1
|
Miranda MR, Sayé M, Reigada C, Galceran F, Rengifo M, Maciel BJ, Digirolamo FA, Pereira CA. Revisiting trypanosomatid nucleoside diphosphate kinases. Mem Inst Oswaldo Cruz 2022; 116:e210339. [PMID: 35170678 PMCID: PMC8833001 DOI: 10.1590/0074-02760210339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND An increasing amount of research has led to the positioning of nucleoside diphosphate kinases (NDPK/NDK) as key metabolic enzymes among all organisms. They contribute to the maintenance the intracellular di- and tri- phosphate nucleoside homeostasis, but they also are involved in widely diverse processes such as gene regulation, apoptosis, signal transduction and many other regulatory roles. OBJETIVE Examine in depth the NDPKs of trypanosomatid parasites responsible for devastating human diseases (e.g., Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp.) which deserve special attention. METHODS The earliest and latest advances in the topic were explored, focusing on trypanosomatid NDPK features, multifunctionality and suitability as molecular drug targets. FINDINGS Trypanosomatid NDPKs appear to play functions different from their host counterparts. Evidences indicate that they would perform key roles in the parasite metabolism such as nucleotide homeostasis, drug resistance, DNA damage responses and gene regulation, as well as host-parasite interactions, infection, virulence and immune evasion, placing them as attractive pharmacological targets. MAIN CONCLUSIONS NDPKs are very interesting multifunctional enzymes. In the present review, the potential of trypanosomatid NDPKs was highlighted, raising awareness of their value not only with respect to parasite biology but also as molecular targets.
Collapse
Affiliation(s)
- Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina,+ Corresponding author: /
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Facundo Galceran
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Marcos Rengifo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Belen J Maciel
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
2
|
Nguyen S, Jovcevski B, Pukala TL, Bruning JB. Nucleoside selectivity of Aspergillus fumigatus nucleoside-diphosphate kinase. FEBS J 2020; 288:2398-2417. [PMID: 33089641 DOI: 10.1111/febs.15607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Aspergillus fumigatus infections are rising at a disconcerting rate in tandem with antifungal resistance rates. Efforts to develop novel antifungals have been hindered by the limited knowledge of fundamental biological and structural mechanisms of A. fumigatus propagation. Biosynthesis of NTPs, the building blocks of DNA and RNA, is catalysed by NDK. An essential enzyme in A. fumigatus, NDK poses as an attractive target for novel antifungals. NDK exhibits broad substrate specificity across species, using both purines and pyrimidines, but the selectivity of such nucleosides in A. fumigatus NDK is unknown, impeding structure-guided inhibitor design. Structures of NDK in unbound- and NDP-bound states were solved, and NDK activity was assessed in the presence of various NTP substrates. We present the first instance of a unique substrate binding mode adopted by CDP and TDP specific to A. fumigatus NDK that illuminates the structural determinants of selectivity. Analysis of the oligomeric state reveals that A. fumigatus NDK adopts a hexameric assembly in both unbound- and NDP-bound states, contrary to previous reports suggesting it is tetrameric. Kinetic analysis revealed that ATP exhibited the greatest turnover rate (321 ± 33.0 s-1 ), specificity constant (626 ± 110.0 mm-1 ·s-1 ) and binding free energy change (-37.0 ± 3.5 kcal·mol-1 ). Comparatively, cytidine nucleosides displayed the slowest turnover rate (53.1 ± 3.7 s-1 ) and lowest specificity constant (40.2 ± 4.4 mm-1 ·s-1 ). We conclude that NDK exhibits nucleoside selectivity whereby adenine nucleosides are used preferentially compared to cytidine nucleosides, and these insights can be exploited to guide drug design. ENZYMES: Nucleoside-diphosphate kinase (EC 2.7.4.6). DATABASE: Structural data are available in the PDB database under the accession numbers: Unbound-NDK (6XP4), ADP-NDK (6XP7), GDP-NDK (6XPS), IDP-NDK (6XPU), UDP-NDK (6XPT), CDP-NDK (6XPW), TDP-NDK (6XPV).
Collapse
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Australia
| | - Blagojce Jovcevski
- Adelaide Proteomics Centre, School of Physical Sciences, The University of Adelaide, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Australia
| | - Tara L Pukala
- Adelaide Proteomics Centre, School of Physical Sciences, The University of Adelaide, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Australia
| |
Collapse
|
3
|
Structure, Folding and Stability of Nucleoside Diphosphate Kinases. Int J Mol Sci 2020; 21:ijms21186779. [PMID: 32947863 PMCID: PMC7554756 DOI: 10.3390/ijms21186779] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/29/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPK) are oligomeric proteins involved in the synthesis of nucleoside triphosphates. Their tridimensional structure has been solved by X-ray crystallography and shows that individual subunits present a conserved ferredoxin fold of about 140 residues in prokaryotes, archaea, eukaryotes and viruses. Monomers are functionally independent from each other inside NDPK complexes and the nucleoside kinase catalytic mechanism involves transient phosphorylation of the conserved catalytic histidine. To be active, monomers must assemble into conserved head to tail dimers, which further assemble into hexamers or tetramers. The interfaces between these oligomeric states are very different but, surprisingly, the assembly structure barely affects the catalytic efficiency of the enzyme. While it has been shown that assembly into hexamers induces full formation of the catalytic site and stabilizes the complex, it is unclear why assembly into tetramers is required for function. Several additional activities have been revealed for NDPK, especially in metastasis spreading, cytoskeleton dynamics, DNA binding and membrane remodeling. However, we still lack the high resolution structural data of NDPK in complex with different partners, which is necessary for deciphering the mechanism of these diverse functions. In this review we discuss advances in the structure, folding and stability of NDPKs.
Collapse
|
4
|
Lykins JD, Filippova EV, Halavaty AS, Minasov G, Zhou Y, Dubrovska I, Flores KJ, Shuvalova LA, Ruan J, El Bissati K, Dovgin S, Roberts CW, Woods S, Moulton JD, Moulton H, McPhillie MJ, Muench SP, Fishwick CWG, Sabini E, Shanmugam D, Roos DS, McLeod R, Anderson WF, Ngô HM. CSGID Solves Structures and Identifies Phenotypes for Five Enzymes in Toxoplasma gondii. Front Cell Infect Microbiol 2018; 8:352. [PMID: 30345257 PMCID: PMC6182094 DOI: 10.3389/fcimb.2018.00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii, an Apicomplexan parasite, causes significant morbidity and mortality, including severe disease in immunocompromised hosts and devastating congenital disease, with no effective treatment for the bradyzoite stage. To address this, we used the Tropical Disease Research database, crystallography, molecular modeling, and antisense to identify and characterize a range of potential therapeutic targets for toxoplasmosis. Phosphoglycerate mutase II (PGMII), nucleoside diphosphate kinase (NDK), ribulose phosphate 3-epimerase (RPE), ribose-5-phosphate isomerase (RPI), and ornithine aminotransferase (OAT) were structurally characterized. Crystallography revealed insights into the overall structure, protein oligomeric states and molecular details of active sites important for ligand recognition. Literature and molecular modeling suggested potential inhibitors and druggability. The targets were further studied with vivoPMO to interrupt enzyme synthesis, identifying the targets as potentially important to parasitic replication and, therefore, of therapeutic interest. Targeted vivoPMO resulted in statistically significant perturbation of parasite replication without concomitant host cell toxicity, consistent with a previous CRISPR/Cas9 screen showing PGM, RPE, and RPI contribute to parasite fitness. PGM, RPE, and RPI have the greatest promise for affecting replication in tachyzoites. These targets are shared between other medically important parasites and may have wider therapeutic potential.
Collapse
Affiliation(s)
- Joseph D. Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrei S. Halavaty
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
| | - Ievgeniia Dubrovska
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristin J. Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ludmilla A. Shuvalova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
| | - Sarah Dovgin
- Illinois Math and Science Academy, Aurora, IL, United States
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Martin J. McPhillie
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Colin W. G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Elisabetta Sabini
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL, United States
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Huân M. Ngô
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- BrainMicro LLC, New Haven, CT, United States
| |
Collapse
|
5
|
Pyrrole-indolinone SU11652 targets the nucleoside diphosphate kinase from Leishmania parasites. Biochem Biophys Res Commun 2017; 488:461-465. [PMID: 28499874 DOI: 10.1016/j.bbrc.2017.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/18/2023]
Abstract
Nucleoside diphosphate kinases (NDKs) are key enzymes in the purine-salvage pathway of trypanosomatids and have been associated with the maintenance of host-cell integrity for the benefit of the parasite, being potential targets for rational drug discovery and design. The NDK from Leishmania major (LmNDK) and mutants were expressed and purified to homogeneity. Thermal shift assays were employed to identify potential inhibitors for LmNDK. Calorimetric experiments, site-directed mutagenesis and molecular docking analysis were performed to validate the interaction and to evaluate the structural basis of ligand recognition. Furthermore, the anti-leishmanial activity of the newly identified and validated compound was tested in vitro against different Leishmania species. The molecule SU11652, a Sunitinib analog, was identified as a potential inhibitor for LmNDK and structural studies indicated that this molecule binds to the active site of LmNDK in a similar conformation to nucleotides, mimicking natural substrates. Isothermal titration calorimetry experiments combined with site-directed mutagenesis revealed that the residues H50 and H117, considered essential for catalysis, play an important role in ligand binding. In vitro cell studies showed that SU11652 had similar efficacy to Amphotericin b against some Leishmania species. Together, our results indicate the pyrrole-indolinone SU11652 as a promising scaffold for the rational design of new drugs targeting the enzyme NDK from Leishmania parasites.
Collapse
|
6
|
Vieira PS, de Giuseppe PO, de Oliveira AHC, Murakami MT. The role of the C-terminus and Kpn loop in the quaternary structure stability of nucleoside diphosphate kinase from Leishmania parasites. J Struct Biol 2015; 192:336-341. [PMID: 26410384 DOI: 10.1016/j.jsb.2015.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
Nucleoside diphosphate kinase (NDK) is a housekeeping enzyme that plays key roles in nucleotide recycling and homeostasis in trypanosomatids. Moreover, it is secreted by the intracellular parasite Leishmania to modulate the host response. These functions make NDK an attractive target for drug design and for studies aiming at a better understanding of the mechanisms mediating host-pathogen interactions. Here, we report the crystal structures of three mutants of the NDK from Leishmania major (LmNDK) that affects the stability of the hexameric biological assembly including P95S, Δ5Ct (lacking the last five residues) and the double mutant P100S/Δ5Ct. Although P95S and Δ5Ct variants conserve the hexameric structure of the wild-type protein, the double mutant becomes a dimer as shown by in solution studies. Free energy calculation of dimer-dimer interfaces and enzymatic assays indicate that P95S, Δ5Ct and P100S/Δ5Ct mutations progressively decrease the hexamer stability and enzyme activity. These results demonstrate that the mutated regions play a role in protein function through stabilizing the quaternary arrangement.
Collapse
Affiliation(s)
- Plínio Salmazo Vieira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Priscila Oliveira de Giuseppe
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | | | - Mario Tyago Murakami
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil.
| |
Collapse
|