1
|
Han Z, Wang H, Guo D, Zhang J. Integrative transcriptomic and metabonomic profiling analyses reveal the molecular mechanism of Chinese traditional medicine huankuile suspension on TNBS-induced ulcerative colitis. Aging (Albany NY) 2021; 13:5087-5103. [PMID: 33535180 PMCID: PMC7950284 DOI: 10.18632/aging.202427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the therapeutic mechanism of Huankuile suspension (HKL), a typical traditional Chinese medicine, on ulcerative colitis (UC) in a rat model. UC model was established by 2,4,6-trinitrobenzene sulfonic acid (TNBS) enema. Then, the rats were randomly divided into three groups: water treated group, HKL treated group and 5- amino salicylic acid (5-ASA) treated group. After 7 days treatment, the histological score in the HKL treated group was comparable with those in the control group. qRT-PCR and western blot demonstrated that HKL could significantly decreased pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, while having less effect on anti-inflammatory cytokines, including IL-4 and IL-10. Transcriptomic analysis identified 670 differentially expressed genes (DEGs) between HKL treated UC rats and water treated UC rats. These DEGs were mostly related with immune response. Besides, metabonomic profile revealed 136 differential metabolites which were significantly enriched in “pyrimidine metabolism”, “glutathione metabolism”, “purine metabolism” and “citrate cycle”. Finally, integrated analysis revealed that metabonomic pathways including “steroid hormone biosynthesis”, “pyrimidine metabolism”, “purine metabolism”, and “glutathione metabolism” were altered by HKL at both transcriptomic and metabonomic levels. HKL could inhibit inflammation and regulate bile metabolism, pyrimidine metabolism, purine metabolism, glutathione metabolism and citrate cycle.
Collapse
Affiliation(s)
- Zhenglan Han
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
| | - Hanyan Wang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
| | - Dongmei Guo
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
| | - Jingping Zhang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
| |
Collapse
|
2
|
Zhang H, Wang Y, Liu J, Kuerban K, Li J, Iminjan M, Ye L. Traditional Uyghur medicine Quercus infectoria galls water extract triggers apoptosis and autophagic cell death in colorectal cancer cells. BMC Complement Med Ther 2020; 20:371. [PMID: 33272252 PMCID: PMC7712637 DOI: 10.1186/s12906-020-03167-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background The water extract of Quercuse infectoria galls (QIG) is the active ingredient of Uyghur medicine Xipayi Kui Jie’an (KJA) which has promising therapeutic effects on Ulcerative Colitis (UC) as an alternative medicine. Considering the relationship between UC and the development of colorectal cancer (CRC), the present work aims to explore the direct anti-CRC activity of QIG extract. Methods CCK8 assay and flow cytometry were used to detect cytotoxicity and apoptosis. Transmission electron microscopy (TEM), flow cytometry, laser confocal and western blotting were performed to examine autophagy. We also adopted Reactive Oxygen Assay kit, as well as transwell and wound healing tests to study the underlying mechanism of QIG against CRC cells. Results First, we found that QIG extract could suppress the viability of CRC cells and trigger caspases-dependent apoptosis. Subsequently, we proved for the first time that QIG extract also triggered autophagic cell death in CRC cells, which together with apoptosis contributed to the cytotoxic effect on CRC cells. Further investigation revealed that QIG-induced cytotoxicity associated with intracellular ROS accumulation which could suppress the AKT/mTOR signaling pathway, and then induce autophagy and inhibit cell growth. Besides, Erk signaling pathway was also involved in the process of autophagic cell death. Moreover, QIG extract also influenced EMT process and inhibited CRC cell migration. Conclusion Altogether, this study provides a basis for the utilization of QIG as an alternative medicine for CRC prevention and treatment.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yongbing Wang
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201200, China
| | - Jiayang Liu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Kudelaidi Kuerban
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jian Li
- Endoscopy Center, Minhang Branch of Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Mubarak Iminjan
- Department of pharmaceutical and physical chemistry, College of pharmacy, Xinjiang Medical University, Xinjiang, 830011, China.
| | - Li Ye
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Ercan G, Yigitturk G, Erbas O. Therapeutic effect of adenosine on experimentally induced acute ulcerative colitis model in rats. Acta Cir Bras 2020; 34:e201901204. [PMID: 32074166 PMCID: PMC7025795 DOI: 10.1590/s0102-865020190120000004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose To examine the therapeutic effect of external adenosine on an acetic acid-induced acute ulcerative colitis model in rats. Methods Thirty male mature rats were divided into three groups as control, acute colitis (AC) and AC+adenosine group (AC+AD). AC was induced by rectal administration of 4% acetic acid (AA). 5mg/kg/day adenosine was performed i.p for 4 weeks to AC+AD group. Rectum and colon were excised for microscopic and histopathological histopathologic evaluations, and immunohistochemical analysis of nuclear factor kappa B (NF-kB). Blood samples were collected for biochemical detection of TNF-α, Pentraxin-3 and malondialdehyde (MDA) levels. Results AC group had generalized hyperemia and hemorrhage with increased macroscopic and histopathological scores compared with control (P <0.0001) while adenosine treatment decreased these scores significantly (P <0.001), with reduced distribution of disrupted epithelium, leukocyte infiltrates, and focal hemorrhage. AC group showed significantly increased immunoexpression of NF-kB in rectum, plasma and tissue levels of TNF-α, plasma Pentraxin-3 and MDA levels (P <0.0001) while adenosine reduced these levels (P < 0.05). Conclusion Adenosine appears to promote healing of colon and rectum exposed to AA-induced AC, suggesting a boosting effect of adenosine on the intestinal immune system to cure ulcerative colitis.
Collapse
Affiliation(s)
- Gulcin Ercan
- University of Health Science Bagcilar Training and Research Hospital, Turkey
| | | | | |
Collapse
|
4
|
Yu W, Su X, Chen W, Tian X, Zhang K, Guo G, Zhou L, Zeng T, Han B. Three types of gut bacteria collaborating to improve Kui Jie’an enema treat DSS-induced colitis in mice. Biomed Pharmacother 2019; 113:108751. [DOI: 10.1016/j.biopha.2019.108751] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
|
5
|
Li Y, Xie Z, Gao T, Li L, Chen Y, Xiao D, Liu W, Zou B, Lu B, Tian X, Han B, Guo Y, Zhang S, Lin L, Wang M, Li P, Liao Q. A holistic view of gallic acid-induced attenuation in colitis based on microbiome-metabolomics analysis. Food Funct 2019; 10:4046-4061. [DOI: 10.1039/c9fo00213h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GA enema can treat UC by influencing microbiota-mediated metabolism.
Collapse
|
6
|
Yu W, Li Z, Long F, Chen W, Geng Y, Xie Z, Yao M, Han B, Liu T. A Systems Pharmacology Approach to Determine Active Compounds and Action Mechanisms of Xipayi KuiJie'an enema for Treatment of Ulcerative colitis. Sci Rep 2017; 7:1189. [PMID: 28446747 PMCID: PMC5430631 DOI: 10.1038/s41598-017-01335-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/29/2017] [Indexed: 01/15/2023] Open
Abstract
Xipayi Kui Jie’an (KJA), a type of traditional Uygur medicine (TUM), has shown promising therapeutic effects in Ulcerative colitis (UC). Owing to the complexity of TUM, the pharmacological mechanism of KJA remains vague. Therefore, the identification of complex molecular mechanisms is a major challenge and a new method is urgently needed to address this problem. In this study, we established a feasible pharmacological model based on systems pharmacology to identify potential compounds and targets. We also applied compound-target and target-diseases network analysis to evaluate the action mechanisms. According to the predicted results, 12 active compounds were selected and these compounds were also identified by HPLC-ESI-MS/MS analysis. The main components were tannins, this result is consistent with the prediction. The active compounds interacted with 22 targets. Two targets including PTGS2 and PPARG were demonstrated to be the main targets associated with UC. Systematic analysis of the constructed networks revealed that these targets were mainly involved in NF-κB signaling pathway. Furthermore, KJA could also regulate the CD4 + CD25 + Foxp3 + Treg cells. In conclusion, this systems pharmacology-based approach not only explained that KJA could alleviate the UC by regulating its candidate targets, but also gave new insights into the potential novel therapeutic strategies for UC.
Collapse
Affiliation(s)
- Wei Yu
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Zhihong Li
- Key Laboratory of Chinese Internal Medicine of Education, DongZhiMen Hospital, Beijing, 100070, China
| | - Fei Long
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Wen Chen
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Yurong Geng
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Zhiyong Xie
- The first affiliated hospital, School of medicine, Shihezi university, Xinjiang, 832002, China
| | - Meicun Yao
- College of pharmacy, Sun yat-sen university, Guangzhou, 510006, China
| | - Bo Han
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China.
| | - Teigang Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Zhang Y, Yan HL, Zhou HY, Song LH. Animal models of ulcerative colitis developed with chemicals. Shijie Huaren Xiaohua Zazhi 2015; 23:4384-4392. [DOI: 10.11569/wcjd.v23.i27.4384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the incidence of ulcerative colitis (UC) has been rising obviously with the changes in people's diet (e.g., high fat diet), and it has become a common digestive system disease as well as a main cause of chronic diarrhea. Patients usually suffer from great pain because of the delayed recovery and repeated attacks of UC, and some of the patients may develop into colon cancer. At present, the pathogenesis of UC is not fully clear, anti-inflammatory drugs are mostly used clinically for the treatment of UC, but their efficacy is not satisfying. Therefore, it is of great significance to further investigate the etiology, mechanisms and new treatment strategies for UC using effective animal models of UC. There are many methods to establish animal models of UC. The present review mainly focuses on the mechanisms, characteristics and applications of UC animal models established using chemical substances.
Collapse
|