1
|
Zhang Y, Liu F, Yang M, Xin H, Wu B, Li JJ, Tao H, Chen Y, Chen J, Guan Q, Liu Z, Xu Z, Pei J, Moya S, Pan H, Zhao X, Kong L, Wang G. Nanoconfinement of Ammonia Borane via Hybrid-Phased Titanate Nanocrystals Enables Sustained H 2 Release for Diabetic Bone Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502741. [PMID: 40317780 DOI: 10.1002/adma.202502741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Despite its potential in hydrogen (H2) therapy, ammonia borane (AB) has limited biomedical applications due to its uncontrolled hydrolysis rate and potential to cause cytotoxicity. Existing material-based delivery strategies focus on accelerating AB hydrolysis for H2 production, hence exacerbating these issues. A new nanoconfinement strategy is reported, which loads AB onto oxygen-deficient, hybrid-phased titanate nanocrystals on implant surfaces through a unique one-end-anchored docking (OEAD) mechanism. This nanoconfinement strategy effectively restricts the release of AB molecules, allowing only water molecules to infiltrate the interlayer space for slow hydrolysis and sustained H2 release. This significantly prolongs the duration of H2 release and effectively circumvents the cytotoxicity associated with AB interacting with hydrogen peroxide (H2O2) in the inflammatory microenvironment. In vitro and in vivo have shown that sustained H2 release from the implant surface effectively alleviates diabetes-related oxidative stress, and combined with the release of magnesium ions (Mg2+) synergistically promotes innervated-vascularized bone regeneration.
Collapse
Affiliation(s)
- Yuan Zhang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Minggang Yang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - He Xin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ben Wu
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Haibo Tao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yichen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Junkang Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Qingqing Guan
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zundong Liu
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, P. R. China
| | - Zhengjiang Xu
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jia Pei
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sergio Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaobing Zhao
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
Yin B, Dong Y, Cheng H, Xiong L, Liu Y, Zhang Y, Liu Z, Chen R, Gao P, Zheng Z, Yu M, Deng Z, Lu L, Liu J, Wen C. Enhancing titanium dioxide nanotube array stability on dental implants through laser lithography-assisted microline patterning. Acta Biomater 2025; 195:569-581. [PMID: 39880179 DOI: 10.1016/j.actbio.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency. The method involved creating microline patterns on TNTs (L-TNTs), where the TNTs were embedded within grooves for enhanced protection. This was achieved through a combination of laser lithography-assisted microline patterning and anodization. Incorporation of microline patterns significantly increased the mechanical stability of the TNTs. This improvement was evidenced by multiple tests: peeling tests demonstrated the maximum adhesive strength of the L-TNTs increased by at least 50 %; friction-wear tests revealed narrower, shallower abrasion patterns and lower average friction coefficients; and ex vivo screw implant insertion and removal tests showed post-insertion, the nanotube structures in the TNTs peeled, whereas those in the L-TNTs remained intact. The L-TNTs also maintained their efficacy in promoting bone integration both in vitro and in vivo, establishing a robust platform for multifunctional implant investigation and advancing the practical application of TNTs. STATEMENT OF SIGNIFICANCE: This study presents a novel laser lithography-assisted micropatterning and anodization method for creating micro-lined titanium dioxide nanotube arrays (L-TNTs) on dental implants. Compared to conventional TNTs, L-TNTs enhanced adhesive strength and wear resistance while maintaining efficacy in promoting bone integration. This method enhances the mechanical stability of TNTs, facilitating its practical application in multifunctional dental implants.
Collapse
Affiliation(s)
- Baodi Yin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yiwen Dong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huan Cheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Xiong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhucheng Liu
- Zhejiang Glister Photonics, Ltd, Zhuji, 311800, China
| | - Rui Chen
- Zhejiang Glister Photonics, Ltd, Zhuji, 311800, China
| | - Peng Gao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zijian Zheng
- Laboratory for Advanced interfacial Materials and Devices (AiMD), Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mingliang Yu
- Zhejiang Trusyou Medical Instruments Co., Ltd.,325000, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Cuie Wen
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
3
|
Kiarashi M, Yasamineh S. Albumin nanoparticles are a promising drug delivery system in dentistry. Biomed Eng Online 2024; 23:122. [PMID: 39605007 PMCID: PMC11600845 DOI: 10.1186/s12938-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Periodontal infection is a long-lasting inflammatory condition caused by the growth and development of an abnormal and harmful community of microorganisms. This destructive illness leads to the loss of the tissues that support the teeth, degradation of the bone surrounding the teeth, and eventually tooth loss. To treat oral infections, it is necessary to use nonsurgical methods such as antibiotics. However, the indiscriminate and incorrect use of antibiotics results in drug resistance. Among these alternate therapeutic options, using nanoparticles to treat infectious dental disease was particularly significant. Consequently, researchers have worked to develop an effective and satisfactory drug delivery method for treating periodontal and dental illnesses. Albumin nanoparticles serve a considerable function as carriers in the drug delivery of chemical and biomolecular medications, such as anticancer treatments; they have several advantages, including biocompatibility and biodegradability, and they are well-tolerated with no adverse effects. Albumin nanoparticles have several benefits over other nanomaterials. Protein nanocarriers provide advantages such as biocompatibility, biodegradability, reduced immunogenicity, and lower cytotoxicity. Furthermore, this nanoparticle demonstrated significant intrinsic antibacterial properties without being loaded with antibiotic medicines. As a medication and antibacterial nanoparticle delivery method, albumin nanoparticles have substantial applications in periodontal and dental infectious disorders such as periodontal infection, apical periodontitis, and peri-implantitis. As a result, in this article, we studied the usage of albumin nanoparticles in dental disorders.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
4
|
Łosiewicz B, Osak P, Górka-Kulikowska K, Maszybrocka J. Effect of Artificial Saliva Modification on Corrosion Resistance of Metal Oxide Coatings on Co-Cr-Mo Dental Alloy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5166. [PMID: 39517442 PMCID: PMC11546479 DOI: 10.3390/ma17215166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Surface modifications not only improve the corrosion resistance of Co-Cr-Mo dental alloys (Bego Wirobond® C) but also ensure their long-term performance and reliability in dental applications. This paper describes the preparation of single-layer TiO2-ZrO2 sol-gel coatings on the Co-Cr-Mo dental alloy using the method of dip-coating. The TiO2-ZrO2 sol-gel coatings were sintered at 300 and 500 °C. SEM analysis shows that sintering at 300 °C produces a uniform, slightly dense structure without micro-cracks, while sintering at 500 °C results in a denser structure with micro-cracks due to higher stress and shrinkage. EDS confirms that sintering temperature affects the elemental composition of the coating, with higher temperatures causing the volatilization or diffusion of Ti and Zr. Roughness measurements indicate that the Ra value increases with the sintering temperature, meeting dental application requirements. Electrochemical measurements by open-circuit potential, EIS, and cyclic potentiodynamic curves demonstrate that sintering temperature and saliva composition affect corrosion resistance, with NaF and mouthwashes (Listerine Total Care Teeth Protection® and Meridol®) generally increasing charge transfer resistance and double-layer capacitance. The ceramic TiO2-ZrO2 coatings significantly reduce pitting corrosion susceptibility at physiological and acidic pH, with the 500 °C sintered coating showing better protective properties. These findings highlight the potential of TiO2-ZrO2 coatings in enhancing the performance of Co-Cr-Mo dental alloys.
Collapse
Affiliation(s)
- Bożena Łosiewicz
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Patrycja Osak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Karolina Górka-Kulikowska
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznań, Poland
| | - Joanna Maszybrocka
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
5
|
Acar G, Özer T. Impact of bone levels on stress distribution around all-on-four concept: A 3-D finite element analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101905. [PMID: 38702013 DOI: 10.1016/j.jormas.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
This study aimed to investigate the impact of implant placement levels within the bone on stress distribution in the context of the All-on-Four concept. In this Finite Element Analysis(FEA), two 4.1 mm x 10 mm implants were axially placed in the anterior region of the jawbone, while two 4.1 mm x 14 mm implants were tilted at 30 ° in the posterior region following the all-on-four concept. In the EC scenario, all implants were inserted at the equicrestal level. In other scenarios, implants were positioned at 1 mm and 2 mm subcrestal levels (SC1, SC2). In all groups, the prosthesis was designed to replicate a group-function occlusion. A total load of 450 N was applied to the prosthesis. Upon deeper implant placement below the crest level, a trend of decreasing Von Mises stresses was observed in both implants and implant fragments. The highest Pmax value in the bone was recorded in SC-2, characterized by the absence of cortical bone support, with values of 3.16 N/mm2 in the anterior region and 1.55 N/mm2 in the posterior region. Conversely, the lowest Pmax values were noted in SC-1 for the anterior implant (2.67 N/mm2) and the EC for the posterior implant (0.87 N/mm2). Implant placements devoid of cortical bone support result in stress transmission from the implant and its components to the peri-implant bone. Optimal stress minimization is achieved by placing anterior axial angle implants deeper than the crest level while retaining cortical bone support and positioning posterior tilted implants at the crest level.
Collapse
Affiliation(s)
- Gülin Acar
- Hacettepe University Faculty of Dentistry, Oral and Maxillofacial Surgery Department, Ankara, Turkey.
| | - Taha Özer
- Hacettepe University Faculty of Dentistry, Oral and Maxillofacial Surgery Department, Ankara, Turkey
| |
Collapse
|
6
|
Baghizadeh S, Tabari K, Abbasi K, Tabatabaei SF, Heshmat H. Assessing shade matching capability of Omnichroma, a single shade composite in posterior restorations: an in vitro study. J Med Life 2024; 17:776-781. [PMID: 39539429 PMCID: PMC11556523 DOI: 10.25122/jml-2024-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024] Open
Abstract
Recent composites are being developed to simplify shade matching in composite restorations. Only a limited amount of research has been conducted to determine the optical performance of this newly introduced composite in this area. This study investigated the Omnichroma (OMN) color matching (a single shade composite within type-I restorations) via simulated clinical cavities. A total of 72 frames were created by occupying the mold with Estelite Σ Quick (ES) of A1, A2, and A3 shades (n = 24). Each shade of composite frame was divided into three subgroups (n = 8) according to cavity dimension (width = 2, 3, and 4 mm/depth = 2 mm). Cavities were filled with Omnichroma. Color parameters were calculated based on CIEDE2000 (ΔE00) using a non-contact spectrophotometer. Finally, the data were analyzed using a two-way ANOVA (the Tukey HSD test) (P = 0.05). The surrounding frame color significantly affected the color-matching capacity of OMN (P < 0.0001). Groups A1 and A3 showed the lowest and highest amounts of ΔE00, respectively. The cavity width also influenced the color-matching ability of OMN (P < 0.0001) significantly. According to the results, 4 mm cavity width showed the lowest amount of ΔE00, and 2 mm showed the highest amount. Monochromatic composites (OMN) did not match colors well in Class I cavities in posterior teeth. In cases of teeth with less chromatic surroundings, OMN matched shades better. OMN could better match shades in posterior teeth with wider cavities.
Collapse
Affiliation(s)
| | - Kasra Tabari
- Department of Operative Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farnaz Tabatabaei
- Operative Dentistry Department, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Haleh Heshmat
- Operative Dentistry Department, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Abdullah FM, Hatim QY, Oraibi AI, Alsafar TH, Alsandook TA, Lutfi W, Al-Hussaniy HA. Antimicrobial management of dental infections: Updated review. Medicine (Baltimore) 2024; 103:e38630. [PMID: 38968489 PMCID: PMC11224866 DOI: 10.1097/md.0000000000038630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024] Open
Abstract
Dental infections, which include anything from severe periodontal illnesses and abscess forms to routine tooth caries, are a major public health risk. This review article focuses on the pathophysiology and treatment of dental infections. A narrative review was conducted based on several published articles, relevant journals, and books in Google Scholar PubMed using the keywords dental caries, periodontal disease, gingivitis, and related diseases; we excluded duplicated information. Our review illustrated the types of dental infections and the proper antimicrobial drug that is suitable for this disease. Drawing from recent research findings and clinical evidence, we explore the spectrum of bacteria commonly associated with dental infections and their susceptibility profiles to various antibiotics. Emphasis is placed on understanding the mechanisms of antibiotic action and resistance in the context of dental pathogens, shedding light on optimal treatment regimens and potential challenges in clinical management. Additionally, we go over the clinical consequences of antibiotic therapy in dentistry, taking into account factors like patient selection, dose guidelines, and side effects. The management of dental infections through antimicrobial strategies has undergone significant advancements, as evidenced by this updated review. Besides the normal methods, emerging technologies such as 3D printing for drug delivery of antibiotics and disinfectants hold promise in enhancing treatment efficacy and patient outcomes. By leveraging the precision and customization afforded by 3D printing, dentistry can tailor antimicrobial interventions to individual patient needs, optimizing therapeutic outcomes while minimizing adverse effects.
Collapse
Affiliation(s)
| | - Qais Y. Hatim
- Al-Manara College for Medical Sciences, Amarah, Iraq
| | | | | | | | - Wael Lutfi
- Head of the Dentistry Department, Al-Manara College for Medical Sciences, Amarah, Iraq
| | - Hany A. Al-Hussaniy
- Department of Pharmacy, Bilad Alrafidain University College, Baqubah, Iraq
- Dr Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| |
Collapse
|
8
|
Mureed M, Fatima A, Sattar T, Aiman Batool S, Zahid A, Usman Khan H, Fatima A, Shahid H, Nasir S, Yizdin M, Tehmahb E, Tebyaniyan H. The Complementary Roles of Neurological and Musculoskeletal Physical Therapy and Regenerative Medicine: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1062. [PMID: 39064491 PMCID: PMC11278673 DOI: 10.3390/medicina60071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Regenerative medicine, encompassing various therapeutic approaches aimed at tissue repair and regeneration, has emerged as a promising field in the realm of physical therapy. Aim: This comprehensive review seeks to explore the evolving role of regenerative medicine within the domain of physical therapy, highlighting its potential applications, challenges, and current trends. Researchers selected publications of pertinent studies from 2015 to 2024 and performed an exhaustive review of electronic databases such as PubMed, Embase, and Google Scholar using the targeted keywords "regenerative medicine", "rehabilitation", "tissue repair", and "physical therapy" to screen applicable studies according to preset parameters for eligibility, then compiled key insights from the extracted data. Several regenerative medicine methods that are applied in physical therapy, in particular, stem cell therapy, platelet-rich plasma (PRP), tissue engineering, and growth factor treatments, were analyzed in this research study. The corresponding efficacy of these methods in the recovery process were also elaborated, including a discussion on facilitating tissue repair, alleviating pain, and improving functional restoration. Additionally, this review reports the challenges concerning regenerative therapies, among them the standardization of protocols, safety concerns, and ethical issues. Regenerative medicine bears considerable potential as an adjunctive therapy in physiotherapy, providing new pathways for improving tissue repair and functional results. Although significant strides have been made in interpreting the potential of regenerative techniques, further research is warranted to enhance protocols, establish safety profiles, and increase access and availability. Merging regenerative medicine into the structure of physical therapy indicates a transformative alteration in clinical practice, with the benefit of increasing patient care and improving long-term results.
Collapse
Affiliation(s)
- Maryam Mureed
- The University of Lahore, Lahore 54570, Pakistan; (M.M.); (H.U.K.); (H.S.)
| | - Arooj Fatima
- University Institute of Physical Therapy, University of Lahore, Lahore 54570, Pakistan; (A.F.); (T.S.); (S.A.B.)
| | - Tayyaba Sattar
- University Institute of Physical Therapy, University of Lahore, Lahore 54570, Pakistan; (A.F.); (T.S.); (S.A.B.)
| | - Syeda Aiman Batool
- University Institute of Physical Therapy, University of Lahore, Lahore 54570, Pakistan; (A.F.); (T.S.); (S.A.B.)
| | - Ambreen Zahid
- Institute of Physical Therapy, University of Lahore, Lahore 54570, Pakistan;
| | - Haleema Usman Khan
- The University of Lahore, Lahore 54570, Pakistan; (M.M.); (H.U.K.); (H.S.)
| | | | - Hamna Shahid
- The University of Lahore, Lahore 54570, Pakistan; (M.M.); (H.U.K.); (H.S.)
| | - Saba Nasir
- Forman Christian College University, Lahore 54600, Pakistan;
| | - Mehsn Yizdin
- Department of Science and Research, Islimic Azade University, Tehran 14878-92855, Iran
| | - Elih Tehmahb
- Department of Science and Research, Islimic Azade University, Tehran 14878-92855, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran 14878-92855, Iran
| |
Collapse
|
9
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
10
|
Bassir L, Taravati S, Nouri F, Rahimi S. The effect of different intracanal irrigants on the push-out bond strength of dentin in damaged anterior primary teeth. J Med Life 2024; 17:536-542. [PMID: 39144693 PMCID: PMC11320612 DOI: 10.25122/jml-2024-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 08/16/2024] Open
Abstract
This experimental study investigated the effect of different intracanal irrigants on the push-out bond strength of dentin in damaged anterior primary teeth. The crowns of 90 anterior primary teeth were sectioned horizontally, 1 mm above the cementoenamel junction (CEJ). Following canal preparation with K-files, all groups except the negative control received normal saline irrigation. Canals were then irrigated with either 3% or 5.25% sodium hypochlorite (NaOCl), 2% or 0.2% chlorhexidine (CHX) solution (except negative and positive controls). The roots were filled with Metapex material and covered with a calcium hydroxide liner. In root canals, the bond was applied by self-etching and then light-cured for 20 seconds before canals were restored incrementally with composite. Stereomicroscopes were used to assess failure patterns. Push-out bond strengths (MPa ± SD) were: 3% NaOCl (16.92 ± 5.78), 5.25% NaOCl (8.96 ± 3.55), 2% CHX (14.76 ± 5.56), and 0.2% CHX (7.76 ± 2.93). Significant differences were seen across the irrigants regarding the push-out bond strength of dentin sections (P <0.001). The most frequent failures were adhesive and cohesive. NaOCl and CHX irrigants increased the push-out bond strength compared to controls. Compared to controls, both 3% NaOCl and 2% CHX irrigants significantly increased the push-out bond strength of dentin in non-vital anterior primary teeth.
Collapse
Affiliation(s)
- Leila Bassir
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Taravati
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeide Rahimi
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Saleh Hasani Jebelli M, Yari A, Nikparto N, Cheperli S, Asadi A, Darehdor AA, Nezaminia S, Dortaj D, Hasani Mehraban S, Hakim LK. Tissue engineering innovations to enhance osseointegration in immediate dental implant loading: A narrative review. Cell Biochem Funct 2024; 42:e3974. [PMID: 38491807 DOI: 10.1002/cbf.3974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The demand for efficient and accelerated osseointegration in dental implantology has led to the exploration of innovative tissue engineering strategies. Immediate implant loading reduces treatment duration and necessitates robust osseointegration to ensure long-term implant success. This review article discusses the current studies of tissue engineering innovations for enhancing osseointegration in immediate dental implant loading in the recent decade. Keywords "tissue engineering," "osseointegration," "immediate implant loading," and related terms were systematically searched. The review highlights the potential of bioactive materials and growth factor delivery systems in promoting osteogenic activity and accelerating bone regeneration. The in vivo experiment demonstrates significantly improved osseointegration in the experimental group compared to traditional immediate loading techniques, as evidenced by histological analyses and biomechanical assessments. It is possible to revolutionize the treatment outcomes and patient satisfaction in dental implants by integrating bioactive materials and growth factors.
Collapse
Affiliation(s)
| | - Amir Yari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Nariman Nikparto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Amirali Asadi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Arabi Darehdor
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayna Nezaminia
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Dorara Dortaj
- Operative Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hasani Mehraban
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Kamali Hakim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|