1
|
Ferrigno R, Cioffi D, Pellino V, Savanelli MC, Klain A. Growth alterations in rare forms of primary adrenal insufficiency: a neglected issue in paediatric endocrinology. Endocrine 2023; 80:1-9. [PMID: 36309634 DOI: 10.1007/s12020-022-03236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/15/2022] [Indexed: 11/27/2022]
Abstract
Primary adrenal insufficiency (PAI) is an endocrine disorder characterized by direct adrenal failure, with consequent glucocorticoid, and eventually mineralocorticoid, deficiency. In children, the main cause of PAI is congenital adrenal hyperplasia (CAH), due to a loss of function of adrenal steroidogenic enzymes, but also rarer forms, including autoimmune polyglandular syndrome, adrenoleucodistrophy, adrenal hypoplasia congenita, familial glucocorticoid deficiency, and Allgrove's Syndrome, may be observed. In PAI children, growth alterations represent a major issue, as both inadequate and excessive glucocorticoid replacement treatment may lead to reduced growth rate and adult height impairment. However, growth abnormalities are poorly studied in rare forms of paediatric PAI, and specific studies on growth rate in these children are currently lacking. In the present review, the currently available evidence on growth alterations in children with rare PAI forms will be summarized, with a major focus on comorbidities with a potential impact on patients' growth rate.
Collapse
Affiliation(s)
- Rosario Ferrigno
- UOSD di Endocrinologia e Auxologia, Dipartimento di Pediatria, AORN Santobono-Pausilipon, Napoli, Italy.
| | - Daniela Cioffi
- UOSD di Endocrinologia e Auxologia, Dipartimento di Pediatria, AORN Santobono-Pausilipon, Napoli, Italy
| | - Valeria Pellino
- UOSD di Endocrinologia e Auxologia, Dipartimento di Pediatria, AORN Santobono-Pausilipon, Napoli, Italy
| | - Maria Cristina Savanelli
- UOSD di Endocrinologia e Auxologia, Dipartimento di Pediatria, AORN Santobono-Pausilipon, Napoli, Italy
| | - Antonella Klain
- UOSD di Endocrinologia e Auxologia, Dipartimento di Pediatria, AORN Santobono-Pausilipon, Napoli, Italy
| |
Collapse
|
2
|
Wang Y, Liu X, Xie X, He J, Gao Y. Adult‑onset X‑linked adrenal hypoplasia congenita caused by a novel mutation in DAX1/NR0B1: A case report and literature review. Exp Ther Med 2022; 24:628. [PMID: 36160878 PMCID: PMC9468782 DOI: 10.3892/etm.2022.11565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Adrenal hypoplasia congenita (AHC) is a rare X-linked recessive disease caused by mutations in the nuclear receptor subfamily 0, group B, member 1 (NR0B1) gene, which is also referred to as dosage-sensitive sex-reversal, adrenal hypoplasia congenita, in the critical region of the X chromosome, gene 1 (DAX1). This gene is expressed in the hypothalamus, anterior pituitary and steroidogenic tissues, including the gonads and adrenal cortex. Adult-onset forms of X-linked AHC are a significant cause of concern. In the present study, the case of a 21-year-old male who exhibited adrenal insufficiency and hypogonadotropic hypogonadism was described. The patient initially presented with nausea, vomiting, fatigue and dizziness. The laboratory results demonstrated that the patient had hyponatremia, a low basal cortisol concentration and increased adrenocorticotropic hormone levels. Molecular genetic examination revealed a novel frameshift mutation (c.1005delC, p.V336Cfs*36). Following steroid supplementation, the patient's vomiting, fatigue and dizziness rapidly improved. To the best of our knowledge, the present study was the first case report of adult-onset X-linked AHC with this novel frameshift mutation. Furthermore, the present study highlighted differences in the clinical presentation of adult-onset forms of X-linked AHC. This may therefore alert medical professionals to the need to perform genetic analysis for DAX1 mutations in adolescents and adults with primary adrenal insufficiency and hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiufen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaona Xie
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jingjing He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ying Gao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
3
|
Zhu F, Zhou M, Deng X, Li Y, Xiong J. Case Report: A Novel Truncating Variant of NR0B1 Presented With X-Linked Late-Onset Adrenal Hypoplasia Congenita With Hypogonadotropic Hypogonadism. Front Endocrinol (Lausanne) 2022; 13:897069. [PMID: 35784540 PMCID: PMC9243302 DOI: 10.3389/fendo.2022.897069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear receptor subfamily 0 group B member 1 gene (NR0B1) encodes an orphan nuclear receptor that plays a critical role in the development and regulation of the adrenal gland and hypothalamic-pituitary-gonadal axis. In this study, we report a novel mutation in NR0B1 that led to adult-onset adrenal hypoplasia congenita (AHC) and pubertal development failure in a male adult. Clinical examinations revealed hyponatremia, elevated adrenocorticotropic hormone levels, reduced testosterone and gonadotropin levels, and hyper-responses to gonadotropin-releasing hormone and human chorionic gonadotropin stimulation tests. Whole-exome sequencing and Sanger sequencing were performed to identify the potential causes of AHC. Candidate variants were shortlisted based on the X-linked recessive models. Sequence analyses identified a novel hemizygous variant of c.1034delC in exon 1 of NR0B1 at Xp21.2, resulting in a frameshift mutation and premature stop codon formation. The c.1034delC/p.Pro345Argfs*27 in the NR0B1 gene was detected in the hemizygous state in affected males and in the heterozygous state in healthy female family carriers. These results expand the clinical features of AHC as well as the mutation profile of the causative gene NR0B1. Further studies are needed to elucidate the biological effects of the mutation on the development and function of the adrenal gland and the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiuling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Internal Medicine, Distinct HealthCare, Wuhan, China
| | - Yujuan Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jing Xiong,
| |
Collapse
|
4
|
Teoli J, Mezzarobba V, Renault L, Mallet D, Lejeune H, Chatelain P, Tixier F, Nicolino M, Peretti N, Giscard D’estaing S, Cuzin B, Dijoud F, Roucher-Boulez F, Plotton I. Effect of Recombinant Gonadotropin on Testicular Function and Testicular Sperm Extraction in Five Cases of NR0B1 ( DAX1) Pathogenic Variants. Front Endocrinol (Lausanne) 2022; 13:855082. [PMID: 35432221 PMCID: PMC9006945 DOI: 10.3389/fendo.2022.855082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND NR0B1 pathogenic variants can cause congenital adrenal hypoplasia or primary adrenal insufficiency in early childhood usually associated with hypogonadotropic hypogonadism. NR0B1 is necessary for organogenesis of the adrenal cortex and to maintain normal spermatogenesis. In humans, restoration of fertility in patients carrying NR0B1 pathogenic variants is challenging. OBJECTIVE The aim of the study was to investigate the clinical, hormonal, histological, spermiological, and molecular genetic characteristics of a cohort of patients with NR0B1 pathogenic variants, monitored for fertility preservation. PATIENTS We included five patients, including four teenagers, with NR0B1 pathogenic or likely pathogenic variants. They all had primary adrenal insufficiency and were receiving replacement therapy with glucocorticoids and mineralocorticoids. Patients received recombinant follicle-stimulating hormone and recombinant human chorionic gonadotropin in order to induce spermatogenesis. Combined gonadotropin treatment was initiated between 13 years and 15 years and 6 months for the four teenagers and at 31 years and 2 months for the only adult. Physical and hormonal assessments were performed just before starting gonadotropin treatment. After 12 months of gonadotropin treatment, physical examination and hormonal assessments were repeated, and semen analyses were performed. If no sperm cells were observed in at least 2 semen collections at 3-month interval, testicular biopsy for testicular sperm extraction was proposed. RESULTS Bilateral testicular volume increased from 8 ml (interquartile range, 6-9) to 12 ml (10-16) after gonadotropin treatment. Inhibin B levels were relatively stable: 110 ng/L (46-139) before and 91 ng/L (20-120) at the end of gonadotropin treatment. Azoospermia was observed in all semen analyses for all cases during gonadotropin treatment. Three patients agreed to testicular biopsy; no mature sperm cells could be retrieved in any. CONCLUSION We characterized a cohort of patients with NR0B1 pathogenic or likely pathogenic variants for fertility preservation by recombinant gonadotropin treatment, which began either at puberty or in adulthood. No sperm cells could be retrieved in semen samples or testicular biopsy even after gonadotropin treatment, indicating that gonadotropin treatment, even when started at puberty, is ineffective for restoring fertility.
Collapse
Affiliation(s)
- Jordan Teoli
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, CR DEV-GEN, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
- Université Claude Bernard Lyon 1, Lyon, France
- Institut Cellule Souche et Cerveau (SBRI), Unité INSERM, Centre de Recherche INSERM, Bron, France
| | - Vincent Mezzarobba
- Fédération d’Endocrinologie, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Lucie Renault
- Service de Médecine de la Reproduction, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Delphine Mallet
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, CR DEV-GEN, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Hervé Lejeune
- Université Claude Bernard Lyon 1, Lyon, France
- Institut Cellule Souche et Cerveau (SBRI), Unité INSERM, Centre de Recherche INSERM, Bron, France
- Service de Médecine de la Reproduction, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Pierre Chatelain
- Université Claude Bernard Lyon 1, Lyon, France
- Service d’Endocrinologie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Frédérique Tixier
- Service d’Endocrinologie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Marc Nicolino
- Université Claude Bernard Lyon 1, Lyon, France
- Service d’Endocrinologie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Noël Peretti
- Université Claude Bernard Lyon 1, Lyon, France
- Service de Gastroentérologie, Hépatologie et Nutrition Pédiatriques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Sandrine Giscard D’estaing
- Université Claude Bernard Lyon 1, Lyon, France
- Institut Cellule Souche et Cerveau (SBRI), Unité INSERM, Centre de Recherche INSERM, Bron, France
- Service de Médecine de la Reproduction, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Béatrice Cuzin
- Chirugie Urologique, Centre Lyonnais d’Urologie Bellecour, Lyon, France
| | - Frédérique Dijoud
- Université Claude Bernard Lyon 1, Lyon, France
- Institut Cellule Souche et Cerveau (SBRI), Unité INSERM, Centre de Recherche INSERM, Bron, France
- Service d’Anatomie Pathologique, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Florence Roucher-Boulez
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, CR DEV-GEN, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Ingrid Plotton
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, CR DEV-GEN, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
- Université Claude Bernard Lyon 1, Lyon, France
- Institut Cellule Souche et Cerveau (SBRI), Unité INSERM, Centre de Recherche INSERM, Bron, France
- Service de Médecine de la Reproduction, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
- *Correspondence: Ingrid Plotton,
| |
Collapse
|
5
|
Szeliga A, Kunicki M, Maciejewska-Jeske M, Rzewuska N, Kostrzak A, Meczekalski B, Bala G, Smolarczyk R, Adashi EY. The Genetic Backdrop of Hypogonadotropic Hypogonadism. Int J Mol Sci 2021; 22:ijms222413241. [PMID: 34948037 PMCID: PMC8708611 DOI: 10.3390/ijms222413241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022] Open
Abstract
The pituitary is an organ of dual provenance: the anterior lobe is epithelial in origin, whereas the posterior lobe derives from the neural ectoderm. The pituitary gland is a pivotal element of the axis regulating reproductive function in mammals. It collects signals from the hypothalamus, and by secreting gonadotropins (FSH and LH) it stimulates the ovary into cyclic activity resulting in a menstrual cycle and in ovulation. Pituitary organogenesis is comprised of three main stages controlled by different signaling molecules: first, the initiation of pituitary organogenesis and subsequent formation of Rathke’s pouch; second, the migration of Rathke’s pouch cells and their proliferation; and third, lineage determination and cellular differentiation. Any disruption of this sequence, e.g., gene mutation, can lead to numerous developmental disorders. Gene mutations contributing to disordered pituitary development can themselves be classified: mutations affecting transcriptional determinants of pituitary development, mutations related to gonadotropin deficiency, mutations concerning the beta subunit of FSH and LH, and mutations in the DAX-1 gene as a cause of adrenal hypoplasia and disturbed responsiveness of the pituitary to GnRH. All these mutations lead to disruption in the hypothalamic–pituitary–ovarian axis and contribute to the development of primary amenorrhea.
Collapse
Affiliation(s)
- Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland; (A.S.); (M.M.-J.); (A.K.)
| | - Michal Kunicki
- INVICTA Fertility and Reproductive Center, 00-019 Warsaw, Poland;
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland; (N.R.); (R.S.)
| | - Marzena Maciejewska-Jeske
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland; (A.S.); (M.M.-J.); (A.K.)
| | - Natalia Rzewuska
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland; (N.R.); (R.S.)
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland; (A.S.); (M.M.-J.); (A.K.)
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland; (A.S.); (M.M.-J.); (A.K.)
- Correspondence: ; Tel.: +48-61-65-99-366; Fax: +48-61-65-99-454
| | - Gregory Bala
- Appletree Medical Group, Ottawa, ON K1R 5C1, Canada;
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland; (N.R.); (R.S.)
| | - Eli Y. Adashi
- Warren Alpert Medical School, Brown University, 272 George St., Providence, RI 02906, USA;
| |
Collapse
|
6
|
Abstract
Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances, including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France
| | - Andreas Schedl
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
7
|
Abstract
Puberty, which in humans is considered to include both gonadarche and adrenarche, is the period of becoming capable of reproducing sexually and is recognized by maturation of the gonads and development of secondary sex characteristics. Gonadarche referring to growth and maturation of the gonads is fundamental to puberty since it encompasses increased gonadal steroid secretion and initiation of gametogenesis resulting from enhanced pituitary gonadotropin secretion, triggered in turn by robust pulsatile GnRH release from the hypothalamus. This chapter reviews the development of GnRH pulsatility from before birth until the onset of puberty. In humans, GnRH pulse generation is restrained during childhood and juvenile development. This prepubertal hiatus in hypothalamic activity is considered to result from a neurobiological brake imposed upon the GnRH pulse generator resident in the infundibular nucleus. Reactivation of the GnRH pulse generator initiates pubertal development. Current understanding of the genetics and physiology of the brake will be discussed, as will hypotheses proposed to account for timing the resurgence in pulsatile GnRH and initiation of puberty. The chapter ends with a discussion of disorders associated with precocious or delayed puberty with a focus on those with etiologies attributed to aberrant GnRH neuron anatomy or function. A pediatric approach to patients with pubertal disorders is provided and contemporary treatments for both precocious and delayed puberty outlined.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Aitken RJ, Baker MA. The Role of Genetics and Oxidative Stress in the Etiology of Male Infertility-A Unifying Hypothesis? Front Endocrinol (Lausanne) 2020; 11:581838. [PMID: 33101214 PMCID: PMC7554587 DOI: 10.3389/fendo.2020.581838] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the high prevalence of male infertility, very little is known about its etiology. In recent years however, advances in gene sequencing technology have enabled us to identify a large number of rare single point mutations responsible for impeding all aspects of male reproduction from its embryonic origins, through the endocrine regulation of spermatogenesis to germ cell differentiation and sperm function. Such monogenic mutations aside, the most common genetic causes of male infertility are aneuploidies such as Klinefelter syndrome and Y-chromosome mutations which together account for around 20-25% of all cases of non-obstructive azoospermia. Oxidative stress has also emerged as a major cause of male fertility with at least 40% of patients exhibiting some evidence of redox attack, resulting in high levels of lipid peroxidation and oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8OHdG). The latter is highly mutagenic and may contribute to de novo mutations in our species, 75% of which are known to occur in the male germ line. An examination of 8OHdG lesions in the human sperm genome has revealed ~9,000 genomic regions vulnerable to oxidative attack in spermatozoa. While these oxidized bases are generally spread widely across the genome, a particular region on chromosome 15 appears to be a hot spot for oxidative attack. This locus maps to a genetic location which has linkages to male infertility, cancer, imprinting disorders and a variety of behavioral conditions (autism, bipolar disease, spontaneous schizophrenia) which have been linked to the age of the father at the moment of conception. We present a hypothesis whereby a number of environmental, lifestyle and clinical factors conspire to induce oxidative DNA damage in the male germ line which then triggers the formation de novo mutations which can have a major impact on the health of the offspring including their subsequent fertility.
Collapse
Affiliation(s)
- Robert John Aitken
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Robert John Aitken
| | - Mark A. Baker
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|