1
|
Luo YW, Zhu XL, Yang ZM, Zhou JH, Tao T, Chen BH, Qin SL, Liu BL, Hu W. Adrenomedullin gene delivery rescues estrogen production in Leydig cells via the inhibition of TGF-β1/Smads signaling pathway. Reprod Toxicol 2025; 132:108834. [PMID: 39793742 DOI: 10.1016/j.reprotox.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Our previous findings demonstrated that adrenomedullin (ADM) protects against the reduction in testosterone production and apoptosis of Leydig cells both in vitro and in vivo. In this study, we investigated whether ADM could preserve estrogen production in Leydig cells by suppressing the transforming growth factor-β1 (TGF-β1) / Smads signaling pathway. Leydig cells were treated with lipopolysaccharide (LPS) and recombinant adenovirus ADM (Ad-ADM), an adeno-associated viral vector expressing ADM. Cell viability and cytochrome P450 aromatase (P450arom) activity were assessed. Estrogen, testosterone, and TGF-β1 concentrations in the culture medium were measured. Additionally, the gene expression and protein levels of CYP19, TGF-β1, and Smads were evaluated. The results indicated that Ad-ADM mitigated the reductions in Leydig cell viability and testosterone production, counteracted the decreases in P450arom activity, and restored CYP19 gene expression and protein levels in LPS-treated cells. Moreover, Ad-ADM reduced the elevated gene expression and protein levels of Smads and TGF-β1 induced by LPS. Based on these findings, we propose that ADM safeguards estrogen production in Leydig cells by inhibiting the TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
- You-Wen Luo
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Xia-Lian Zhu
- Department of Nuclear Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, China
| | - Zhi-Min Yang
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Jian-Hua Zhou
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Tong Tao
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Bing-Hai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Song-Lin Qin
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Bo-Long Liu
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Wei Hu
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China.
| |
Collapse
|
2
|
Fayez E, Salama A, Ismail MA, Youssef FS, Rawash ZM, Oshba MR, Samir H. Dietary supplementation of Astragalus polysaccharide or its nanoparticles enhances testicular hemodynamics, echotexture, scrotal circumference, concentration of testosterone, estradiol, nitric oxide, and total antioxidant capacity, and semen quality in mature Ossimi rams. BMC Vet Res 2025; 21:55. [PMID: 39915778 PMCID: PMC11804079 DOI: 10.1186/s12917-025-04477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
This study investigated, for the first time, the potential role of Astragalus polysaccharide (APS) and APS nanoparticles on testicular blood flow (TBF) and semen quality in Ossimi rams. Fifteen sexually mature Ossimi rams were allocated randomly into two treated groups that orally administered either nano APS (2 g/ram/day; n = 5) or APS (20 g/ram/day; n = 5) for four weeks and a control group (n = 5). The nano-emulsion was prepared by adding corn oil to the APS solution, sonicated, centrifuged at 20,000 rpm, then washed 3-4 times, and vacuum dried overnight at 40 °C. The antioxidant activity of APS and APS nano-emulsion was evaluated in vitro. Blood collection and ultrasonographic assessment of the testes and supratesticular arteries (STAs) were conducted immediately before treatment (W0) and once weekly for 6 successive weeks after APS and nano APS administration (W1-W6). Serum testosterone (T) and estradiol (E2) concentrations were determined by ELISA kits, while nitric oxide (NO) and total antioxidant capacity (TAC) were measured spectrophotometrically. Moreover, semen collection and evaluation of some sperm parameters were performed once a week. Results revealed decreases (P < 0.05) in the Doppler indices (resistive index; RI, pulsatility index; PI, and systolic/diastolic; S/D) of the testicular arteries at most time points of the study in the nano APS and APS groups. Pixel intensity (PIX) and integrated density (IND) of testicular parenchyma were significantly reduced (P ˂ 0.05) in the treated groups compared to the control one. T, E2, NO, and TAC concentrations increased (P < 0.05) in the treated groups compared to the control one. Increases (P < 0.05) were noticed in the mass motility, progressive motility %, live sperm %, and membrane integrity % in nano APS and APS groups, compared to the control. Rams in the nano APS group had significantly higher (P < 0.05) sperm cell concentration than the control one. In conclusion, this study extrapolated that the dietary administration of APS and its nanoparticles can improve TBF, testicular echotexture, sperm characteristics, and the concentration of serum T, E2, NO, and TAC with a more significant effect in the APS nanoparticles compared with APS. So, it could be recommended as a dietary supplementation (2 g/ram/day) for enhancing the reproductive performance of rams.
Collapse
Affiliation(s)
- Eman Fayez
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ali Salama
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Ahmed Ismail
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Zaher Mohamed Rawash
- Artificial Insemination and Embryo Transfer Department, Animal Reproduction Research Institute (ARRI), Agriculture Research Centre (ARC), Giza, Egypt
| | - M R Oshba
- Diagnostic Imaging and Endoscopy Unit (DIEU), Animal Reproduction Research Institute (ARRI), Agriculture Research Centre (ARC), Giza, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
3
|
Luo YW, Zhu XL, Li MY, Zhou JH, Yang ZM, Tong T, Chen BH, Qin SL, Liu BL, Hu W. Anti-apoptotic effect of adrenomedullin gene delivery on Leydig cells by suppressing TGF-β1 via the Hippo signaling pathway. Reprod Toxicol 2023; 119:108418. [PMID: 37268150 DOI: 10.1016/j.reprotox.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This study aims to establish whether adrenomedullin (ADM) is capable to restore the steroidogenic functions of Leydig cells by suppressing transforming growth factor-β1 (TGF-β1) through Hippo signaling. Primary Leydig cells were treated with lipopolysaccharide (LPS), an adeno-associated virus vector that expressed ADM (Ad-ADM) or sh-RNA of TGF-β1 (Ad-sh-TGF-β1). The cell viability and medium concentrations of testosterone were detected. Gene expression and protein levels were determined for steroidogenic enzymes, TGF-β1, RhoA, YAP, TAZ and TEAD1. The role of Ad-ADM in the regulation of TGF-β1 promoter was confirmed by ChIP and Co-IP. Similar to Ad-sh-TGF-β1, Ad-ADM mitigated the decline in the number of Leydig cells and plasma concentrations of testosterone by restoring the gene and protein levels of SF-1, LRH1, NUR77, StAR, P450scc, 3β-HSD, CYP17 and 17β-HSD. Similar to Ad-sh-TGF-β1, Ad-ADM not only inhibited the LPS-induced cytotoxicity and cell apoptosis but also restored the gene and protein levels of SF-1, LRH1, NUR77, StAR, P450scc, 3β-HSD, CYP17 and 17β-HSD, along with the medium concentrations of testosterone in LPS-induced Leydig cells. Like Ad-sh-TGF-β1, Ad-ADM improved LPS-induced TGF-β1 expression. In addition, Ad-ADM suppressed RhoA activation, enhanced the phosphorylation of YAP and TAZ, reduced the expression of TEAD1 which interacted with HDAC5 and then bound to TGF-β1 gene promoter in LPS-exposed Leydig cells. It is thus suspected that ADM can exert anti-apoptotic effect to restore the steroidogenic functions of Leydig cells by suppressing TGF-β1 through Hippo signaling.
Collapse
Affiliation(s)
- You-Wen Luo
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xia-Lian Zhu
- Department of Nuclear Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming-Yong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jian-Hua Zhou
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Min Yang
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tao Tong
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bing-Hai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Song-Lin Qin
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo-Long Liu
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Hu
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Gao X, Yao X, Li X, Liang Y, Liu Z, Wang Z, Li K, Li Y, Zhang G, Wang F. Roles of WNT6 in Sheep Endometrial Epithelial Cell Cycle Progression and Uterine Glands Organogenesis. Vet Sci 2021; 8:vetsci8120316. [PMID: 34941843 PMCID: PMC8708052 DOI: 10.3390/vetsci8120316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022] Open
Abstract
The uterus, as part of the female reproductive tract, is essential for embryo survival and in the maintenance of multiple pregnancies in domestic animals. This study was conducted to investigate the effects of WNT6 on Hu sheep endometrial epithelial cells (EECs) and uterine glands (UGs) in Hu sheep, with high prolificacy rates. In the present study, Hu sheep with different fecundity, over three consecutive pregnancies, were divided into two groups: high prolificacy rate group (HP, litter size = 3) and low prolificacy rate group (LP, litter size = 1). A comparative analysis of the endometrial morphology was performed by immunofluorescence. RNA-seq was used to analyze the gene’s expression in endometrium of HP and LP Hu sheep, providing a candidate gene, which was investigated in EECs and organoid culture. Firstly, higher density of UGs was found in the HP Hu sheep groups (p < 0.05). The RNA-seq data revealed the importance of the WNT signaling pathway and WNT6 gene in Hu sheep endometrium. Functionally, WNT6 could promote the cell cycle progression of EECs via WNT/β-catenin signal and enhance UGs organogenesis. Taken together, WNT6 is a crucial regulator for sheep endometrial development; this finding may offer a new insight into understanding the regulatory mechanism of sheep prolificacy.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxu Liang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingqi Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (X.Y.); (X.L.); (Y.L.); (Z.L.); (Z.W.); (K.L.); (Y.L.); (G.Z.)
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-84395381
| |
Collapse
|
5
|
Durazzo A, Nazhand A, Lucarini M, Silva AM, Souto SB, Guerra F, Severino P, Zaccardelli M, Souto EB, Santini A. Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-01003-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractMedicinal plants always are part of folk medicine and are nowadays receiving worldwide attention for prophylaxis, management, and treatment of several diseases, as an alternative to chemical drugs. The current work provided a comprehensive overview and analysis of the Astragalus and health relationship in literature. The analysis of their therapeutic potential is thus instrumental to understand their bioactivity. Among these, the flowering medicinal plant Astragalus membranaceus has raised interest due to several beneficial health effects. This perspective review discussed the botanical, geographical, historical, and the therapeutic properties of A. membranaceus, with a special focus on its health improving effects and medicinal applications both in vitro and in vivo.
Graphic abstract
Collapse
|
6
|
Ebrahimi M, Yaghoobi MM. Effects of aqueous and methanolic extracts of Astragalus Longistylus on growth and proliferation of human dental pulp stem cells. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00519-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Opuwari CS, Matshipi MN, Phaahla MK, Setumo MA, Moraswi RT, Zitha AA, Offor U, Choma SSR. Androgenic effect of aqueous leaf extract of
Moringa oleifera
on Leydig TM3 cells in vitro. Andrologia 2020; 52:e13825. [DOI: 10.1111/and.13825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chinyerum S. Opuwari
- Department of Pre‐Clinical Sciences University of Limpopo Polokwane South Africa
| | - Matome N. Matshipi
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Mantaneng K. Phaahla
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Mmaphulane A. Setumo
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Rantobeng T. Moraswi
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Amukelani A. Zitha
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Ugochukwu Offor
- Department of Pre‐Clinical Sciences University of Limpopo Polokwane South Africa
| | - Solomon S. R. Choma
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| |
Collapse
|
8
|
ALSHINNAWY AS, EL-SAYED WM, TAHA AM, SAYED AA, SALEM AM. Astragalus membranaceus and Punica granatum alleviate infertility and kidney dysfunction induced by aging in male rats. Turk J Biol 2020; 44:166-175. [PMID: 32922124 PMCID: PMC7478130 DOI: 10.3906/biy-2001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
By aging, male fertility and kidney function decline. Therefore, the investigation of health span-extending agents becomes more urgent to overcome aging-induced infertility and kidney dysfunction. The current research was undertaken to investigate the antiaging efficacy of Astragalus membranaceus telomerase activator-65 (Ta-65) and pomegranate supplements. Forty male Wistar rats were divided into young rats, aged rats, aged rats treated with Ta-65 (500mg/kg/day), and aged rats treated with pomegranate (250mg/kg/day). Testosterone, FSH, LH, and kidney functions were measured in serum. Sperm analysis as well as testicular histological examination was performed. Aging caused an imbalance in male sex hormones resulting in sperm abnormality and reductions in the sperm count and motility. Elevations in serum creatinine, uric acid, sodium, and potassium were reported in aged rats. Treatment with Ta-65 or pomegranate effectively ameliorated all the deteriorations induced by normal aging in male fertility and renal function. Ta-65 and pomegranate possessed strong antiaging activity by alleviating aging-induced male infertility through reestablishing the hormonal balance and testis architecture. They also alleviated the kidney dysfunction. On comparing Ta-65 with pomegranate, the improvement in FSH, LH, and sperm abnormalities caused by Ta-65 was much better than that caused by pomegranate.
Collapse
Affiliation(s)
- Ameera S. ALSHINNAWY
- Department of Biochemistry, Faculty of Science, Ain Shams University, CairoEgypt
| | - Wael M. EL-SAYED
- Department of Zoology, Faculty of Science, Ain Shams University, CairoEgypt
| | - AlShaimaa M. TAHA
- Department of Biochemistry, Faculty of Science, Ain Shams University, CairoEgypt
| | - Ahmed A. SAYED
- Department of Biochemistry, Faculty of Science, Ain Shams University, CairoEgypt
- Children’s Cancer Hospital, CairoEgypt
| | - Ahmed M. SALEM
- Department of Biochemistry, Faculty of Science, Ain Shams University, CairoEgypt
| |
Collapse
|
9
|
Gao X, Yao X, Wang Z, Li X, Li X, An S, Wei Z, Zhang G, Wang F. Long non-coding RNA366.2 controls endometrial epithelial cell proliferation and migration by upregulating WNT6 as a ceRNA of miR-1576 in sheep uterus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194606. [PMID: 32679187 DOI: 10.1016/j.bbagrm.2020.194606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs (lncRNAs) play an important regulatory role in mammalian fecundity. Currently, most studies are primarily concentrated on ovarian lncRNAs, ignoring the influence of uterine lncRNAs on the fecundity of female sheep. In this study, we found a higher density of uterine glands and endometrial microvessel density (MVD) in high prolificacy group of Hu sheep compared to low prolificacy groups (p < 0.05) as well as an increased level of serum placental growth factor (PLGF). Hundreds of differentially expressed (DE) lncRNAs were identified in Hu sheep with different fecundity by RNA sequencing (RNA-seq), and their targets were enriched in some signaling pathways involved in endometrial functions, such as the estrogen signaling pathway, nuclear factor kappa B (NF-κB) signaling pathway, oxytocin signaling pathway, and Wnt signaling pathway. Furthermore, the underlying mechanisms of competitive endogenous RNA (ceRNA) of lncRNA366.2-miR-1576- WNT6 were determined by bioinformatics analysis. Functionally, our results indicated that lncRNA366.2 promoted endometrial epithelial cell (EEC) proliferation, migration, and growth factor expression by sponging miR-1576 to upregulate WNT6 expression and activate the Wnt/β-catenin pathway. Taken together, our research indicated the regulatory mechanism of the lncRNA366.2-miR-1576-WNT6 in EEC proliferation and migration. Furthermore, this study provides a new theoretical reference for the identification of candidate genes related to fecundity.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohe Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiyu An
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongyou Wei
- Taicang Animal Husbandry and Veterinary station, Taicang 215400, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Han Y, Peng X, Si W, Liu G, Han Y, Jiang X, Na R, Yang L, Wu J, E G, Zeng Y, Zhao Y, Huang Y. Local expressions and function of Kiss1/GPR54 in goats' testes. Gene 2020; 738:144488. [DOI: 10.1016/j.gene.2020.144488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
|
11
|
Gao X, Zhu M, An S, Liang Y, Yang H, Pang J, Liu Z, Zhang G, Wang F. Long non-coding RNA LOC105611671 modulates fibroblast growth factor 9 (FGF9) expression by targeting oar-miR-26a to promote testosterone biosynthesis in Hu sheep. Reprod Fertil Dev 2020; 32:373-382. [DOI: 10.1071/rd19116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factors (FGFs) play crucial roles in early gonadal development and germ cell maturation of mammals; FGF9 is involved in mammalian testis steroidogenesis. However, the upstream regulators of FGF9 in ovine testosterone biosynthesis remain unknown. Long non-coding RNAs (lncRNAs) are crucial regulators of multiple biological functions that act by altering gene expression. In the present study, we analysed the role of LOC105611671, a lncRNA upstream of FGF9, in Hu sheep steroidogenesis. We found that LOC105611671 expression increased significantly in Hu sheep testes during sexual maturation (P<0.05). Moreover, levels of FGF9 and testosterone were decreased by LOC105611671 knockdown in Hu sheep Leydig cells (LCs). Results of transient transfection and luciferase assays revealed that FGF9 is a functional target gene of oar-miR-26a in ovine LCs. Further functional validation experiments revealed that LOC105611671 regulates testosterone biosynthesis by targeting oar-miR-26a. Overall, the present study describes the expression profile of LOC105611671 during sexual maturation and demonstrates that LOC105611671 modulates FGF9 expression by targeting oar-miR-26a to promote testis steroidogenesis in Hu sheep. Our research provides a new theoretical basis for genetic and molecular research on testosterone biosynthesis in sheep.
Collapse
|
12
|
Li MY, Zhu XL, Zhao BX, Shi L, Wang W, Hu W, Qin SL, Chen BH, Zhou PH, Qiu B, Gao Y, Liu BL. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis 2019; 10:489. [PMID: 31222000 PMCID: PMC6586845 DOI: 10.1038/s41419-019-1728-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
Adrenomedullin (ADM) exerts anti-oxidant, anti-inflammatory and anti-apoptotic effects in Leydig cells. However, the role and mechanism of ADM in the pyroptosis of Leydig cells are poorly understood. This study first showed the protective effects of ADM on the pyroptosis and biological functions of Leydig cells exposed to lipopolysaccharide (LPS) by promoting autophagy. Primary rat Leydig cells were treated with various concentrations of LPS and ADM, together with or without N-acetyl-L-cysteine (NAC) or 3-methyladenine (3-MA). Cell proliferation was detected through CCK-8 and BrdU incorporation assays, and ROS level was measured with the DCFDA assay. Real-time PCR, western blot, immunofluorescence, transmission electron microscopy, TUNEL and flow cytometry were performed to examine ADM's effect on the pyroptosis, autophagy and steroidogenic enzymes of Leydig cells and AMPK/mTOR signalling. Like NAC, ADM dose-dependently reduced LPS-induced cytotoxicity and ROS overproduction. ADM also dose-dependently ameliorated LPS-induced pyroptosis by reversing the increased expression of NLRP3, ASC, caspase-1, IL-1β, IL-18, GSDMD, caspase-3, caspase-7, TUNEL-positive and PI and active caspase-1 double-stained positive rate, DNA fragmentation and LDH concentration, which could be rescued via co-incubation with 3-MA. ADM dose-dependently increased autophagy in LPS-induced Leydig cells, as confirmed by the increased expression of LC3-I/II, Beclin-1 and ATG-5; decreased expression of p62 and autophagosomes formation; and increased LC3-II/LC3-I ratio. However, co-treatment with 3-MA evidently decreased autophagy. Furthermore, ADM dose-dependently rescued the expression of steroidogenic enzymes, including StAR, P450scc, 3β-HSD and CYP17, and testosterone production in LPS-induced Leydig cells. Like rapamycin, ADM dose-dependently enhanced AMPK phosphorylation but reduced mTOR phosphorylation in LPS-induced Leydig cells, which could be rescued via co-incubation with 3-MA. In addition, pyroptosis was further decreased, and autophagy was further promoted in LPS-induced Leydig cells upon co-treatment with ADM and rapamycin. ADM may protect the steroidogenic functions of Leydig cells against pyroptosis by activating autophagy via the ROS-AMPK-mTOR axis.
Collapse
Grants
- Hunan Natural Science Foundation, Hunan, China (Grant No.: 2019JJ40269), Health and Family Planning Research Project of Hunan Province, Changsha, China (Grant No.: B2017051)
- National Science Foundation of China, Beijing, China (Grant No.: 81401190)
- Social Development Foundation of Zhenjiang, Zhenjiang, China (Grant No.: SH2016031)
- National Science Foundation of China, Beijing, China (Grant No.: 81501921),Science and Technology Project of Wuhan, China (Grant No.: 2016060101010045)
- National Science Foundation of China, Beijing, China (Grant No.: 81602241)
- National Science Foundation of China, Beijing, China (Grant Nos.: 81471449,81871110 and 81671449),Guangdong Province Natural Science Foundation, Guangzhou, China (Grant No.: 2015A030313141), Guangdong Province Science and Technology Project, Guangzhou, China (Grant Nos.: 2016B030230001 and 2016A040403113), Key Scientific and Technological Program of Guangzhou City, Guangzhou, China (Grant No.: 201604020189)
Collapse
Affiliation(s)
- Ming-Yong Li
- Department of Urology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China
| | - Xia-Lian Zhu
- Department of Hand Surgery, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan Province, China
| | - Bi-Xia Zhao
- Department of Urology, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan Province, China
| | - Lei Shi
- Department of Oncology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Wei Hu
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China.
| | - Song-Lin Qin
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China.
| | - Bing-Hai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, No. 438 Liberation Road, Zhenjiang, 212000, Jiangsu Province, China.
| | - Pang-Hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Yong Gao
- Reproductive Medicine Centre, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Second Zhongshan Road, Guangzhou, 510080, Guangdong Province, China
| | - Bo-Long Liu
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
13
|
Zhang Z, Cheng X, Ge D, Wang S, Qi B. Protective Effects of Astragaloside IV Combined with Budesonide in Bronchitis in Rats by Regulation of Nrf2/Keap1 Pathway. Med Sci Monit 2018; 24:8481-8488. [PMID: 30471087 PMCID: PMC6270885 DOI: 10.12659/msm.911150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study was conducted to evaluate the effects of astragaloside IV and budesonide on bronchitis in rats and to explore the mechanism involved. MATERIAL AND METHODS Eighty Sprague-Dawley (SD) rats were randomly divided into 5 groups, including a Bronchitis model group (BM), a Budesonide group (BG), an Astragaloside IV group (AG), an Astragaloside IV combined with Budesonide group (CG), and a blank control group (BC). Lung tissue was stained with hematoxylin and eosin (H&E). The activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were detected by enzyme-linked immunosorbent assay (ELISA). The nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2), Kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein 1 (Keap1), BTB and CNC homology 1 (Bach1), B-cell lymphoma-2(Bcl-2), and BCl-2-associated X protein (Bax) mRNA and protein were examined by RT-PCR and Western blot, respectively. RESULTS Compared with the Bronchitis model group, the lung tissue lesions in the Budesonide group, Astragaloside IV group, and Astragaloside IV combined with Budesonide group were effectively ameliorated and the airway resistance was significantly decreased. The activities of SOD, GSH-Px, and CAT were increased after treatment with drugs, while the content of MDA was decreased. The levels of Nrf2, Keap1, and Bcl-2 proteins were increased and the levels of Bach1 and Bax were decreased after treatment with Budesonide and Astragaloside IV. CONCLUSIONS Astragaloside IV combined with budesonide can ameliorate the lesions caused by bronchitis in rats through activating the Nrf2/Keap1 pathway, which plays a protective role on anti-oxidative stress injury.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xiaoyan Cheng
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Dongjian Ge
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Shanshan Wang
- Department of Anesthesiology, Huaiyin Hospital of Huaian City, Huai'an, Jiangsu, China (mainland)
| | - Bin Qi
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| |
Collapse
|
14
|
Gao X, Yao X, Yang H, Deng K, Guo Y, Zhang T, Zhang G, Wang F. Role of FGF9 in sheep testis steroidogenesis during sexual maturation. Anim Reprod Sci 2018; 197:177-184. [DOI: 10.1016/j.anireprosci.2018.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/28/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
|
15
|
Song Y, Zhu J, Wang T, Zhang C, Yang F, Guo X, Liu P, Cao H, Hu G. Effect of Ultra-fine Traditional Chinese Medicine Compounds on Regulation of Lipid Metabolism and Reduction in Egg Cholesterol of Laying Hens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Y Song
- Jiangxi Agricultural University, P. R. China
| | - J Zhu
- Jiangxi Agricultural University, P. R. China
| | - T Wang
- Jiangxi Agricultural University, P. R. China
| | - C Zhang
- Jiangxi Agricultural University, P. R. China
| | - F Yang
- Jiangxi Agricultural University, P. R. China
| | - X Guo
- Jiangxi Agricultural University, P. R. China
| | - P Liu
- Jiangxi Agricultural University, P. R. China
| | - H Cao
- Jiangxi Agricultural University, P. R. China
| | - G Hu
- Jiangxi Agricultural University, P. R. China
| |
Collapse
|
16
|
Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways. Sci Rep 2017; 7:16479. [PMID: 29184072 PMCID: PMC5705677 DOI: 10.1038/s41598-017-16008-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore the possible benefits of adrenomedullin (ADM) in preventing oxidative stress and inflammation by using an in vitro primary culture model of rat Leydig cells exposed to lipopolysaccharide (LPS). Cell proliferation was detected through CCK-8 and BrdU incorporation assays. ROS were determined with a DCFDA kit, and cytokine concentrations were measured with ELISA assay kits. Protein production was examined by immunohistochemical staining and Western blot, and gene expression was observed through RT-qPCR. Results revealed that ADM significantly reduced LPS-induced cytotoxicity, and pretreatment with ADM significantly suppressed ROS overproduction and decreased 4-HNE and 8-OHdG expression levels and concentrations. ADM pretreatment also significantly attenuated the overactivation of enzymatic antioxidants, namely, superoxide dismutase, catalase, thioredoxin reductase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. ADM supplementation reversed the significantly increased gene expression levels and concentrations of TNF-α, IL-1β, TGF-β1, MCP-1 and MIF. ADM pretreatment significantly inhibited the gene expression and protein production of TLR-2 and 4. Furthermore, ADM pretreatment markedly reduced the phosphorylation of JNK, ERK 1/2 and p38, phosphorylation and degradation of IκBα and nuclear translocation of p65. Our findings demonstrated that ADM protects Leydig cells from LPS-induced oxidative stress and inflammation, which might be associated with MAPK/NF-κB signalling pathways.
Collapse
|
17
|
Jia G, Leng B, Wang H, Dai H. Inhibition of cardiotrophin‑1 overexpression is involved in the anti‑fibrotic effect of Astrogaloside IV. Mol Med Rep 2017; 16:8365-8370. [PMID: 28990065 DOI: 10.3892/mmr.2017.7676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Astragaloside IV (AsIV), one of the major active ingredients in Astragalus membranaceus, has demonstrated remarkable antifibrotic effects via its antioxidative activity. Cardiac fibrosis is an important pathological mechanism during cardiac remodelling associated with heart failure. In the present study, the mechanism underlying the antifibrotic effect of AsIV upon isoprenaline (ISO) stimulation was investigated. AsIV significantly improved cardiac fibrosis in vivo and dose‑dependently inhibited ISO‑induced CF proliferation in vitro. The ISO‑triggered elevation in reactive oxygen species (ROS) levels was remarkably inhibited by AsIV, as well as ROS scavenger N‑acetylcysteine (NAC), and not affected by cardiotrophin‑1 (CT‑1) knockdown. In addition, AsIV effectively reversed ISO‑induced upregulation of CT‑1 expression, which was blunted by pretreatment with NAC. Cardiac fibroblast (CF) proliferation and collagen Ι overexpression induced by ISO stimulation were effectively abrogated by AsIV, NAC, and CT‑1 small interfering RNA transfection. Taken together, these results demonstrated that AsIV was able to effectively inhibit ISO‑induced CF proliferation and collagen production through negative regulation of ROS‑mediated CT‑1 upregulation.
Collapse
Affiliation(s)
- Guizhi Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Bin Leng
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongxin Wang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongliang Dai
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
18
|
Dai H, Jia G, Lu M, Liang C, Wang Y, Wang H. Astragaloside IV inhibits isoprenaline‑induced cardiac fibrosis by targeting the reactive oxygen species/mitogen‑activated protein kinase signaling axis. Mol Med Rep 2017; 15:1765-1770. [PMID: 28260010 DOI: 10.3892/mmr.2017.6220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/10/2017] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibrosis is considered an important pathological mechanism in the progression of cardiac remodeling and heart failure. Astragaloside IV (AsIV) is a major active ingredient in Astragalus membranaceus. In a preliminary experiment, it was demonstrated that this naturally occurring substance exhibited cardioprotective effects via preventing cardiomyocyte hypertrophy and apoptosis. The present study aimed to investigate the effects of AsIV on β‑adrenergic receptor (β‑AR)‑mediated cardiac fibrosis, and the associated mechanism. Cell Counting Kit‑8 (CCK‑8) assay was used to examine the proliferation of rat cardiac fibroblast (CF) cultures. Collagen I secretion was detected by ELISA. Dihydroethidium was used to determine intracellular ROS levels. Western blotting was used to examine the expression level of total and phosphorylated mitogen‑activated protein kinases (MAPKs). In the present study, the effects of AsIV on β‑adrenergic receptor (β‑AR) ‑mediated cardiac fibrosis were investigated, and the associated mechanism was revealed. Isoprenaline (ISO) is a selective β‑AR agonist, and treatment with AsIV significantly inhibited (ISO)‑triggered cardiac fibroblast proliferation and type I collagen synthesis. In addition, ISO resulted in a significant elevation of reactive oxygen species (ROS) levels and phosphorylation of the three profibrotic MAPKs, namely extracellular signal‑regulated kinase, p38MAPK and c‑Jun N‑terminal kinase. AsIV effectively reversed the aforementioned ISO‑induced alterations. In addition, N‑acetylcysteine, a typical ROS scavenger, mimicked the inhibitory effects of AsIV on MAPK activation. The present study demonstrated that AsIV may inhibit ISO‑induced cardiac fibrosis by suppressing ROS‑mediated MAPK activation.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Guizhi Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Meili Lu
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Chunguang Liang
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yue Wang
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongxin Wang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|