1
|
Borges RM. Interactions Between Figs and Gall-Inducing Fig Wasps: Adaptations, Constraints, and Unanswered Questions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.685542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ancient interaction between figs (Ficus, Moraceae) and their pollinating fig wasps is an unusual example of a mutualism between plants and gall-inducing insects. This review intends to offer fresh perspectives into the relationship between figs and the diversity of gall-inducing sycophiles which inhabit their enclosed globular inflorescences that function as microcosms. Besides gall-inducing pollinators, fig inflorescences are also inhabited by other gall-inducing wasps. This review evaluates the state of current knowledge on gall-induction by fig wasps and exposes the many lacunae in this area. This review makes connections between fig and gall-inducing wasp traits, and suggests relatively unexplored research avenues. This manuscript calls for an integrated approach that incorporates such diverse fields as life-history theory, plant mate choice, wasp sexual selection and local mate competition, plant embryology as well as seed and fruit dispersal. It calls for collaboration between researchers such as plant developmental biologists, insect physiologists, chemical ecologists and sensory biologists to jointly solve the many valuable questions that can be addressed in community ecology, co-evolution and species interaction biology using the fig inflorescence microcosm, that is inhabited by gall-inducing mutualistic and parasitic wasps, as a model system.
Collapse
|
2
|
Deng X, Chen L, Tian E, Zhang D, Wattana T, Yu H, Kjellberg F, Segar ST. Low host specificity and broad geographical ranges in a community of parasitic non-pollinating fig wasps (Sycoryctinae; Chalcidoidea). J Anim Ecol 2021; 90:1678-1690. [PMID: 33738802 DOI: 10.1111/1365-2656.13483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022]
Abstract
Plants, phytophagous insects and their parasitoids form the most diverse assemblages of macroscopic organisms on earth. Enclosed assemblages in particular represent a tractable system for studying community assembly and diversification. Communities associated with widespread plant species are especially suitable as they facilitate a comparative approach. Pantropical fig-wasp communities represent a remarkably well-replicated system, ideal for studying these historical processes. We expect high dispersal ability in non-pollinating fig wasps to result in lower geographical turnover in comparison to pollinating fig wasps. The ability of non-pollinating wasps to utilise a number of hosts (low host specificity) is a key determinant of overall geographical range, with intraspecific competition becoming a constraining factor should diet breadth overlap among species. Finally, we expect conserved community structure throughout the host range. We aim to test these expectations, derived from population genetic and community studies, using the multi-trophic insect community associated with Ficus hirta throughout its 3,500 km range across continental and insular Asia. We collect molecular evidence from one coding mitochondrial gene, one non-coding nuclear gene and multiple microsatellites across 25 geographical sites. Using these data, we establish species boundaries, determine levels of host specificity among non-pollinating fig wasps and quantify geographical variation in community composition. We find low host specificity in two genera of non-pollinating fig wasps. Functional community structure is largely conserved across the range of the host fig, despite limited correspondence between the ranges of non-pollinator and pollinator species. While nine pollinators are associated with Ficus hirta, the two non-pollinator tribes developing in its figs each contained only four species. Contrary to predictions, we find stronger isolation by distance in non-pollinators than pollinators. Long-lived non-pollinators may disperse more gradually and be less reliant on infrequent long-distance dispersal by wind currents. Segregation among non-pollinating species across their range is suggestive of competitive exclusion and we propose that this may be a result of increased levels of local adaptation and moderate, but regular, rates of dispersal. Our findings provide one more example of lack of strict codiversification in the geographical diversification of plant-associated insect communities.
Collapse
Affiliation(s)
- Xiaoxia Deng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, CAS, Guangzhou, China.,Centre for Plant Ecology, CAS Core Botanical Gardens, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lianfu Chen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, CAS, Guangzhou, China.,Centre for Plant Ecology, CAS Core Botanical Gardens, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Enwei Tian
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, CAS, Guangzhou, China
| | - Dayong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, CAS, Guangzhou, China.,Centre for Plant Ecology, CAS Core Botanical Gardens, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Finn Kjellberg
- CEFE, University of Montpellier, CNRS, University of Paul Valéry Montpellier, EPHE, IRD, Montpellier Cedex 5, France
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, UK
| |
Collapse
|