1
|
Jeon Y, Choi SG, Noh W, Song JW, Yu JW, Song MH, Lee JH, Seo JS, Kim JH. Integrated lipidomics and metabolomics approach to assess sex-dependent effects of acute bisphenol A exposure on hepatic lipid metabolism in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 300:118428. [PMID: 40449054 DOI: 10.1016/j.ecoenv.2025.118428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/16/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
High concentrations of bisphenol A (BPA), a typical endocrine disruptor, have been widely found in rivers and oceans due to its extensive use in polymer production. Direct exposure to BPA in the aquatic environment is known to have toxic effects including their immune responses, neuroendocrine and reproductive systems and development on aquatic organisms. BPA has various adverse effects associated with the lipid metabolism of fish. However, there are limited studies on the specific mechanisms on sex-dependent differences in hepatic lipid metabolism in BPA-exposed fish. Therefore, we performed comparative lipid profiling by UPLC-MS/MS and metabolite profiling by GC-MS/MS in male and female zebrafish livers during uptake and depuration of BPA. BPA exposure led to similar changes in various hepatic lipids in male and female zebrafish, but several lipids including triacylglycerols were affected differently in a sex- and exposure duration-dependent manner. There were also sex-dependent responses of hepatic metabolites such as GABA, alanine, glucose, sarcosine, and allantoin, consistent with the trends in changes in lipids in response to BPA exposure in male and female zebrafish. Overall, our study identified sex-dependent differences in specific lipids and metabolites in the liver of zebrafish exposed to BPA. These findings might provide a novel reference for understanding the metabolic toxic effects of BPA and the pathways involved in these effects in aquatic organisms.
Collapse
Affiliation(s)
- Yoonjeong Jeon
- Center for Environmental Safety Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Sung-Gil Choi
- Center for Environmental Safety Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Won Noh
- Center for Environmental Safety Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jong-Wook Song
- Center for Environmental Safety Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Ji-Woo Yu
- Department of Crop Science, Konkuk University, Seoul, Republic of Korea
| | - Min-Ho Song
- Department of Crop Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ho Lee
- School of Natural Resources and Environment Science, College of Agriculture and Life Sciences, Kangwon National University, Gangwon, Republic of Korea
| | - Jong-Su Seo
- Center for Environmental Safety Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| | - Jong-Hwan Kim
- Center for Environmental Safety Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Deajeon, Republic of Korea.
| |
Collapse
|
2
|
Nadal A. Diabetes from plastics: Role of endocrine disruptors in β-cell physiology. ANNALES D'ENDOCRINOLOGIE 2025; 86:101780. [PMID: 40409149 DOI: 10.1016/j.ando.2025.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Affiliation(s)
- Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche, Spain.
| |
Collapse
|
3
|
Du S, Lin H, Luo Q, Man CL, Lai SH, Ho KF, Leung KMY, Lee PKH. House dust microbiome differentiation and phage-mediated antibiotic resistance and virulence dissemination in the presence of endocrine-disrupting chemicals and pharmaceuticals. MICROBIOME 2025; 13:96. [PMID: 40205515 PMCID: PMC11980161 DOI: 10.1186/s40168-025-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND House dust serves as a reservoir of a diverse array of microbial life and anthropogenic chemicals, both of which can potentially influence the health of occupants, particularly those who spend significant amounts of time at home. However, the effects of anthropogenic chemicals on dust microbiomes remain poorly understood. This study investigated the presence of anthropogenic chemicals in the dust of homes occupied by elderly occupants and explored those chemicals' relationships with dust microbiomes. RESULTS We detected 69 out of 76 analyzed anthropogenic chemicals, including endocrine-disrupting chemicals, non-antibiotic pharmaceuticals, and antibiotics, in at least one house dust sample from 32 residential homes, with concentrations ranging from 2720 to 89,300 ng/g. Some of these detected compounds were pharmaceuticals regularly consumed by the occupants. The dust microbiomes were associated with varying levels of anthropogenic chemicals, forming two distinct clusters, each with unique diversity, taxonomy, metabolic functions, and resistome profiles. Higher concentrations and a greater variety of these chemicals were associated with an increased co-occurrence of antibiotic resistance and virulence genes, as well as an enhanced potential for their transfer through mobile genetic elements. Under these conditions, phages, especially phage-plasmids, facilitated the dissemination of antibiotic resistance and virulence among bacterial populations. CONCLUSIONS The findings indicate that everyday anthropogenic chemicals are important factors associated with the microbes in indoor environments. This underscores the importance of improving household chemical stewardship to reduce the health risks associated with exposure to these chemicals and their effects on indoor microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qiong Luo
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chung Ling Man
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Sze Han Lai
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Kenneth M Y Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
4
|
Souza M, Moura FS, Lima LCV, Amaral MJM. Association between higher consumption of ultra-processed foods and risk of diabetes and its complications: A systematic review & updated meta-analysis. Metabolism 2025; 165:156134. [PMID: 39848440 DOI: 10.1016/j.metabol.2025.156134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND & AIMS Recent epidemiologic studies on the association between higher consumption of ultra-processed foods (UPFs) and risk of incident diabetes have reported conflicting results in populations worldwide. We conducted an updated systematic review and meta-analysis to quantify the magnitude of this association. METHODS PubMed and Embase databases were systematically searched (from 2009 to November 14, 2024) for prospective cohort studies reporting data on the association between UPF intake (defined by the NOVA classification) and the risk of incident diabetes or its complications in adults (>18 years). Meta-analysis was performed using random-effects modelling to obtain pooled hazard ratios (HRs) with 95 % confidence intervals (CIs), and the GRADE approach was applied to evaluate the certainty of evidence. RESULTS We included 14 prospective cohort studies with a total of 692,508 participants. The highest UPF consumption was significantly associated with an increased risk of diabetes (n = 9 studies; HR 1.24, 95 % CI 1.14 to 1.34, I2 = 69 %) compared with the lowest UPF intake (very low certainty of evidence). Subgroup analysis showed that studies published in 2024 had a smaller effect size compared with earlier studies. There were no significant differences between subgroups based on study location, duration of follow-up, method and frequency of dietary intake assessment, and risk of bias. Sensitivity analyses did not change these findings. Each 10 % increase in total UPF consumption was associated with a 13 % (n = 4 studies; HR 1.13, 95 % CI 1.08 to 1.18, I2 = 37 %) increased risk of diabetes. Preliminary data from 4 cohort studies also suggest that high UPF consumption may be associated with complications in diabetic patients, including microvascular/cardiovascular disease, chronic kidney disease, and mortality. CONCLUSION UPF consumption is associated with a higher risk of incident diabetes and may contribute to its complications. Urgent public health efforts should prioritize the reduction of UPF consumption.
Collapse
Affiliation(s)
- Matheus Souza
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Felipe S Moura
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan C V Lima
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio J M Amaral
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Hernández-Pérez JG, Valenzuela-Sánchez A, López DS, Torres-Sánchez L. Racial/ethnic disparities in the association of environmental exposure to phthalates and bisphenols mixtures with diabetes mellitus: NHANES 2013-2016. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2025:1-13. [PMID: 40102054 DOI: 10.1080/19338244.2025.2480113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
We evaluated the association between urinary concentrations of phthalates/bisphenols mixtures and diabetes mellitus (DM) and poorly controlled DM, stratified by sex, and race/ethnicity in 2718 adults from the 2013 to 2016 National Health and Nutrition Examination Survey. DM was self-reported or defined by glucose tests/hypoglycemic use. Poorly controlled DM was defined by HbA1c ≥ 8%. Principal component analyses allowed to identify three mixtures: (1) DEHP (di(2-ethylhexyl) phthalate metabolites), (2) LMW/BPs (bisphenol A, F, S, and low molecular weight phthalates), and (3) high molecular weight phthalates. Group weighted quantile sum regression showed that the DEHP mixture was associated with lower DM prevalence in women and "other races" participants. Conversely, the LMW/BPs mixture was associated with higher DM odds, mainly among Mexican Americans. Race/ethnicity seems to determine the association between the different exposure mixtures and DM prevalence and poorly controlled DM.
Collapse
Affiliation(s)
- Jesús Gibran Hernández-Pérez
- Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, México
- School of Public Health of Mexico, National Institute of Public Health (INSP), Cuernavaca, México
| | - Abraham Valenzuela-Sánchez
- Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, México
- School of Public Health of Mexico, National Institute of Public Health (INSP), Cuernavaca, México
| | - David S López
- School of Public and Population Health, Department of Epidemiology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Luisa Torres-Sánchez
- Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, México
| |
Collapse
|
6
|
Münzel T, Hahad O, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. Soil and water pollution and cardiovascular disease. Nat Rev Cardiol 2025; 22:71-89. [PMID: 39317838 DOI: 10.1038/s41569-024-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Omar Hahad
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, MA, USA
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
7
|
Rochester JR, Kwiatkowski CF, Lathrop MK, Neveux I, Daza EJ, Grzymski J, Hua J. Reducing Exposures to Endocrine Disruptors (REED) study, a personalized at-home intervention program to reduce exposure to endocrine disrupting chemicals among a child-bearing age cohort: study protocol for a randomized controlled trial. Trials 2024; 25:793. [PMID: 39587613 PMCID: PMC11587698 DOI: 10.1186/s13063-024-08627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Exposures to endocrine disrupting chemicals (EDCs) have been linked to chronic diseases including breast cancer, metabolic syndrome, diabetes, and infertility. Exposure during pregnancy may have a lifelong impact on the fetus. Services are needed to allow individuals to learn about their personal EDC exposures and how to reduce them. Million Marker (MM) aims to crowdsource and scale the biomonitoring of environmental chemicals and provide actionable results to empower individuals to proactively assess, track, and reduce their EDC exposures. In previous research, we developed and tested the first mobile EDC intervention service (mail-in urine testing and exposure report-back) for its efficacy in increasing EH literacy (EHL), willingness to reduce exposures (i.e., readiness to change, RtC), and system usability. After intervention, we found increased EHL, increased RtC in women (but not men), and decreased EDC exposure. However, some participants did not increase their RtC and had difficulty carrying out the intervention on their own. The reasons for these less optimal results were the difficulty in the EHL subject matter-participants still felt ill-prepared to apply their knowledge to making healthier lifestyle changes. Therefore, in this study, we will address these perceived limitations. METHODS We will test a self-directed online interactive curriculum with live counseling sessions and individualized support modeled after the highly effective Diabetes Prevention Program (DPP). Recruiting from the Healthy Nevada Project (HNP), one of the largest population health cohorts in the world, we test the effectiveness of our EDC-specific online intervention curriculum via EHL and RtC surveys and determine changes in EDC exposure before and after intervention in a randomized controlled trial. We will also test for common clinical biomarkers via a commercially available at-home test (Siphox). We will recruit and randomize 300 women and 300 men of reproductive age (total n=600) from HNP. Our target population is men and women of reproductive age (18-44 years old). DISCUSSION At the conclusion of this project, we will be well-positioned to scale our services to clinics and the general public, with the eventual aims of FDA approval, insurance coverage, and incorporation into routine clinical care.
Collapse
Affiliation(s)
| | | | | | - Iva Neveux
- University of Nevada, Reno, Reno, Nevada, USA
- The Healthy Nevada Project, Renown Health, Reno, Nevada, USA
| | - Eric J Daza
- Million Marker Wellness, Inc, Berkeley, California, USA
| | - Joseph Grzymski
- University of Nevada, Reno, Reno, Nevada, USA
- The Healthy Nevada Project, Renown Health, Reno, Nevada, USA
| | - Jenna Hua
- Million Marker Wellness, Inc, Berkeley, California, USA.
| |
Collapse
|
8
|
Di Lorenzo M, Aurino L, Cataldi M, Cacciapuoti N, Di Lauro M, Lonardo MS, Gautiero C, Guida B. A Close Relationship Between Ultra-Processed Foods and Adiposity in Adults in Southern Italy. Nutrients 2024; 16:3923. [PMID: 39599709 PMCID: PMC11597779 DOI: 10.3390/nu16223923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES One of the main culprits of the obesity epidemic is the obesogenic food environment, which promotes the consumption of ultra-processed foods (UPFs) that are highly palatable, have low nutritional quality and a high caloric impact and are economical and ready to use. This monocentric retrospective study explored the association between UPFs, obesity and adiposity measurements among adults living with obesity in Southern Italy. METHODS According to their Body Mass Index (BMI) values, 175 participants (63M) were recruited and stratified into three groups. To evaluate their usual eating habits, PREDIMED and the Nova Food Frequency Questionnaire (NFFQ) were administered to investigate Mediterranean diet (MD) adherence and UPF consumption. Anthropometric and biochemical measurements, body composition, as well as visceral obesity indices were collected. RESULTS The data showed an increase in UPF consumption as the BMI increased, with a concomitant decrease in MD adherence. Soft drinks were the most representative UPF in all groups, and we observed a significant increase in such consumption as the BMI increased. In addition, in the highest tertile of UPF consumption, there was an increase in adiposity indices. CONCLUSIONS Our data suggest that high UPF consumption correlates with an increased BMI and visceral adiposity, and it is a predictive risk factor for the occurrence of non-communicable diseases.
Collapse
Affiliation(s)
- Mariana Di Lorenzo
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Laura Aurino
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Nunzia Cacciapuoti
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Mariastella Di Lauro
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Maria Serena Lonardo
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Claudia Gautiero
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| |
Collapse
|
9
|
Amon M, Kek T, Klun IV. Endocrine disrupting chemicals and obesity prevention: scoping review. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:138. [PMID: 39227884 PMCID: PMC11373446 DOI: 10.1186/s41043-024-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Exposure to endocrine disrupting chemicals (EDCs) can result in alterations of natural hormones in the body. The aim of this review article is to highlight the knowledge about EDCs and obesity. METHODS A scoping review of the electronic literature was performed using PubMed platform for studies on EDCs and obesity published between the years 2013-2023. A total of 10 systematic reviews and meta-analysis studies met our inclusion criteria on more prominent EDCs focusing mainly on bisphenols, including parabens, triclosan, and phthalates, and their association with obesity. DESIGN Scoping review. RESULTS EDCs, mostly bisphenols and phthalates, are related to health effects, while there is less information on the impact of parabens and triclosan. A series of negative physiological effects involving obesogenic, diabetogenic, carcinogenic, and inflammatory mechanisms as well as epigenetic and microbiota modulations was related to a prolonged EDCs exposure. A more profound research of particular pollutants is required to illuminate the accelerating effects of particular EDCs, mixtures or their metabolites on the mechanism of the development of obesity. CONCLUSION Considering the characteristics of EDCs and the heterogeneity of studies, it is necessary to design specific studies of effect tracking and, in particular, education about daily preventive exposure to EDCs for the preservation of long-term public health.
Collapse
Affiliation(s)
- Mojca Amon
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia.
| | - Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| | - Irma Virant Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
10
|
Symeonides C, Aromataris E, Mulders Y, Dizon J, Stern C, Barker TH, Whitehorn A, Pollock D, Marin T, Dunlop S. An Umbrella Review of Meta-Analyses Evaluating Associations between Human Health and Exposure to Major Classes of Plastic-Associated Chemicals. Ann Glob Health 2024; 90:52. [PMID: 39183960 PMCID: PMC11342836 DOI: 10.5334/aogh.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
Background: Epidemiological research investigating the impact of exposure to plastics, and plastic-associated chemicals, on human health is critical, especially given exponentially increasing plastic production. In parallel with increasing production, academic research has also increased exponentially both in terms of the primary literature and ensuing systematic reviews with meta-analysis. However, there are few overviews that capture a broad range of chemical classes to present a state of play regarding impacts on human health. Methods: We undertook an umbrella review to review the systematic reviews with meta-analyses. Given the complex composition of plastic and the large number of identified plastic-associated chemicals, it was not possible to capture all chemicals that may be present in, and migrate from, plastic materials. We therefore focussed on a defined set of key exposures related to plastics. These were microplastics, due to their ubiquity and potential for human exposure, and the polymers that form the matrix of consumer plastics. We also included plasticisers and flame retardants as the two classes of functional additive with the highest concentration ranges in plastic. In addition, we included bisphenols and per- and polyfluoroalkyl substances (PFAS) as two other major plastic-associated chemicals with significant known exposure through food contact materials. Epistemonikos and PubMed were searched for systematic reviews with meta-analyses, meta-analyses, and pooled analyses evaluating the association of plastic polymers, particles (microplastics) or any of the selected groups of high-volume plastic-associated chemicals above, measured directly in human biospecimens, with human health outcomes. Results: Fifty-two systematic reviews were included, with data contributing 759 meta-analyses. Most meta-analyses (78%) were from reviews of moderate methodological quality. Across all the publications retrieved, only a limited number of plastic-associated chemicals within each of the groups searched had been evaluated in relevant meta-analyses, and there were no meta-analyses evaluating polymers, nor microplastics. Synthesised estimates of the effects of plastic-associated chemical exposure were identified for the following health outcome categories in humans: birth, child and adult reproductive, endocrine, child neurodevelopment, nutritional, circulatory, respiratory, skin-related and cancers. Bisphenol A (BPA) is associated with decreased anoclitoral distance in infants, type 2 diabetes (T2D) in adults, insulin resistance in children and adults, polycystic ovary syndrome, obesity and hypertension in children and adults and cardiovascular disease (CVD); other bisphenols have not been evaluated. Phthalates, the only plasticisers identified, are associated with spontaneous pregnancy loss, decreased anogenital distance in boys, insulin resistance in children and adults, with additional associations between certain phthalates and decreased birth weight, T2D in adults, precocious puberty in girls, reduced sperm quality, endometriosis, adverse cognitive development and intelligence quotient (IQ) loss, adverse fine motor and psychomotor development and elevated blood pressure in children and asthma in children and adults. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) but not other flame retardants, and some PFAS were identified and are all associated with decreased birth weight. In general populations, PCBs are associated with T2D in adults and endometriosis, bronchitis in infants, CVD, non-Hodgkin's lymphoma (NHL) and breast cancer. In PCB-poisoned populations, exposure is associated with overall mortality, mortality from hepatic disease (men), CVD (men and women) and several cancers. PBDEs are adversely associated with children's cognitive development and IQ loss. PBDEs and certain PFAS are associated with changes in thyroid function. PFAS exposure is associated with increased body mass index (BMI) and overweight in children, attention deficit hyperactive disorder (ADHD) in girls and allergic rhinitis. Potential protective associations were found, namely abnormal pubertal timing in boys being less common with higher phthalate exposure, increased high-density lipoprotein (HDL) with exposure to mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and reduced incidence of chronic lymphocytic lymphoma (a subtype of NHL) with PCB exposure. Conclusions: Exposure to plastic-associated chemicals is associated with adverse outcomes across a wide range of human health domains, and every plastic-associated chemical group is associated with at least one adverse health outcome. Large gaps remain for many plastic-associated chemicals. Recommendations: For research, we recommend that efforts are harmonised globally to pool resources and extend beyond the chemicals included in this umbrella review. Priorities for primary research, with ensuing systematic reviews, could include micro- and nanoplastics as well as emerging plastic-associated chemicals of concern such as bisphenol analogues and replacement plasticisers and flame retardants. With respect to chemical regulation, we propose that safety for plastic-associated chemicals in humans cannot be assumed at market entry. We therefore recommend that improved independent, systematic hazard testing for all plastic-associated chemicals is undertaken before market release of products. In addition because of the limitations of laboratory-based testing for predicting harm from plastic in humans, independent and systematic post-market bio-monitoring and epidemiological studies are essential to detect potential unforeseen harms.
Collapse
Affiliation(s)
- Christos Symeonides
- Minderoo Foundation, Perth, Western Australia, Australia
- Centre for Community Child Health, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Edoardo Aromataris
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Janine Dizon
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Cindy Stern
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy Hugh Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ashley Whitehorn
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Danielle Pollock
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tania Marin
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Sarah Dunlop
- Minderoo Foundation, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
11
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
12
|
Ciarelli J, Thangaraj SV, Sun H, Domke S, Alkhatib B, Vyas AK, Gregg B, Sargis RM, Padmanabhan V. Developmental programming: An exploratory analysis of pancreatic islet compromise in female sheep resulting from gestational BPA exposure. Mol Cell Endocrinol 2024; 588:112202. [PMID: 38552943 PMCID: PMC11427076 DOI: 10.1016/j.mce.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and β-cell count, increased glucagon staining and α-cell count, and increased α-cell/β-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.
Collapse
Affiliation(s)
- Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Haijing Sun
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Domke
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Bashar Alkhatib
- Department of Pediatrics, Washington University, St. Louis, USA
| | | | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Robert M Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | | |
Collapse
|
13
|
Hutelin Z, Ahrens M, Baugh ME, Oster ME, Hanlon AL, DiFeliceantonio AG. Creation and validation of a NOVA scored picture set to evaluate ultra-processed foods. Appetite 2024; 198:107358. [PMID: 38621591 PMCID: PMC11092385 DOI: 10.1016/j.appet.2024.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
There has been a rapid shift in the modern food environment towards increased processing in foods consumed in the United States (US) and globally. The NOVA system (not an acronym) for classifying food on degree of processing currently has the most empirical support. Consumption of foods in the NOVA 4 category, ultra-processed foods (UPF), is a risk factor for a host of poor health outcomes including heart disease, stroke, and cancer. Despite these poor health outcomes, UPF make up 58% of calories consumed in the US. Methodologies for assessing the reinforcing and rewarding properties of these foods are necessary tools. The Becker-DeGroot-Marschak auction paradigm (BDM) is a well validated tool for measuring value and is amenable to neuromonitoring environments. To allow for the testing of hypotheses based on level of food processing, we present a picture set of 14 UPF and 14 minimally-processed foods (MPF) matched on visual properties, food characteristics (fat, carbohydrate, cost, etc.), and rated perceptual properties. Further, we report our scoring of these foods using the NOVA classification system and provide additional data from credentialed nutrition professionals and on inter-rater reliability using NOVA, a critique of the system. Finally, we provide all pictures, data, and code used to create this picture set as a tool for researchers.
Collapse
Affiliation(s)
- Zach Hutelin
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States; Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States.
| | - Monica Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, VA, United States
| | | | - Mary E Oster
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, VA, United States
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Bellows AL, Ganpule A, Raza A, Kapoor D, Musicus A, Spiker ML, Jaacks LM. Environmental Sustainability of Food Environments: Development and Application of a Framework in 4 cities in South Asia. Curr Dev Nutr 2024; 8:103791. [PMID: 39045144 PMCID: PMC11263746 DOI: 10.1016/j.cdnut.2024.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 07/25/2024] Open
Abstract
Background Food environments, where people directly engage with broader food systems, may be an important contributor to the environmental sustainability of food systems. Objectives The primary objectives of this study were to establish a new food environment framework that considers environmental indicators and to assess data availability and gaps using data previously collected as part of a food systems survey in 4 South Asian cities. Methods The framework was developed by conducting a structured literature review of previous food environment frameworks and in-depth interviews with content experts (n = 6). The framework and indicators were then mapped to data collected by consumer and vendor surveys using the Urban Food Systems Assessment Tool (UFSAT) in Ahmedabad (India), Pune (India), Kathmandu (Nepal), and Pokhara (Nepal). Results We have expanded the sustainability domain within food environments to include consumer travel to food vendors, the presence of food delivery services, policies related to sustainability, vendor food waste, vendor plastic use, vendor utility usage, vendor recycling and waste management practices, and food packaging. Mapping the framework to existing data from 4 cities in South Asia, we found variations in food environment sustainability indicators, particularly regarding consumer transportation to food vendors, the presence of delivery services, and food waste. Conclusions Although the majority of food environment research focuses on the availability and affordability of healthy foods, there is an urgent need to understand better how aspects of food environments contribute to environmental goals. When mapping the framework to existing food systems data, we found gaps in data on environmental sustainability in food environments and variation in indicators across settings.
Collapse
Affiliation(s)
- Alexandra L Bellows
- Global Academy of Agriculture and Food Systems, The University of Edinburgh, Midlothian, United Kingdom
| | | | - Ahmed Raza
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Deksha Kapoor
- Global Academy of Agriculture and Food Systems, The University of Edinburgh, Midlothian, United Kingdom
| | - Aviva Musicus
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Marie L Spiker
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States
- Food Systems, Nutrition, and Health Program, University of Washington School of Public Health, Seattle, WA, United States
| | - Lindsay M Jaacks
- Global Academy of Agriculture and Food Systems, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
15
|
De Nys S, Turkalj M, Duca RC, Covaci A, Elskens M, Godderis L, Vanoirbeek J, Van Meerbeek B, Van Landuyt KL. Level of BPA contamination in resin composites determines BPA release. Dent Mater 2024; 40:1025-1030. [PMID: 38755042 DOI: 10.1016/j.dental.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Resin composites may release bisphenol A (BPA) due to impurities present in the monomers. However, there is a lack of knowledge regarding the leaching characteristics of BPA from resin composites. Therefore, experimental resin composites were prepared with known amounts of BPA. The objective of this study was (1) to determine which amount of BPA initially present in the material leaches out in the short term and, (2) how this release is influenced by the resin composition. METHODS BPA (0, 0.001, 0.01, or 0.1 wt%) was added to experimental resin composites containing 60 mol% BisGMA, BisEMA(3), or UDMA, respectively, as base monomer and 40 mol% TEGDMA as diluent monomer. Polymerized samples (n = 5) were immersed at 37 °C for 7 days in 1 mL of water, which was collected and refreshed daily. BPA release was quantified with UPLC-MS/MS after derivatization with pyridine-3-sulfonyl chloride. RESULTS Between 0.47 to 0.67 mol% of the originally added BPA eluted from the resin composites after 7 days. Similar elution trends were observed irrespective of the base monomer. Two-way ANOVA showed a significant effect of the base monomer on BPA release, but the differences were small and not consistent. SIGNIFICANCE The released amount of BPA was directly proportional to the quantity of BPA present in the resin composite as an impurity. BPA release was mainly diffusion-based, while polymer composition seemed to play a minor role. Our results underscore the importance for manufacturers only to use monomers of the highest purity in dental resin composites to avoid unnecessary BPA exposure in patients.
Collapse
Affiliation(s)
- Siemon De Nys
- KU Leuven, Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Marko Turkalj
- KU Leuven, Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Radu Corneliu Duca
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium; Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), 3555 Dudelange, Luxembourg
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, D.S.551, 2610 Wilrijk, Belgium
| | - Marc Elskens
- Laboratory of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Ixelles, Belgium
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium; IDEWE, External service for prevention and protection at work, Heverlee, Belgium
| | - Jeroen Vanoirbeek
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven, Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven, Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium.
| |
Collapse
|
16
|
Seewoo BJ, Wong EV, Mulders YR, Goodes LM, Eroglu E, Brunner M, Gozt A, Toshniwal P, Symeonides C, Dunlop SA. Impacts associated with the plastic polymers polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene across their life cycle: A review. Heliyon 2024; 10:e32912. [PMID: 39022097 PMCID: PMC11253235 DOI: 10.1016/j.heliyon.2024.e32912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Polymers are the main building blocks of plastic, with the annual global production volume of fossil carbon-based polymers reaching over 457 million metric tons in 2019 and this figure is anticipated to triple by 2060. There is potential for environmental harm and adverse human health impacts associated with plastic, its constituent polymers and the chemicals therein, at all stages of the plastic life cycle, from extraction of raw materials, production and manufacturing, consumption, through to ultimate disposal and waste management. While there have been considerable research and policy efforts in identifying and mitigating the impacts associated with problematic plastic products such as single-use plastics and hazardous chemicals in plastics, with national and/or international regulations to phase out their use, plastic polymers are often overlooked. In this review, the polymer dimension of the current knowledge on environmental release, human exposure and health impacts of plastic is discussed across the plastic life cycle, including chemicals used in production and additives commonly used to achieve the properties needed for applications for which the polymers are generally used. This review focuses on polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene, four common plastic polymers made from the hazardous monomers, bisphenol, styrene, vinyl chloride and 1,3-butadiene, respectively. Potential alternative polymers, chemicals, and products are considered. Our findings emphasise the need for a whole system approach to be undertaken for effective regulation of plastics whereby the impacts of plastics are assessed with respect to their constituent polymers, chemicals, and applications and across their entire life cycle.
Collapse
Affiliation(s)
- Bhedita J. Seewoo
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch V.S. Wong
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R. Mulders
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M. Goodes
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ela Eroglu
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Manuel Brunner
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Aleksandra Gozt
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Priyanka Toshniwal
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A. Dunlop
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
17
|
Jamka M, Kurek S, Makarewicz-Bukowska A, Miśkiewicz-Chotnicka A, Wasiewicz-Gajdzis M, Walkowiak J. No Differences in Urine Bisphenol A Concentrations between Subjects Categorized with Normal Cognitive Function and Mild Cognitive Impairment Based on Montreal Cognitive Assessment Scores. Metabolites 2024; 14:271. [PMID: 38786748 PMCID: PMC11123393 DOI: 10.3390/metabo14050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
A link between bisphenol A (BPA) exposure and cognitive disorders has been suggested. However, the differences in BPA concentrations between subjects with and without cognitive impairment have not been analysed. Therefore, this observational study aimed to compare urine BPA levels in subjects with normal cognitive function (NCF) and mild cognitive impairment (MCI). A total of 89 MCI subjects and 89 well-matched NCF individuals were included in this study. Cognitive functions were assessed using the Montreal Cognitive Assessment (MOCA) scale. Urine BPA concentrations were evaluated by gas chromatography-mass spectrometry and adjusted for creatinine levels. Moreover, anthropometric parameters, body composition, sociodemographic factors, and physical activity were also assessed. Creatinine-adjusted urine BPA levels did not differ between the NCF and MCI groups (1.8 (1.4-2.7) vs. 2.2 (1.4-3.6) µg/g creatinine, p = 0.1528). However, there were significant differences in MOCA results between groups when the study population was divided into tertiles according to BPA concentrations (p = 0.0325). Nevertheless, multivariate logistic regression demonstrated that only education levels were independently associated with MCI. In conclusion, urine BPA levels are not significantly different between subjects with MCI and NCF, but these findings need to be confirmed in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (M.J.); (S.K.); (A.M.-B.); (A.M.-C.); (M.W.-G.)
| |
Collapse
|
18
|
Magalhães V, Severo M, Costa SA, Correia D, Carvalho C, Torres D, Casal S, Cunha S, Lopes C. Bisphenol A and cardiometabolic risk in adolescents: Data from the Generation XXI cohort. Nutr Metab Cardiovasc Dis 2024; 34:1088-1096. [PMID: 38403484 DOI: 10.1016/j.numecd.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS Bisphenol A (BPA), an endocrine disruptor widely used in food contact materials, has been linked to a worse health profile. This study intends to estimate the association between BPA exposure and cardiometabolic patterns at adolescence. METHODS AND RESULTS Data from the Portuguese population-based birth cohort Generation XXI at the age of 13 were used (n = 2386 providing 3-day food diaries and fasting blood samples). BPA exposure was measured in 24-h urine from a subsample (n = 206) and then predicted in all participants using a random forest method and considering dietary intake from diaries. Three cardiometabolic patterns were identified (normal, modified lipid profile and higher cardiometabolic risk) using a probabilistic Gaussian mixture model. Multinomial regression models were applied to associate BPA exposure (lower, medium, higher) and cardiometabolic patterns, adjusting for confounders. The median BPA exposure was 1532 ng/d, corresponding to 29.4 ng/kg/d. Adolescents higher exposed to BPA (compared to medium and lower levels) had higher BMI z-score (kg/m2) (0.68 vs. 0.39 and 0.52, respectively; p = 0.008), higher levels of body fat (kg) (16.3 vs. 13.8 and 14.6, respectively; p = 0.002), waist circumference (76.2 vs. 73.7 and 74.9, respectively; p = 0.026), insulinemia (ug/mL) (14.1 vs. 12.7 and 13.1, respectively; p = 0.039) and triglyceridemia (mg/dL) (72.7 vs. 66.1 and 66.5, respectively; p = 0.030). After adjustment, a significant association between higher BPA and a higher cardiometabolic risk pattern was observed (OR: 2.55; 95%CI: 1.41, 4.63). CONCLUSION Higher BPA exposure was associated with a higher cardiometabolic risk pattern in adolescents, evidencing the role of food contaminants in health.
Collapse
Affiliation(s)
- Vânia Magalhães
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
| | - Milton Severo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia Almeida Costa
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Daniela Correia
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Catarina Carvalho
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Duarte Torres
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Susana Casal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; LAQV-REQUIMTE - Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Sara Cunha
- LAQV-REQUIMTE - Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Carla Lopes
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Kim K. The Role of Endocrine Disruption Chemical-Regulated Aryl Hydrocarbon Receptor Activity in the Pathogenesis of Pancreatic Diseases and Cancer. Int J Mol Sci 2024; 25:3818. [PMID: 38612627 PMCID: PMC11012155 DOI: 10.3390/ijms25073818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) serves as a ligand-activated transcription factor crucial for regulating fundamental cellular and molecular processes, such as xenobiotic metabolism, immune responses, and cancer development. Notably, a spectrum of endocrine-disrupting chemicals (EDCs) act as agonists or antagonists of AHR, leading to the dysregulation of pivotal cellular and molecular processes and endocrine system disruption. Accumulating evidence suggests a correlation between EDC exposure and the onset of diverse pancreatic diseases, including diabetes, pancreatitis, and pancreatic cancer. Despite this association, the mechanistic role of AHR as a linchpin molecule in EDC exposure-related pathogenesis of pancreatic diseases and cancer remains unexplored. This review comprehensively examines the involvement of AHR in EDC exposure-mediated regulation of pancreatic pathogenesis, emphasizing AHR as a potential therapeutic target for the pathogenesis of pancreatic diseases and cancer.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas Medical Sciences, Little Rock, AR 72225, USA
| |
Collapse
|
20
|
Lin RR, Lin DA, Maderal AD. Toxic Ingredients in Personal Care Products: A Dermatological Perspective. Dermatitis 2024; 35:121-131. [PMID: 38109205 DOI: 10.1089/derm.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Environmental dermatology is the study of how environmental factors affect the integumentary system. The environment includes natural and built habitats, encompassing ambient exposure, occupational exposures, and lifestyle exposures secondary to dietary and personal care choices. This review explores common toxins found in personal care products and packaging, such as bisphenols, parabens, phthalates, per- and poly-fluoroalkyl substances, p-phenylenediamine, and formaldehyde. Exposure to these toxins has been associated with carcinogenic, obesogenic, or proinflammatory effects that can potentiate disease. In addition, these compounds have been implicated as endocrine-disrupting chemicals that can worsen dermatological conditions such as acne vulgaris, or dermatitis. Certain pollutants found in personal care products are not biodegradable and have the potential to bioaccumulate in humans. Therefore, even short-term exposure can cause long-lasting issues for communities. The skin is often the first point of contact for environmental exposures and serves as the conduit between environmental toxins and the human body. Therefore, it is important for dermatologists to understand common pollutants and their acute, subacute, and chronic impact on dermatological conditions to better diagnose and manage disease.
Collapse
Affiliation(s)
- Rachel R Lin
- From the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Deborah A Lin
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Sagheer U, Al-Kindi S, Abohashem S, Phillips CT, Rana JS, Bhatnagar A, Gulati M, Rajagopalan S, Kalra DK. Environmental Pollution and Cardiovascular Disease: Part 2 of 2: Soil, Water, and Other Forms of Pollution. JACC. ADVANCES 2024; 3:100815. [PMID: 38939394 PMCID: PMC11198458 DOI: 10.1016/j.jacadv.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 06/29/2024]
Abstract
With a growing body of evidence that now links environmental pollution to adverse cardiovascular disease (CVD) outcomes, pollution has emerged as an important risk factor for CVD. There is thus an urgent need to better understand the role of pollution in CVD, key pathophysiological mechanisms, and to raise awareness among health care providers, the scientific community, the general population, and regulatory authorities about the CV impact of pollution and strategies to reduce it. This article is part 2 of a 2-part state-of-the-art review on the topic of pollution and CVD-herein we discuss major environmental pollutants and their effects on CVD, highlighting pathophysiological mechanisms, and strategies to reduce CVD risk.
Collapse
Affiliation(s)
- Usman Sagheer
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Sadeer Al-Kindi
- Division of Cardiology, Department of Medicine, University Hospitals, Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shady Abohashem
- Divison of Cardiovascular Imaging, Radiology Department, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Colin T. Phillips
- Department of Cardiology, Maine Medical Center, Portland, Maine, USA
| | - Jamal S. Rana
- The Permanente Medical Group, Department of Cardiology, Oakland Medical Center, Oakland, California, USA
| | - Aruni Bhatnagar
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Martha Gulati
- Department of Cardiology, Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sanjay Rajagopalan
- Division of Cardiology, Department of Medicine, University Hospitals, Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dinesh K. Kalra
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
22
|
Lin MH, Lee CY, Chuang YS, Shih CL. Exposure to bisphenol A associated with multiple health-related outcomes in humans: An umbrella review of systematic reviews with meta-analyses. ENVIRONMENTAL RESEARCH 2023; 237:116900. [PMID: 37597827 DOI: 10.1016/j.envres.2023.116900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Bisphenol A (BPA), a toxic endocrine disruptor, is widely distributed in the environment, and the effects of BPA exposure on human health outcomes are a critical issue. The objective of this study was to perform an umbrella review of published meta-analyses investigating the associations between BPA exposure and human-related health outcomes. The relevant reports were searched from three electronic databases from inception to July 12, 2023 including PubMed, ScienceDirect, and Embase. The reports that were systematic reviews with meta-analyses investigating the associations between BPA exposure and human health outcomes were included in our review. A total of 14 reports were included in our review. Several human health outcomes related to exposure BPA were investigated including maternal prenatal health, infant health, allergic diseases, kidney disease, metabolic syndromes, polycystic ovary syndrome, earlier puberty, inflammation and immune responses, and thyroid function in neonates. Among these health outcomes, BPA exposure was associated with multiple human health outcomes including preterm birth, allergic diseases, kidney disease, polycystic ovarian syndrome, obesity, type 2 diabetes, cardiovascular disease, hypertension, and inflammation and immune responses (C-reactive protein and interleukin-6). These results showed that BPA exposure has seriously affected human health. To protect human health, World Health Organization should develop meaningful regulations on BPA to decrease the environmental contamination.
Collapse
Affiliation(s)
- Mao-Hsun Lin
- Division of Neurology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Chun-Ying Lee
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Shiuan Chuang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan.
| |
Collapse
|
23
|
Canhada SL, Vigo Á, Levy R, Luft VC, da Fonseca MDJM, Giatti L, Molina MDCB, Duncan BB, Schmidt MI. Association between ultra-processed food consumption and the incidence of type 2 diabetes: the ELSA-Brasil cohort. Diabetol Metab Syndr 2023; 15:233. [PMID: 37968763 PMCID: PMC10647077 DOI: 10.1186/s13098-023-01162-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Ultra-processed food (UPF) consumption increases the risk of type 2 diabetes in various high-income countries, with some variation in the magnitude across studies. Our objective was to investigate the association of UPF consumption and specific subgroups with incident type 2 diabetes in Brazilian adults. METHODS The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) is a multicenter cohort study of 15,105 adults (35-74 years) enrolled in public institutions in Brazil (2008-2010). We followed participants with two clinic visits (2012-2014; 2017-2019) and annual telephone surveillance. After excluding those with diabetes at baseline, who died or were lost in the follow-up, with missing data, with implausible energy food intake, or reporting bariatric surgery, there were 10,202 participants. We used the NOVA classification to assess UPF consumption based on a food frequency questionnaire. We defined type 2 diabetes by self-report, medication use, or comprehensive laboratory tests. We estimated relative risks (RR) and 95% confidence intervals (95% CI) using robust Poisson regression. RESULTS Median UPF consumption was 372 g/day. Over 8.2 (0.7) years of follow-up, we detected 1799 (17.6%) incident cases. After adjustment for socio-demographics, family history of diabetes, and behavioral risk factors, comparing the fourth (≥ 566 g/day) with the first (< 236 g/day) quartile of UPF distribution, RR was 1.24 (1.10-1.39); every 150 g/day increments in UPF consumption resulted in a RR of 1.05 (1.03-1.07). Reclassifying natural beverages with added sweeteners as UPF increased risk (RR 1.40; 1.25-1.58). Among UPF subgroupings, consumption of processed meats and sweetened beverages increased diabetes risk, while yogurt and dairy sweets decreased the risk (p < 0.05). CONCLUSIONS UPF consumption increased the incidence of type 2 diabetes in Brazilian adults, with heterogeneity across specific food items. These findings add to previous evidence for the role of UPFs in the development of diabetes and other chronic diseases, supporting recommendations to avoid their intake in diabetes prevention and management.
Collapse
Affiliation(s)
- Scheine L Canhada
- Postgraduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 sala 519, Porto Alegre, RS, Brazil
| | - Álvaro Vigo
- Postgraduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 sala 519, Porto Alegre, RS, Brazil
| | - Renata Levy
- Department of Preventive Medicine, School of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vivian C Luft
- Postgraduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 sala 519, Porto Alegre, RS, Brazil
- Postgraduate Program in Food, Nutrition and Health, UFRGS; Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Luana Giatti
- Postgraduate Program in Public Health and School of Medicine & Clinical Hospital, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Del Carmen B Molina
- Postgraduate Program in Nutrition and Health, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruce B Duncan
- Postgraduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 sala 519, Porto Alegre, RS, Brazil
| | - Maria Inês Schmidt
- Postgraduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 sala 519, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Seewoo BJ, Goodes LM, Mofflin L, Mulders YR, Wong EV, Toshniwal P, Brunner M, Alex J, Johnston B, Elagali A, Gozt A, Lyle G, Choudhury O, Solomons T, Symeonides C, Dunlop SA. The plastic health map: A systematic evidence map of human health studies on plastic-associated chemicals. ENVIRONMENT INTERNATIONAL 2023; 181:108225. [PMID: 37948868 DOI: 10.1016/j.envint.2023.108225] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The global production and use of plastic materials has increased dramatically since the 1960s and there is increasing evidence of human health impacts related to exposure to plastic-associated chemicals. There is, however, no comprehensive, regulatory, post-market monitoring for human health effects of plastic-associated chemicals or particles and it is unclear how many of these have been investigated for effects in humans, and therefore what the knowledge gaps are. OBJECTIVE To create a systematic evidence map of peer-reviewed human studies investigating the potential effects of exposure to plastic-associated particles/chemicals on health to identify research gaps and provide recommendations for future research and regulation policy. METHODS Medline and Embase databases were used to identify peer-reviewed primary human studies published in English from Jan 1960 - Jan 2022 that investigated relationships between exposures to included plastic-associated particles/chemicals measured and detected in bio-samples and human health outcomes. Plastic-associated particles/chemicals included are: micro and nanoplastics, due to their widespread occurrence and potential for human exposure; polymers, the main building blocks of plastic; plasticizers and flame retardants, the two most common types of plastic additives with the highest concentration ranges in plastic materials; and bisphenols and per- or polyfluoroalkyl substances, two chemical classes of known health concern that are common in plastics. We extracted metadata on the population and study characteristics (country, intergenerational, sex, age, general/special exposure risk status, study design), exposure (plastic-associated particle/chemical, multiple exposures), and health outcome measures (biochemical, physiological, and/or clinical), from which we produced the interactive database 'Plastic Health Map' and a narrative summary. RESULTS We identified 100,949 unique articles, of which 3,587 met our inclusion criteria and were used to create a systematic evidence map. The Plastic Health Map with extracted metadata from included studies are freely available at https://osf.io/fhw7d/ and summary tables, plots and overall observations are included in this report. CONCLUSIONS We present the first evidence map compiling human health research on a wide range of plastic-associated chemicals from several different chemical classes, in order to provide stakeholders, including researchers, regulators, and concerned individuals, with an efficient way to access published literature on the matter and determine knowledge gaps. We also provide examples of data clusters to facilitate systematic reviews and research gaps to help direct future research efforts. Extensive gaps are identified in the breadth of populations, exposures and outcomes addressed in studies of potential human health effects of plastic-associated chemicals. No studies of the human health effects of micro and/or nanoplastics were found, and no studies were found for 26/1,202 additives included in our search that are of known hazard concern and confirmed to be in active production. Few studies have addressed recent "substitution" chemicals for restricted additives such as organophosphate flame retardants, phthalate substitutes, and bisphenol analogues. We call for a paradigm shift in chemical regulation whereby new plastic chemicals are rigorously tested for safety before being introduced in consumer products, with ongoing post-introduction biomonitoring of their levels in humans and health effects throughout individuals' life span, including in old age and across generations.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M Goodes
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise Mofflin
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R Mulders
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch Vs Wong
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Priyanka Toshniwal
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Manuel Brunner
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jennifer Alex
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Brady Johnston
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Ahmed Elagali
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Aleksandra Gozt
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Greg Lyle
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Population Health, Curtin University, Kent St, Bentley WA 6102, Australia
| | - Omrik Choudhury
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Terena Solomons
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Health and Medical Sciences (Library), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A Dunlop
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
25
|
Mohanraj N, Prasanth S, Rajapriya P, Vinothkumar G, Vinodhini VM, Janardhanan R, Venkataraman P. Bisphenol A accelerates the vascular complications in patients with Type 2 diabetes mellitus through vascular calcification-a molecular approach. Int Arch Occup Environ Health 2023; 96:1291-1299. [PMID: 37698613 DOI: 10.1007/s00420-023-02007-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Environmental pollutant Bisphenol A (BPA) strongly interacts with insulin resistance, which leads to type 2 diabetes mellitus (T2DM). Uncontrolled glucose levels in both blood and urine develops vascular complications in T2DM patients. However, glucose-controlled diabetic patients are also affected by vascular complications due to vascular calcification, and there is a lack of clinically relevant data on BPA levels available in patients with T2DM-associated vascular complications due to vascular calcification. Therefore, we measured BPA levels in T2DM-associated vascular complications and correlated systemic BPA levels with vascular calcification-related gene expression. METHODS This study included 120 participants with T2DM and its associated vascular complications. Serum and urinary BPA were estimated using an ELISA kit, and gene expression of the study participants in peripheral blood mononuclear cells (PBMCs) was studied with quantitative real-time PCR. RESULTS Serum and urinary BPA levels were higher in T2DM and its associated vascular complications with CVD and DN patients compared to control. Both Serum and urinary BPA had higher significance with Sirt1 (p < 0.001, p < 0.001), Runx2 (p < 0.01, p < 0.001) and IL-1beta (p < 0.001, p < 0.02) gene expression in the study groups, but, TNF-alpha significant with Serum BPA (p < 0.04), not urinary BPA (p < 0.31). CONCLUSION BPA levels were positively correlated with lower Sirt1 and increased Runx2 in T2DM-associated vascular complications patients. Also, higher expression of IL-1beta and TNF-alpha was observed in T2DM-associated vascular complications patients. Our study is the first to associate BPA levels with vascular calcification in patients with T2DM and its associated vascular complications.
Collapse
Affiliation(s)
- N Mohanraj
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chennai, India
| | - S Prasanth
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chennai, India
| | - P Rajapriya
- Department of Transfusion Medicine, HLA and Immunology, Dr Rela Institute and Medical Centre, Chennai, India
| | - G Vinothkumar
- Department of Clinical Research, Dr V Balaji Dr V Seshiah Diabetes Care and Research Institute, Chennai, India
| | - V M Vinodhini
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chennai, India
| | - Rajiv Janardhanan
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chennai, India
| | - P Venkataraman
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chennai, India.
| |
Collapse
|
26
|
Khan NG, Tungekar B, Adiga D, Chakrabarty S, Rai PS, Kabekkodu SP. Alterations induced by Bisphenol A on cellular organelles and potential relevance on human health. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119505. [PMID: 37286138 DOI: 10.1016/j.bbamcr.2023.119505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bushra Tungekar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
27
|
Pan F, Zhang T, Mao W, Zhao F, Luan D, Li J. Ultra-Processed Food Consumption and Risk of Overweight or Obesity in Chinese Adults: Chinese Food Consumption Survey 2017-2020. Nutrients 2023; 15:4005. [PMID: 37764788 PMCID: PMC10537323 DOI: 10.3390/nu15184005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Overweight and obesity have increased rapidly in the past few decades in China, and less research has focused on the association between the consumption of ultra-processed foods (UPFs) and overweight or obesity in Chinese adults. The objective of this study was to determine the relationship of UPF consumption with the risk of overweight or obesity in Chinese adults. Residents aged 18 years and above who participated in the nationally representative survey Chinese Food Consumption Survey in 2017-2020 were included in this study. Dietary intake data were collected via non-consecutive three-day 24 h dietary recalls and weighing household foods and condiments. According to the NOVA food classification system, UPFs were classified depending on the purpose and extent of food processing. Multiple logistic regression and multivariate-adjusted restricted cubic spline (RCS) regressions were performed to estimate the association between UPF consumption (categorized into quartiles: quartile 1 (Q1), quartile 2 (Q2), quartile 3 (Q3), and quartile 4 (Q4)) and risk of overweight or obesity. A total of 38,658 adults aged 18 years and above participated in the present study. The prevalence of overweight and obesity in adults was 33.0% (95% CI: 32.91-33.10) and 9.6% (95% CI 9.55-9.67), respectively. After a multivariable adjustment, the risk of overweight or obesity was increased by 10% in Q3 (OR: 1.10, 95% CI: 1.04-1.17) compared to Q1 as a reference. Women (OR: 1.10, 95% CI: 1.01-1.20) and adults living in small and medium-sized cities (OR: 1.13, 95% CI: 1.01-1.26) with higher UPF consumption had higher odds of overweight or obesity. Nevertheless, the effect of higher UPF consumption on the risk of overweight or obesity was relatively weak for overall adults in China. The top three categories of subgroups consumption of UPFs were 1: sugar-sweetened beverages; 2: sauces, cheeses, spreads, and gravies; and 3: ultra-processed breads and breakfast cereals. These findings provide evidence that higher UPF consumption was positively associated with overweight or obesity, which was defined based on Chinese criteria among women and adults living in small and medium-sized cities in China. Further studies, such as intervention trials, are needed to identify the mechanism of correlation between the consumption of UPFs and health-related outcomes in Chinese adults. From a public health perspective, with the prevalence of overweight and obesity growing and the increase in UPF consumption in Chinese adults, it is necessary to promote healthy food intake and a balanced diet through active nutritional education actions for overweight and obesity prevention and control.
Collapse
Affiliation(s)
- Feng Pan
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Tongwei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Fanglei Zhao
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Dechun Luan
- Liaoning Center for Disease Control and Prevention, Shenyang 110005, China
| | - Jianwen Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
28
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
29
|
Liu H, Zhou Y, Li Y, Gong Z. Important roles of Hif1a in maternal or adult BPA exposure induced pancreatic injuries. Sci Rep 2023; 13:11502. [PMID: 37460698 PMCID: PMC10352259 DOI: 10.1038/s41598-023-38614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Bisphenol A (BPA) is a monomer to produce polycarbonate plastics and can be released into the environment through human activities, leading to its accumulation in animals, plants and humans through direct contact or environmental exposure. Epidemiological studies have reported that BPA exposure is associated with metabolic disorders. The pancreas is an important endocrine organ and plays an important role in metabolic disorders. To explore the possible long-term effects of BPA exposure on neonatal health, bioinformatic methods were used to identify differentially expressed genes (DEGs) by comparing the neonatal pancreas after maternal exposure to BPA with the adult pancreas after direct exposure to BPA. Two datasets about BPA exposure and pancreatic abnormality, GSE82175 and GSE126297 in Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) were collected. Control (or BPA-exposed) offspring (maternal exposure) and Control (or BPA-exposed) adults (direct exposure) were defined as Control (or BPA) groups. The results showed that BPA disturbed the normal function of the pancreas in both offspring and adults, with offspring showing higher susceptibility to BPA than adults. Seventeen insulin secretion-related DEGs (Stxbp5l, Fam3d, Mia3, Igf1, Hif1a, Aqp1, Kif5b, Tiam1, Map4k4, Cyp51, Pde1c, Rab3c, Arntl, Clock, Edn3, Kcnb1, and Krt20) in the BPA group were identified, and 15 regulator DEGs (Zfp830, 4931431B13Rik, Egr1, Ddit4l, Cep55, G530011O06Rik, Hspa1b, Hspa1a, Cox6a2, Ibtk, Banf1, Slc35b2, Golt1b, Lrp8, and Pttg1) with opposite expression trends and a regulator gene Cerkl with the similar expression trend in the Control and BPA groups were identified. Hif1α might be an important molecular target for pancreatic cancer caused by BPA exposure, and pregnancy is a critical window of susceptibility to BPA exposure.
Collapse
Affiliation(s)
- Huiping Liu
- Department of Cardiopulmonary Function Examination, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongnian Zhou
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yike Li
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihua Gong
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
30
|
Milanović M, Milošević N, Milić N, Stojanoska MM, Petri E, Filipović JM. Food contaminants and potential risk of diabetes development: A narrative review. World J Diabetes 2023; 14:705-723. [PMID: 37383596 PMCID: PMC10294057 DOI: 10.4239/wjd.v14.i6.705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 06/14/2023] Open
Abstract
The number of people diagnosed with diabetes continues to increase, especially among younger populations. Apart from genetic predisposition and lifestyle, there is increasing scientific and public concern that environmental agents may also contribute to diabetes. Food contamination by chemical substances that originate from packaging materials, or are the result of chemical reactions during food processing, is generally recognized as a worldwide problem with potential health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the focus of attention in recent years, due to the numerous adverse health effects associated with their exposure. This paper summarizes the available data about the association between phthalates, BPA and AA exposure and diabetes. Although their mechanism of action has not been fully clarified, in vitro, in vivo and epidemiological studies have made significant progress toward identifying the potential roles of phthalates, BPA and AA in diabetes development and progression. These chemicals interfere with multiple signaling pathways involved in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. Especially concerning are the effects of exposure during early stages and the gestational period. Well-designed prospective studies are needed in order to better establish prevention strategies against the harmful effects of these food contaminants.
Collapse
Affiliation(s)
- Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Milica Medić Stojanoska
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Vojvodina, University of Novi Sad, Novi Sad 21000, Serbia
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
31
|
Wang G, Huang Y, Gao Y, Chen G, Cui L, Peng Y, Sun Q. The fat accumulation promotion effects of dihydrxytetraphenylmethane and its underlying mechanisms via transcriptome analysis. Curr Res Food Sci 2023; 7:100534. [PMID: 37441166 PMCID: PMC10333433 DOI: 10.1016/j.crfs.2023.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Dihydrxytetraphenylmethane, also known as Bisphenol BP (BPBP), has been increasingly used in industrial production and more frequently detected in the environment as an alternative plasticizer of BPA. However, there are no reports about BPBP in food safety or its effects on cellular lipogenesis. The purpose of this research was to investigate the influence and potential mechanisms of BPBP on adipogenesis in 3T3-L1 cells. Cells were treated with 4 concentrations (0.01, 0.1, 1, and 10 μM) of BPBP and the results showed that treatment with at low concentrations (0.01 μM) promoted cell fat differentiation and triglyceride accumulation. RNA-seq data showed that a total of 370 differentially expressed genes between control and the low-dose BPBP-treated group were determined, including 227 upregulated genes and 143 downregulated genes. Some key genes related to adipocyte differentiation and adipogenesis were significantly enriched after BPBP treatment, including PPAR-γ, Adipoq, Nr1h3 and Plin1. Pathway analyses suggest that the activation of PPAR-γ signaling pathway may be key for BPBP to promote adipocyte differentiation and fat accumulation. Our work provides evidence for the potential obesogenic effect of BPBP and may call for further research on the safety of the chemical in food products.
Collapse
Affiliation(s)
- Ge Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ge Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Leqi Cui
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, 32306, USA
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
32
|
Henney AE, Gillespie CS, Alam U, Hydes TJ, Cuthbertson DJ. Ultra-Processed Food Intake Is Associated with Non-Alcoholic Fatty Liver Disease in Adults: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15102266. [PMID: 37242149 DOI: 10.3390/nu15102266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with overweight/obesity, metabolic syndrome and type 2 diabetes (T2D) due to chronic caloric excess and physical inactivity. Previous meta-analyses have confirmed associations between ultra-processed food (UPF) intake and obesity and T2D. We aim to ascertain the contribution of UPF consumption to the risk of developing NAFLD. We performed a systematic review and meta-analysis (PROSPERO (CRD42022368763)). All records registered on Ovid Medline and Web of Science were searched from inception until December 2022. Studies that assessed UPF consumption in adults, determined according to the NOVA food classification system, and that reported NAFLD determined by surrogate (steatosis) scores, imaging or liver biopsy were included. The association between UPF consumption and NAFLD was assessed using random-effects meta-analysis methods. Study quality was assessed, and evidence credibility evaluated, using the Newcastle Ottawa Scale and NutriGrade systems, respectively. A total of 5454 records were screened, and 112 records underwent full text review. From these, 9 studies (3 cross-sectional, 3 case-control and 3 cohort), analysing 60,961 individuals, were included in the current review. Both moderate (vs. low) (pooled relative risk 1.03 (1.00-1.07) (p = 0.04) (I2 = 0%)) and high (vs. low) (1.42 (1.16-1.75) (<0.01) (I2 = 89%)) intake of UPF significantly increased the risk of NAFLD. Funnel plots demonstrate low risk of publication bias. Consumption of UPF is associated with NAFLD with a dose-response effect. Public health measures to reduce overconsumption of UPF are imperative to reduce the burden of NAFLD, and the related conditions, obesity and T2D.
Collapse
Affiliation(s)
- Alex E Henney
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool L3 5TR, UK
- Metabolism & Nutrition Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Conor S Gillespie
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool L3 5TR, UK
- Metabolism & Nutrition Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Theresa J Hydes
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool L3 5TR, UK
- Department of Gastroenterology and Hepatology, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Daniel J Cuthbertson
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool L3 5TR, UK
- Metabolism & Nutrition Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| |
Collapse
|
33
|
From old pollutants to the regulation of bisphenol A: Lessons learned for health promotion and disease prevention. Prev Med 2023; 169:107460. [PMID: 36809834 DOI: 10.1016/j.ypmed.2023.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Citizens deserve regulatory changes and policies more sensitive to the current needs of humans, the climate, and nature. In this work we draw on prior experiences of preventable human suffering and economic losses caused by delayed regulation of legacy and emerging pollutants. Heightened awareness of environmental health problems is necessary among health professionals, the media, and citizens' organizations. Improved translation from research to the clinical world and to policy is critical to reduce the population burden of diseases caused by exposure to endocrine disruptors and other environmental chemicals. Numerous lessons can be learned from science-to-policy processes built for "old pollutants" (as persistent organic pollutants, heavy metals, tributyltin), as well as from current trends regarding the regulation of non-persistent chemicals, such as the prototypical endocrine disruptor bisphenol A. We end discussing relevant pieces of the puzzle to tackle the environmental and regulatory challenges faced by our societies.
Collapse
|
34
|
Mannino GC, Mancuso E, Sbrignadello S, Morettini M, Andreozzi F, Tura A. Chemical Compounds and Ambient Factors Affecting Pancreatic Alpha-Cells Mass and Function: What Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16489. [PMID: 36554367 PMCID: PMC9778390 DOI: 10.3390/ijerph192416489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The exposure to different substances present in the environment can affect the ability of the human body to maintain glucose homeostasis. Some review studies summarized the current evidence about the relationships between environment and insulin resistance or beta-cell dysfunction. Instead, no reviews focused on the relationships between the environment and the alpha cell, although in recent years clear indications have emerged for the pivotal role of the alpha cell in glucose regulation. Thus, the aim of this review was to analyze the studies about the effects of chemical, biological, and physical environmental factors on the alpha cell. Notably, we found studies focusing on the effects of different categories of compounds, including air pollutants, compounds of known toxicity present in common objects, pharmacological agents, and compounds possibly present in food, plus studies on the effects of physical factors (mainly heat exposure). However, the overall number of relevant studies was limited, especially when compared to studies related to the environment and insulin sensitivity or beta-cell function. In our opinion, this was likely due to the underestimation of the alpha-cell role in glucose homeostasis, but since such a role has recently emerged with increasing strength, we expect several new studies about the environment and alpha-cell in the near future.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy
| |
Collapse
|
35
|
Srour B, Kordahi MC, Bonazzi E, Deschasaux-Tanguy M, Touvier M, Chassaing B. Ultra-processed foods and human health: from epidemiological evidence to mechanistic insights. Lancet Gastroenterol Hepatol 2022; 7:1128-1140. [PMID: 35952706 DOI: 10.1016/s2468-1253(22)00169-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have suggested a role for ultra-processed foods in numerous chronic inflammatory diseases such as inflammatory bowel diseases and metabolic syndrome. Preclinical and clinical studies are accumulating to better decipher the effects of various aspects of food processing and formulation on the aetiology of chronic, debilitating inflammatory diseases. In this Review, we provide an overview of the current data that highlight an association between ultra-processed food consumption and various chronic diseases, with a focus on epidemiological evidence and mechanistic insights involving the intestinal microbiota.
Collapse
Affiliation(s)
- Bernard Srour
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Centre of Research in Epidemiology and Statistics, Université Paris Cité, Paris, France; NACRe Network-Nutrition and Cancer Research Network, Jouy-en-Josas, France
| | - Melissa C Kordahi
- INSERM U1016, Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France; NACRe Network-Nutrition and Cancer Research Network, Jouy-en-Josas, France
| | - Erica Bonazzi
- INSERM U1016, Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France; NACRe Network-Nutrition and Cancer Research Network, Jouy-en-Josas, France
| | - Mélanie Deschasaux-Tanguy
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Centre of Research in Epidemiology and Statistics, Université Paris Cité, Paris, France; NACRe Network-Nutrition and Cancer Research Network, Jouy-en-Josas, France
| | - Mathilde Touvier
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Centre of Research in Epidemiology and Statistics, Université Paris Cité, Paris, France; NACRe Network-Nutrition and Cancer Research Network, Jouy-en-Josas, France
| | - Benoit Chassaing
- INSERM U1016, Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France; NACRe Network-Nutrition and Cancer Research Network, Jouy-en-Josas, France.
| |
Collapse
|
36
|
Zhu Y, Hedderson MM, Calafat AM, Alexeeff SE, Feng J, Quesenberry CP, Ferrara A. Urinary Phenols in Early to Midpregnancy and Risk of Gestational Diabetes Mellitus: A Longitudinal Study in a Multiracial Cohort. Diabetes 2022; 71:2539-2551. [PMID: 36227336 PMCID: PMC9750951 DOI: 10.2337/db22-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Environmental phenols are ubiquitous endocrine disruptors and putatively diabetogenic. However, data during pregnancy are scant. We investigated the prospective associations between pregnancy phenol concentrations and gestational diabetes mellitus (GDM) risk. In a nested matched case-control study of 111 individuals with GDM and 222 individuals without GDM within the prospective PETALS cohort, urinary bisphenol A (BPA), BPA substitutes (bisphenol F and bisphenol S [BPS]), benzophenone-3, and triclosan were quantified during the first and second trimesters. Cumulative concentrations across the two times were calculated using the area under the curve (AUC). Multivariable conditional logistic regression examined the association of individual phenols with GDM risk. We conducted mixture analysis using Bayesian kernel machine regression. We a priori examined effect modification by Asian/Pacific Islander (A/PI) race/ethnicity resulting from the case-control matching and highest GDM prevalence among A/PIs. Overall, first-trimester urinary BPS was positively associated with increased risk of GDM (adjusted odds ratio comparing highest vs. lowest tertile [aORT3 vs. T1] 2.12 [95% CI 1.00-4.50]). We identified associations among non-A/Ps, who had higher phenol concentrations than A/PIs. Among non-A/PIs, first-trimester BPA, BPS, and triclosan were positively associated with GDM risk (aORT3 vs. T1 2.91 [95% CI 1.05-8.02], 4.60 [1.55-13.70], and 2.88 [1.11-7.45], respectively). Triclosan in the second trimester and AUC were positively associated with GDM risk among non-A/PIs (P < 0.05). In mixture analysis, triclosan was significantly associated with GDM risk. Urinary BPS among all and BPA, BPS, and triclosan among non-A/PIs were associated with GDM risk. Pregnant individuals should be aware of these phenols' potential adverse health effects.
Collapse
Affiliation(s)
- Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | | | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Stacey E. Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Juanran Feng
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| |
Collapse
|
37
|
Kurşunoğlu NE, Sarer Yurekli BP. Endocrine disruptor chemicals as obesogen and diabetogen: Clinical and mechanistic evidence. World J Clin Cases 2022; 10:11226-11239. [PMID: 36387809 PMCID: PMC9649566 DOI: 10.12998/wjcc.v10.i31.11226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is becoming an inevitable pandemic all over the world. The World Obesity Federation predicts in the 2022 World Obesity Atlas that one billion people worldwide, including 1 in 5 women and 1 in 7 men, will be living with obesity by 2030. Moreover, the prevalence of diabetes is increasing worldwide, and diabetes is becoming more of a public health problem. Increased insulin resistance due to obesity and deficiency in insulin secretion are the two main causes of type 2 diabetes mellitus (T2DM). An exogenous chemical or mixture of chemicals that interferes with any aspect of hormone action was defined as endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA), the first known EDC, was synthesized and was considered to be estrogenic. Global production of BPA has increased progressively from 5 to 8 million tons (MT) between 2010 and 2016. Furthermore, researchers estimated that the production should reach 10.2 MT by 2022. The human population is exposed to EDCs in daily life in such forms as pesticides/herbicides, industrial and household products, plastics, detergents, and personal care products. The term obesogen was used for chemicals that promote weight gain and obesity by increasing the number of adipocytes and fat storage in existing adipocytes, changing the energy balance, and finally regulating appetite and satiety. Besides the obesogenic effect, EDCs can cause T2DM through alteration in ß cell function and morphology and insulin resistance. In this review, we provide clinical and mechanistic evidence regarding EDCs as obesogen and diabetogen. However, those studies are not enough methodologically to indicate causality. In this respect, randomized clinical trials are needed to investigate the association between obesogen, diabetogen and the related metabolic clinical picture.
Collapse
|
38
|
Kelly AL, Baugh ME, Oster ME, DiFeliceantonio AG. The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite 2022; 178:106274. [PMID: 35963586 PMCID: PMC9749763 DOI: 10.1016/j.appet.2022.106274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 08/07/2022] [Indexed: 12/19/2022]
Abstract
The food environment has changed rapidly and dramatically in the last 50 years. While industrial food processing has increased the safety and stability of the food supply, a rapid expansion in the scope and scale of food processing in the 1980's has resulted in a market dominated by ultra-processed foods. Here, we use the NOVA definition of category 4 ultra-processed foods (UPFs) as they make up around 58% of total calories consumed in the US and 66% of calories in US children. UPFs are formulated from ingredients with no or infrequent culinary use, contain additives, and have a long shelf-life, spending long periods in contact with packaging materials, allowing for the absorption of compounds from those materials. The full implications of this dietary shift to UPFs on human health and disease outcomes are difficult, if not impossible, to quantify. However, UPF consumption is linked with various forms of cancer, increased cardiovascular disease, and increased all-cause mortality. Understanding food choice is, therefore, a critical problem in health research. Although many factors influence food choice, here we focus on the properties of the foods themselves. UPFs are generally treated as food, not as the highly refined, industrialized substances that they are, whose properties and components must be studied. Here, we examine one property of UPFs, that they deliver useable calories rapidly as a potential factor driving UPF overconsumption. First, we explore evidence that UPFs deliver calories more rapidly. Next, we examine the role of the gut-brain axis and its interplay with canonical reward systems, and last, we describe how speed affects both basic learning processes and drugs of abuse.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA; Center for Health Behaviors Research; Department of Human Nutrition Foods and Exercise at Virginia Tech, USA.
| |
Collapse
|
39
|
Bisphenol A exposure links to exacerbation of memory and cognitive impairment: A systematic review of the literature. Neurosci Biobehav Rev 2022; 143:104939. [DOI: 10.1016/j.neubiorev.2022.104939] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
40
|
Molina-López AM, Bujalance-Reyes F, Urbano MT, Lora-Benítez A, Ayala-Soldado N, Moyano-Salvago R. Analysis of Blood Biochemistry and Pituitary-Gonadal Histology after Chronic Exposure to Bisphenol-A of Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113894. [PMID: 36360773 PMCID: PMC9659152 DOI: 10.3390/ijerph192113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/12/2023]
Abstract
Bisphenol-A is an emerging pollutant that is widespread in the environment, and to which live beings are continuously and inadvertently exposed. It is a substance with an endocrine-disrupting capacity, causing alterations in the reproductive, immunological, and neurological systems, among others, as well as metabolic alterations. Our study aimed to assess its clinical signs, and effects on the most relevant blood biochemical parameters, and to evaluate pituitary and gonadal histology after a chronic exposure of adult mice to different BPA doses (0.5, 2, 4, 50 and 100 µg/kg BW/day) through their drinking water. The biochemical results showed that a marked significant reduction (p < 0.05) was produced in the levels of serum glucose, hypoproteinaemia and hypoalbuminemia in the groups exposed to the highest doses, whereas in the group exposed to 50 µg/kg BW/day the glucose and total protein levels dropped, and the animals exposed to 100 µg/kg BW/day experienced a diminution in albumin levels. In the case of the group exposed to 50 µg/kg BW/day, however, hypertriglyceridemia and hypercholesterolemia were determined, and the blood parameters indicating kidney alterations such as urea and creatinine experienced a significant increase (p < 0.05) with respect to the controls. Regarding the pituitary and gonads, none of the animals exposed presented histological alterations at the doses tested, giving similar images to those of the control group. These results suggest that continuous exposure to low BPA doses could trigger an inhibition of hepatic gluconeogenesis, which would result in a hypoglycaemic state, together with an induction of the enzymes responsible for lipidic synthesis, a mechanism by which the increase in the lipid and serum cholesterol levels could be explained. Likewise, the decline in the protein and albumin levels would be indicative of a possible hepatic alteration, and the increase in urea and creatinine would point to a possible renal perturbation, derived from continuous exposure to this xenobiotic. Based on our results, it could be said that chronic exposure to low BPA doses would not produce any clinical signs or histological pituitary-gonadal effects, but it could cause modifications in some blood biochemical parameters, that could initially indicate a possible hepatic and renal effect.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - María Teresa Urbano
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| |
Collapse
|
41
|
Connors LT, Zhu HL, Gill M, Walsh E, Singh RD, Easson S, Ahmed SB, Habibi HR, Cole WC, Thompson JA. Prenatal exposure to a low dose of BPS causes sex-dependent alterations to vascular endothelial function in adult offspring. FRONTIERS IN TOXICOLOGY 2022; 4:933572. [PMID: 36310694 PMCID: PMC9606655 DOI: 10.3389/ftox.2022.933572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Bisphenol S (BPS) is among the most commonly used substitutes for Bisphenol A (BPA), an endocrine disrupting chemical used as a plasticizer in the manufacture of polycarbonate plastics and epoxy resins. Bisphenols interfere with estrogen receptor (ER) signaling, which modulates vascular function through stimulation of nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS). BPS can cross into the placenta and accumulates in the fetal compartment to a greater extent than BPA, potentially interfering with key developmental events. Little is known regarding the developmental impact of exposure to BPA substitutes, particularly with respect to the vasculature. Objective: To determine if prenatal BPS exposure influences vascular health in adulthood. Methods: At the time of mating, female C57BL/6 dams were administered BPS (250 nM) or vehicle control in the drinking water, and exposure continued during lactation. At 12-week of age, mesenteric arteries were excised from male and female offspring and assessed for responses to an endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) vasodilator. Endothelium-dependent dilation was measured in the presence or absence of L-NAME, an eNOS inhibitor. To further explore the role of NO and ER signaling, wire myography was used to assess ACh responses in aortic rings after acute exposure to BPS in the presence or absence of L-NAME or an ER antagonist. Results: Increased ACh dilation and increased sensitivity to Phe were observed in microvessels from BPS-exposed females, while no changes were observed in male offspring. Differences in ACh-induced dilation between control or BPS-exposed females were eliminated with L-NAME. Increased dilatory responses to ACh after acute BPS exposure were observed in aortic rings from female mice only, and differences were eliminated with inhibition of eNOS or inhibition of ER. Conclusion: Prenatal BPS exposure leads to persistent changes in endothelium-dependent vascular function in a sex-specific manner that appears to be modulated by interaction of BPS with ER signaling.
Collapse
Affiliation(s)
- Liam T. Connors
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Hai-Lei Zhu
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Manvir Gill
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Emma Walsh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Radha D. Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah Easson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sofia B. Ahmed
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - William C. Cole
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A. Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Human health risk assessment of bisphenol A (BPA) through meat products. ENVIRONMENTAL RESEARCH 2022; 213:113734. [PMID: 35750124 DOI: 10.1016/j.envres.2022.113734] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 μg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
43
|
He H, Li X, Shen J, Bai S, Li C, Shi H. Bisphenol A exposure causes testicular toxicity by targeting DPY30-mediated post-translational modification of PI3K/AKT signaling in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113996. [PMID: 36030680 DOI: 10.1016/j.ecoenv.2022.113996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA), one of the chemicals with the highest volume of production worldwide, has been demonstrated to cause testicular toxicity via different pathways. However, there is little evidence concerning the mechanism of BPA exposure induced histone modification alterations, especially regarding the effect on the histone H3 lysine 4 (H3K4) epigenetic modification. Our results demonstrated a new epigenetic regulation of BPA exposure on testicular damage using both cell culture and mouse models. With BPA treatment, disordered and shrunken seminiferous tubules and poor sperm quality were observed in vivo, and mouse spermatogonial germ cell proliferation was inhibited in vitro. BPA attenuated PI3K expression inducing phospho-AKT inhibition in vivo and in vitro. DPY30 was the only downregulated subunit in BPA and MEK2206 (AKT inhibitor) treated cells, which contributed to reducing H3K4me3 recruitment at the PIK3CA transcriptional start site (TSS) in BPA treated cells. The toxicity caused by BPA exposure was relieved after the transduction of adenoviruses expressing DPY30 transgenes, which resulted in the stimulation of PI3K/AKT with H3K4me3 enriched at the PI3KCA TSS. DPY30 promoted cell glycolysis via AMPK and proliferation through AKT/P21. DPY30 was mainly located in the round and elongated spermatids for energy accumulation in mature sperm in AD-DPY30-treated mice which showed higher sperm quality. Overall, our results indicated that BPA exposure causes testicular toxicity through a DPY30-mediated H3K4me3 epigenetic modification, which serves to regulate the PI3K/AKT/P21 pathway.
Collapse
Affiliation(s)
- Huanshan He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuying Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Vignault C, Cadoret V, Jarrier-Gaillard P, Papillier P, Téteau O, Desmarchais A, Uzbekova S, Binet A, Guérif F, Elis S, Maillard V. Bisphenol S Impairs Oestradiol Secretion during In Vitro Basal Folliculogenesis in a Mono-Ovulatory Species Model. TOXICS 2022; 10:toxics10080437. [PMID: 36006116 PMCID: PMC9412475 DOI: 10.3390/toxics10080437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 05/28/2023]
Abstract
Bisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granulosa cells from different species. Nevertheless, limited data are available on its effects during basal folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a model of basal follicular development in a mono-ovulatory species. We cultured ovine preantral follicles (180−240 μm, n = 168) with BPS (0.1 μM (possible human exposure dose) or 10 μM (high dose)) and monitored antrum appearance and follicular survival and growth for 15 days. We measured hormonal secretions (oestradiol (at day 13 [D13]), progesterone and anti-Müllerian hormone [D15]) and expression of key follicular development and redox status genes (D15) in medium and whole follicles, respectively. BPS (0.1 µM) decreased oestradiol secretion compared with the control (−48.8%, p < 0.001), without significantly impairing antrum appearance, follicular survival and growth, anti-Müllerian hormone and progesterone secretion and target gene expression. Thus, BPS could also impair oestradiol secretion during basal folliculogenesis as it is the case during terminal folliculogenesis. It questions the use of BPS as a safe BPA substitute in the human environment. More studies are required to elucidate mechanisms of action of BPS and its effects throughout basal follicular development.
Collapse
Affiliation(s)
- Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Véronique Cadoret
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Peggy Jarrier-Gaillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique et Brûlés, CHRU de Tours, 37000 Tours, France
| | - Fabrice Guérif
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| |
Collapse
|
45
|
Moreno-Gómez-Toledano R, Vélez-Vélez E, Arenas MI, Saura M, Bosch RJ. Association between urinary concentrations of bisphenol A substitutes and diabetes in adults. World J Diabetes 2022; 13:521-531. [PMID: 36051427 PMCID: PMC9329846 DOI: 10.4239/wjd.v13.i7.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Due to new restrictions on the use of bisphenol A (BPA), industries are beginning to replace it with derived molecules such as bisphenol S and F (BPS and BPF). There is extensive evidence in the academic literature on the potential health effects of BPA, which is known to be a diabetogenic molecule. However, there are few publications related to new compounds derived from BPA. AIM To perform an epidemiological study of urinary BPS and BPF in the American National Health and Nutrition Examination Survey (NHANES) cohort, and analyze their possible relationship with diabetes mellitus. METHODS NHANES datasets from 2013 to 2016 were used due to the urinary BPF and BPS availability. Data from 3658 adults were analyzed to perform regression analysis exploring the possible relationship between BPA-derived compounds and diabetes. RESULTS Descriptive statistics, linear regression modeling, and logistic regression analysis revealed a significant relationship between urinary BPS, but not BPF, and diabetes risk. Additionally, a relationship was observed between both compounds and hypertension and a slight relationship between BPF and dyslipidemia. CONCLUSION In the present study, a strong relationship between urinary BPS, not BPF, and diabetes risk has been determined. BPA substitute molecules do not exempt the population from potential health risks.
Collapse
Affiliation(s)
| | - Esperanza Vélez-Vélez
- Fundación Jiménez Díaz School of Nursing, Jiménez Díaz Foundation, Autonomous University of Madrid, Madrid 28040, Spain
| | - María I Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology,Alcalá de Henares 28871, Spain
| | - Marta Saura
- Universidad de Alcalá, Department of Biological Systems/Physiology Unit, Alcalá de Henares 28871, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid 28034, Spain
| | - Ricardo J Bosch
- Universidad de Alcalá, Department of Biological Systems/Physiology Unit, Alcalá de Henares 28871, Spain
| |
Collapse
|
46
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
González-Rivas JP, Pavlovska I, Polcrova A, Nieto-Martínez R, Mechanick JI. Transcultural Lifestyle Medicine in Type 2 Diabetes Care: Narrative Review of the Literature. Am J Lifestyle Med 2022. [DOI: 10.1177/15598276221095048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Disparities in type 2 diabetes (T2D) care is a global problem across diverse cultures. The Dysglycemia-Based Chronic Disease (DBCD) model promotes early and sustainable interventions along the insulin resistance (stage 1), prediabetes (stage 2), T2D (stage 3), and complications (stage 4) spectrum. In this model, lifestyle medicine is the cornerstone of preventive care to reduce DBCD progression and the socioeconomic/biological burden of disease. A comprehensive literature review, spanning 2000 to 2021, was performed and 55 studies were included examining the effects of lifestyle medicine and their cultural adaptions with different prevention modalities. In stage 1, primordial prevention targets modifiable primary drivers (behavior and environment), unhealthy lifestyles, abnormal adiposity, and insulin resistance with educational and motivational health promotion activities at individual, group, community, and population-based scales. Primary, secondary, and tertiary prevention targets individuals with mild hyperglycemia, severe hyperglycemia, and complications, respectively, using programs that incorporate structured lifestyle interventions. Culturally adapted lifestyle change in primary and secondary prevention improved quality of life and biomarkers, but with a limited impact of tertiary prevention on cardiovascular events. In conclusion, lifestyle medicine with cultural adaptations is an integral part of preventive care in patients with T2D. However, considerable research gaps exist, especially for tertiary prevention.
Collapse
Affiliation(s)
- Juan P. González-Rivas
- International Clinical Research Centre (ICRC), St Anne’s University Hospital Brno (FNUSA), Czech Republic
- Departments of Global Health and Population and Epidemiology, Harvard TH Chan School of Public Health. Harvard University, Boston, MA, USA
- Foundation for Clinic, Public Health, and Epidemiology Research of Venezuela (FISPEVEN INC), Caracas, Venezuela
| | - Iuliia Pavlovska
- International Clinical Research Centre (ICRC), St Anne’s University Hospital Brno (FNUSA), Czech Republic
- Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Anna Polcrova
- International Clinical Research Centre (ICRC), St Anne’s University Hospital Brno (FNUSA), Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ramfis Nieto-Martínez
- Departments of Global Health and Population and Epidemiology, Harvard TH Chan School of Public Health. Harvard University, Boston, MA, USA
- Foundation for Clinic, Public Health, and Epidemiology Research of Venezuela (FISPEVEN INC), Caracas, Venezuela
- LifeDoc Health, Memphis, TN, USA
| | - Jeffrey I. Mechanick
- he Marie-Josée and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, and Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
|
49
|
Makowska K, Staniszewska M, Bodziach K, Calka J, Gonkowski S. Concentrations of bisphenol a (BPA) in fresh pork loin meat under standard stock-farming conditions and after oral exposure - A preliminary study. CHEMOSPHERE 2022; 295:133816. [PMID: 35131273 DOI: 10.1016/j.chemosphere.2022.133816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a substance commonly used in the production of plastics. It may be leached from plastics, penetrate to food and has multidirectional negative effects on living organisms. The aim of this study was to evaluate BPA levels in fresh pork meat collected immediately after the death of animals kept in standard stock-farming conditions, as well as from animals receiving various oral doses of BPA (0.05 mg/kg body weight (b.w.)/day and 0.5 mg/kg b. w./day). In animals kept in standard conditions, the average concentration of BPA in loin meat amounted to 37.03 ± 6.18 ng/g dry weight (d.w.). In animals receiving lower and higher doses of BPA, this value achieved 47.44 ± 4.39 ng/g d. w. and 214.30 ± 66.73 ng/g d. w, respectively. The results show that pork meat may be a source of BPA in human food and the presence of BPA in the meat may result from the exposure of animals over their lifetime. This observation shows that the elimination of BPA from the production of items used for animal husbandry and animal feed may reduce meat contaminated with this substance and, therefore, increase consumer safety.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957, Olsztyn, Poland.
| | - Marta Staniszewska
- Institute of Oceanography, Marine Chemistry and Environmental Protection Department, University of Gdansk, Al. Pilsudskiego 46, 81-378, Gdynia, Poland
| | - Karina Bodziach
- Institute of Oceanography, Marine Chemistry and Environmental Protection Department, University of Gdansk, Al. Pilsudskiego 46, 81-378, Gdynia, Poland
| | - Jaroslaw Calka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957, Olsztyn, Poland
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957, Olsztyn, Poland
| |
Collapse
|
50
|
Are BPA Substitutes as Obesogenic as BPA? Int J Mol Sci 2022; 23:ijms23084238. [PMID: 35457054 PMCID: PMC9031831 DOI: 10.3390/ijms23084238] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic diseases, such as obesity, Type II diabetes and hepatic steatosis, are a significant public health concern affecting more than half a billion people worldwide. The prevalence of these diseases is constantly increasing in developed countries, affecting all age groups. The pathogenesis of metabolic diseases is complex and multifactorial. Inducer factors can either be genetic or linked to a sedentary lifestyle and/or consumption of high-fat and sugar diets. In 2002, a new concept of “environmental obesogens” emerged, suggesting that environmental chemicals could play an active role in the etiology of obesity. Bisphenol A (BPA), a xenoestrogen widely used in the plastic food packaging industry has been shown to affect many physiological functions and has been linked to reproductive, endocrine and metabolic disorders and cancer. Therefore, the widespread use of BPA during the last 30 years could have contributed to the increased incidence of metabolic diseases. BPA was banned in baby bottles in Canada in 2008 and in all food-oriented packaging in France from 1 January 2015. Since the BPA ban, substitutes with a similar structure and properties have been used by industrials even though their toxic potential is unknown. Bisphenol S has mainly replaced BPA in consumer products as reflected by the almost ubiquitous human exposure to this contaminant. This review focuses on the metabolic effects and targets of BPA and recent data, which suggest comparable effects of the structural analogs used as substitutes.
Collapse
|