feather keratin obtained by microbial fermentation encapsulated with maltodextrin – A sustainable approach to increase digestible protein in feed. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Devi S, Chauhan A, Bishist R, Sankhyan N, Rana K, Sharma N. Production, partial purification and efficacy of keratinase from Bacillus halotolerans L2EN1 isolated from the poultry farm of Himachal Pradesh as a potential laundry additive. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2029851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sunita Devi
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Aishwarya Chauhan
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Rohit Bishist
- Department of Silviculture and Agroforestry, College of Forestry, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan, India
| | - Neeraj Sankhyan
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Kavita Rana
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Nisha Sharma
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| |
Collapse
|
17
|
ZININA O, MERENKOVA S, REBEZOV M. Analysis of modern approaches to the processing of poultry waste and by-products: prospects for use in industrial sectors. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Maksim REBEZOV
- Vasily Matveyevich Gorbatov Federal Research Center for Food Systems, Russian Federation
| |
Collapse
|
18
|
Sypka M, Jodłowska I, Białkowska AM. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021; 11:1900. [PMID: 34944542 PMCID: PMC8699090 DOI: 10.3390/biom11121900] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
To reduce anthropological pressure on the environment, the implementation of novel technologies in present and future economies is needed for sustainable development. The food industry, with dairy and meat production in particular, has a significant environmental impact. Global poultry production is one of the fastest-growing meat producing sectors and is connected with the generation of burdensome streams of manure, offal and feather waste. In 2020, the EU alone produced around 3.2 million tonnes of poultry feather waste composed primarily of keratin, a protein biopolymer resistant to conventional proteolytic enzymes. If not managed properly, keratin waste can significantly affect ecosystems, contributing to environmental pollution, and pose a serious hazard to human and livestock health. In this article, the application of keratinolytic enzymes and microorganisms for promising novel keratin waste management methods with generation of new value-added products, such as bioactive peptides, vitamins, prion decontamination agents and biomaterials were reviewed.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (M.S.); (I.J.)
| |
Collapse
|
19
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
20
|
Bokveld A, Nnolim NE, Nwodo UU. Chryseobacterium aquifrigidense FANN1 Produced Detergent-Stable Metallokeratinase and Amino Acids Through the Abasement of Chicken Feathers. Front Bioeng Biotechnol 2021; 9:720176. [PMID: 34422784 PMCID: PMC8377754 DOI: 10.3389/fbioe.2021.720176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
Microbial keratinases’ versatility in the beneficiation of keratinous waste biomass into high-value products prompts their application in diverse spheres hence, advancing green technology and the bioeconomy. Consequently, a feather-degrading Chryseobacterium aquifrigidense FANN1 (NCBI: MW169027) was used to produce keratinase, and its biochemical properties were determined. The optimization of physicochemical parameters and analysis of the free amino acid constituents of the feather hydrolysate were also carried out. FANN1 showed a maximum keratinase yield of 1,664.55 ± 42.43 U/mL after 72 h, at optimal process conditions that included initial medium pH, incubation temperature, inoculum size, and chicken feather concentration of 8, 30°C, 4% (v/v), and 15 (g/L), respectively. Analysis of degradation product showed 50.32% and 23.25% as the protein value and total free amino acids, respectively, with a relatively high abundance of arginine (2.25%) and serine (2.03%). FANN1 keratinase was optimally active at pH 8.0 and relatively moderate to high temperature (40–50°C). EDTA and 1,10-phenanthroline inhibited the keratinase activity, and that suggests a metallo-keratinase. The enzyme showed remarkable stability in the presence of chemical agents, with residual activity 141 ± 10.38%, 98 ± 0.43%, 111 ± 1.73%, 124 ± 0.87%, 104 ± 3.89%, 107 ± 7.79%, and 112 ± 0.86% against DTT, H2O2, DMSO, acetonitrile, triton X-100, tween-80, and SDS, respectively. The residual activity of FANN1 keratinase was enhanced by Sunlight (129%), Ariel (116%), MAQ (151%), and Surf (143%) compared to the control after 60 min preincubation. Likewise, the enzyme was remarkably stable in the presence Fe3+ (120 ± 5.06%), Ca2+ (100 ± 10.33%), Na+ (122 ± 2.95%), Al3+ (106 ± 10.33%); while Co2+ (68 ± 8.22%) and Fe2+ (51 ± 8.43%) elicited the most repressive effect on keratinase activity. The findings suggest that C. aquifrigidense FANN1 is a potential candidate for keratinous wastes bio-recycling, and the associated keratinase has a good prospect for application in detergent formulation.
Collapse
Affiliation(s)
- Amahle Bokveld
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Nonso E Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
21
|
Cavello I, Bezus B, Cavalitto S. The keratinolytic bacteria Bacillus cytotoxicus as a source of novel proteases and feather protein hydrolysates with antioxidant activities. J Genet Eng Biotechnol 2021; 19:107. [PMID: 34292436 PMCID: PMC8298642 DOI: 10.1186/s43141-021-00207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/09/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Argentina's geothermal areas are niches of a rich microbial diversity. In 2020, species of Bacillus cytotoxicus were isolated for the first time from these types of pristine natural areas. Bacillus cytotoxicus strains demonstrated the capability to grow and degrade chicken feathers with the concomitant production of proteases with keratinolytic activity, enzymes that have multitude of industrial applications. The aim of this research was to study the production of the proteolytic enzymes and its characterization. Also, feather protein hydrolysates produced during fermentation were characterized. RESULTS Among the thermotolerant strains isolated from the Domuyo geothermal area (Neuquén province, Argentina), Bacillus cytotoxicus LT-1 and Oll-15 were selected and put through submerged cultures using feather wastes as sole carbon, nitrogen, and energy source in order to obtain proteolytic enzymes and protein hydrolysates. Complete degradation of feathers was achieved after 48 h. Zymograms demonstrated the presence of several proteolytic enzymes with an estimated molecular weight between 50 and > 120 kDa. Optimum pH and temperatures of Bacillus cytotoxicus LT-1 crude extract were 7.0 and 40 °C, meanwhile for Oll-15 were 7.0 and 50 °C. Crude extracts were inhibited by EDTA and 1,10 phenanthroline indicating the presence of metalloproteases. Feather protein hydrolysates showed an interesting antioxidant potential measured through radical-scavenging and Fe3+-reducing activities. CONCLUSION This work represents an initial approach on the study of the biotechnological potential of proteases produced by Bacillus cytotoxicus. The results demonstrated the importance of continuous search for new biocatalysts with new characteristics and enzymes to be able to cope with the demands in the market.
Collapse
Affiliation(s)
- Ivana Cavello
- Centro de Investigación y Desarrollo en Fermentaciones Industriales. Facultad de Ciencias Exactas, Universidad Nacional de la Plata (CINDEFI, CCT La Plata-CONICET, UNLP), Calle 47 y 115, (B1900ASH), La Plata, Argentina.
| | - Brenda Bezus
- Centro de Investigación y Desarrollo en Fermentaciones Industriales. Facultad de Ciencias Exactas, Universidad Nacional de la Plata (CINDEFI, CCT La Plata-CONICET, UNLP), Calle 47 y 115, (B1900ASH), La Plata, Argentina
| | - Sebastián Cavalitto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales. Facultad de Ciencias Exactas, Universidad Nacional de la Plata (CINDEFI, CCT La Plata-CONICET, UNLP), Calle 47 y 115, (B1900ASH), La Plata, Argentina
| |
Collapse
|
22
|
Gurunathan R, Huang B, Ponnusamy VK, Hwang JS, Dahms HU. Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs. Sci Rep 2021; 11:12007. [PMID: 34099743 PMCID: PMC8185006 DOI: 10.1038/s41598-021-90375-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Microbial secondary metabolites from extreme environments like hydrothermal vents are a promising source for industrial applications. In our study the protease gene from Bacillus cereus obtained from shallow marine hydrothermal vents in the East China Sea was cloned, expressed and purified. The protein sequence of 38 kDa protease SLSP-k was retrieved from mass spectrometry and identified as a subtilisin serine proteinase. The novel SLSP-k is a monomeric protein with 38 amino acid signal peptides being active over wide pH (7-11) and temperature (40-80 °C) ranges, with maximal hydrolytic activities at pH 10 and at 50 °C temperature. The hydrolytic activity is stimulated by Ca2+, Co2+, Mn2+, and DTT. It is inhibited by Fe2+, Cd2+, Cu2+, EDTA, and PMSF. The SLSP-k is stable in anionic, non-anionic detergents, and solvents. The ability to degrade keratin in chicken feather and hair indicates that this enzyme is suitable for the degradation of poultry waste without the loss of nutritionally essential amino acids which otherwise are lost in hydrothermal processing. Therefore, the proteinase is efficient in environmental friendly bioconversion of animal waste into fertilizers or value added products such as secondary animal feedstuffs.
Collapse
Affiliation(s)
- Revathi Gurunathan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan.
| |
Collapse
|