1
|
Li C, Yang H, Wu Y, Zhou M, Luo H, Yuan P, Shen F. Carnosol alleviates cisplatin-induced acute kidney injury by regulating apoptosis and pyroptosis. Cell Biol Int 2025; 49:101-117. [PMID: 39523493 DOI: 10.1002/cbin.12258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The use of the common anticancer drug cisplatin (CP) in clinical practice often leads to acute kidney injury (AKI); however, no protective therapy is available. Therefore, new drugs that reduce the nephrotoxicity induced by CP are urgently needed. Carnosol (CA) is an antioxidant found. We investigated the renoprotective effects of CA on CP-induced AKI in male C57BL/6 mice and HK2 cells. CA mitigated renal dysfunction, histopathological changes and tubular injury in vivo, as indicated by the expression of NGAL, KIM1 and HMGB1. Moreover, the numbers of apoptotic cells and the expression of apoptotic proteins were dramatically reduced after CA treatment in mouse kidneys and HK2 cells. CA significantly ameliorated CP-induced inflammation and decreased TNF-α and IL-1β levels in vivo and in vitro and macrophage infiltration in the mouse kidney. CA decreased the expression levels of p-p65/p65, NLRP3 and ASC, which indicates that CA suppressed the activation of the NF-κB/NLRP3 signaling axis induced by CP in vivo and in vitro. In addition, CA decreased the levels of certain protein in pyroptotic cells, as indicated by the expression of cleaved caspase-1, GSDMD, and mature IL-1β and IL-18 in vivo and in vitro. Finally, CA reduced the level of cleaved caspase-1, but those of GSDMD and NLRP3 protein were not significantly different after treatment with the NLRP3 inhibitor MCC950 and were elevated by the NLRP3 activator nigericin. In conclusion, this study revealed that CA protects against CP-induced AKI by decreasing apoptosis and NF-κB/NLRP3/GSDMD-mediated pyroptosis, which provides new insight into the prevention of AKI.
Collapse
Affiliation(s)
- Chunjie Li
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Yang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuan Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Mingke Zhou
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hengbiao Luo
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Fengge Shen
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
3
|
Han X, Bi L, Yan J, Song P, Wang Y, Wang X, Wu Y, Ding X, Zhang H, Wang Y, Li X. Mesoscale size-promoted targeted therapy for acute kidney injury through combined RONS scavenging and inflammation alleviation strategy. Mater Today Bio 2024; 25:101002. [PMID: 38420141 PMCID: PMC10900835 DOI: 10.1016/j.mtbio.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous, high-mortality clinical syndrome with diverse pathogenesis and prognosis, but it lacks the effective therapy clinically. Its pathogenesis is associated with production of reactive oxygen/nitrogen species and infiltration of inflammatory cells. To overcome these pathogenic factors and improve the therapeutic efficiency, we synthesized triptolide-loaded mesoscale polydopamine melanin-mimetic nanoparticles (MeNP4TP) as the antioxidant plus anti-inflammatory therapeutic platform to synergistically scavenge reactive oxygen/nitrogen species (RONS), inhibit the activity of macrophages and dendritic cells, and generate Treg cells for AKI therapy. It was demonstrated that mesoscale size was beneficial for MeNP4TP to specifically accumulate at renal tubule cells, and MeNP4TP could significantly attenuate oxidative stress, reduce proinflammatory immune cells in renal, and repair renal function in cisplatin-induced AKI mouse model. MeNP4TP might be a potential candidate to inhibit oxidative damages and inflammatory events in AKI.
Collapse
Affiliation(s)
- Xiaoqing Han
- Department of Urology, First Hospital of Jilin University, Changchun, 130021, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Luopeng Bi
- Department of Urology, First Hospital of Jilin University, Changchun, 130021, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Xiaobo Ding
- Department of Radiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanbo Wang
- Department of Urology, First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| |
Collapse
|
4
|
ALRashdi B, Mohamed R, Mohamed A, Samoul F, Mohamed M, Moussa M, Alrashidi S, Dawod B, Habotta O, Abdel Moneim A, Ramadan S. Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress and cell death in mice kidney. Biosci Rep 2023; 43:BSR20231130. [PMID: 37902021 PMCID: PMC10643052 DOI: 10.1042/bsr20231130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 10/31/2023] Open
Abstract
Cisplatin (CDDP) is a commonly prescribed chemotherapeutic agent; however, its associated nephrotoxicity limits its clinical efficacy and sometimes requires discontinuation of its use. The existing study was designed to explore the reno-therapeutic efficacy of turmeric (Tur) alone or conjugated with selenium nanoparticles (Tur-SeNPs) against CDDP-mediated renal impairment in mice and the mechanisms underlying this effect. Mice were orally treated with Tur extract (200 mg/kg) or Tur-SeNPs (0.5 mg/kg) for 7 days after administration of a single dose of CDDP (5 mg/kg, i.p.). N-acetyl cysteine NAC (100 mg/kg) was used as a standard antioxidant compound. The results revealed that Tur-SeNPs counteracted CDDP-mediated serious renal effects in treated mice. Compared with the controls, Tur or Tur-SeNPs therapy remarkably decreased the kidney index along with the serum levels of urea, creatinine, Kim-1, and NGAL of the CDDP-injected mice. Furthermore, Tur-SeNPs ameliorated the renal oxidant status of CDDP group demonstrated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and gene expression levels of HO-1. Noteworthy, lessening of renal inflammation was exerted by Tur-SeNPs via lessening of IL-6 and TNF-α besides down-regulation of NF-κB gene expression in mouse kidneys. Tur-SeNPs treatment also restored the renal histological features attained by CDDP challenge and hindered renal apoptosis through decreasing the Bax levels and increasing Bcl-2 levels. Altogether, these outcomes suggest that the administration of Tur conjugated with SeNPs is effective neoadjuvant chemotherapy to guard against the renal adverse effects that are associated with CDDP therapy.
Collapse
Affiliation(s)
- Barakat M. ALRashdi
- Department of Biology, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Roaya A. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amal H. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Feryal A. Samoul
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mazen I. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohsen M. Moussa
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Saad M. Alrashidi
- Consultant Radiation Oncology, Comprehensive Cancer Centre, King Fahad Medical City and College of medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Bassel Dawod
- McMaster Children’s Hospital, Faculty of Health Sciences, Hamilton, Ontario, Canada
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S. Ramadan
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 2022:10.1007/s11010-022-04652-5. [PMID: 36586092 DOI: 10.1007/s11010-022-04652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.
Collapse
|
6
|
Ehsan N, Ijaz MU, Ashraf A, Sarwar S, Samad A, Afzal G, Andleeb R, Al-Misned FA, Al-Ghanim KA, Ahmed Z, Riaz MN, Mahboob S. Mitigation of cisplatin induced nephrotoxicity by casticin in male albino rats. BRAZ J BIOL 2021; 83:e243438. [PMID: 34468509 DOI: 10.1590/1519-6984.243438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/08/2021] [Indexed: 11/22/2022] Open
Abstract
Cisplatin (CP) is a commonly used, powerful antineoplastic drug, having numerous side effects. Casticin (CAS) is considered as a free radical scavenger and a potent antioxidant. The present research was planned to assess the curative potential of CAS on CP persuaded renal injury in male albino rats. Twenty four male albino rats were distributed into four equal groups. Group-1 was considered as a control group. Animals of Group-2 were injected with 5mg/kg of CP intraperitoneally. Group-3 was co-treated with CAS (50mg/kg) orally and injection of CP (5mg/kg). Group-4 was treated with CAS (50mg/kg) orally throughout the experiment. CP administration substantially reduced the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione S-transferase (GST), glutathione reductase (GSR), glutathione (GSH) content while increased thiobarbituric acid reactive substances (TBARS), and hydrogen peroxide (H2O2) levels. Urea, urinary creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, albumin and creatinine clearance was significantly reduced in CP treated group. The results demonstrated that CP significantly increased the inflammation indicators including nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activity and histopathological damages. However, the administration of CAS displayed a palliative effect against CP-generated renal toxicity and recovered all parameters by bringing them to a normal level. These results revealed that the CAS is an effective compound having the curative potential to counter the CP-induced renal damage.
Collapse
Affiliation(s)
- N Ehsan
- University of Agriculture - UAF, Faculty of Science, Department of Zoology, Faisalabad, Pakistan
| | - M U Ijaz
- University of Agriculture - UAF, Faculty of Science, Department of Zoology, Faisalabad, Pakistan
| | - A Ashraf
- Government College University - GCUF, Faculty of Life Science, Department Zoology, Faisalabad, Pakistan
| | - S Sarwar
- University of Agriculture - UAF, Faculty of Science, Department of Zoology, Faisalabad, Pakistan
| | - A Samad
- University of Agriculture - UAF, Faculty of Science, Department of Zoology, Faisalabad, Pakistan
| | - G Afzal
- Islamia University - IUB, Department of Zoology, Bahawalpur, Pakistan
| | - R Andleeb
- Government College University - GCUF, Faculty of Life Science, Department Zoology, Faisalabad, Pakistan
| | - F A Al-Misned
- King Saud University - KSU, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| | - K A Al-Ghanim
- King Saud University - KSU, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| | - Z Ahmed
- King Saud University - KSU, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| | - M N Riaz
- Texas A&M University, AMU, Brazos, Texas, United States of America
| | - S Mahboob
- King Saud University - KSU, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers (Basel) 2021; 13:1572. [PMID: 33805488 PMCID: PMC8036620 DOI: 10.3390/cancers13071572] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.
Collapse
|
8
|
Liu X, Zhao X, Duan X, Wang X, Wang T, Feng S, Zhang H, Chen C, Li G. Knockout of NGAL aggravates tubulointerstitial injury in a mouse model of diabetic nephropathy by enhancing oxidative stress and fibrosis. Exp Ther Med 2021; 21:321. [PMID: 33732294 PMCID: PMC7903474 DOI: 10.3892/etm.2021.9752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), also called lipocalin 2, is considered a promising biomarker for acute and chronic kidney injuries. Several studies have demonstrated that its levels increase in plasma and urine in diabetic nephropathy (DN), and its urine concentration increases upon kidney function deterioration. However, its role in DN progression remains unclear. The current study used in vitro gene expression knockdown in human proximal tubular cell line human kidney (HK)2 to investigate the role of NGAL in oxidation and extracellular matrix secretion under high-glucose (HG) incubation. In addition, type 1 diabetes was induced in vivo in knockout NGAL-/- and wild-type mice in order to investigate role of NGAL in the progression of DN. The results demonstrated that NGAL knockdown in HK2 cells significantly increased oxidative stress under HG stimulation tested by flow cytometry, and increased the secretion of interleukin-6, fibronectin (FN) and collagen IV examined by ELISA. Western blotting demonstrated that the phosphorylation of Smad2/3 also increased in HK2 cells under transforming growth factor-β1 stimulation. In vivo experiments demonstrated that diabetic NGAL-/- mice showed deteriorated renal function compared with that of diabetic wild-type mice. Histopathological analysis suggests that diabetic NGAL-/- mice had more serious glomerulosclerosis and tubular vascular degeneration than wild-type mice. Immunohistochemistry suggested that the absence of NGAL lead to increased FN deposition in glomeruli in a mouse model of DN. In conclusion, NGAL appears to have renal protective effects by slowing down the progression of DN, and its effect may be associated with a reduction in oxidation, fibrosis and inflammation.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| | - Xincheng Zhao
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| | - Xiaoting Duan
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| | - Xiaoying Wang
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| | - Taoxia Wang
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| | - Shuning Feng
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| | - Huifang Zhang
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| | - Cheng Chen
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| | - Guiying Li
- Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056000, P.R. China
| |
Collapse
|
9
|
Handl J, Čapek J, Majtnerová P, Báčová J, Roušar T. The effect of repeated passaging on the susceptibility of human proximal tubular HK-2 cells to toxic compounds. Physiol Res 2020; 69:731-738. [PMID: 32672047 DOI: 10.33549/physiolres.934491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human proximal tubular HK-2 cell line is an immortalized cell line commonly used for studying proximal tubular toxicity. Even as their use is presently increasing, there unfortunately are no studies focused on functional changes in HK-2 cells associated with passaging. The aim of the present study, therefore, was to evaluate the functional stability of HK-2 cells during 13 weeks of continuous passaging after 6 and 24 h of treatment with model nephrotoxic compounds (i.e., acetaminophen, cisplatin, CdCl(2)). Short tandem repeat profile, the doubling time, cell diameter, glutathione concentration, and intracellular dehydrogenase activity were measured in HK-2 cells at each tested passage. The results showed that HK-2 cells exhibit stable morphology, cell size, and cell renewal during passaging. Mean doubling time was determined to be 54 h. On the other hand, we observed a significant effect of passaging on the susceptibility of HK-2 cells to toxic compounds. The largest difference in results was found in both cadmium and cisplatin treated cells across passages. We conclude that the outcomes of scientific studies on HK-2 cells can be affected by the number of passages even after medium-term cultivation and passaging for 13 weeks.
Collapse
Affiliation(s)
- J Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
| | | | | | | | | |
Collapse
|
10
|
Mutlu-Agardan NB, Yilmaz S, Kaynak Onurdag F, Celebi N. Development of effective AmB/AmB-αCD complex double loaded liposomes using a factorial design for systemic fungal infection treatment. J Liposome Res 2020; 31:177-188. [PMID: 32290745 DOI: 10.1080/08982104.2020.1755980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amphotericin B (AmB) is a very potent antibiotic which still remains as the gold standard for the treatment of systemic fungal infections. AmB is a member of Biopharmaceutical Classification System Class IV, mainly characterized by its poor solubility and low permeability. In this study, AmB/AmB-α cyclodextrin complex double loaded liposomes (DLLs) were developed using the design of experiments (DoE®) approach to optimize/determine the effects of lipid composition and other parameters on final product properties such as encapsulation efficacy, particle size, polydispersity index, and zeta potential. Experimental design 24 was used for optimization of these properties in which four factors were studied in two levels. DLLs showed much higher physical stability than liposomes loaded only with free AmB by the means of particle size, zeta potential and encapsulation efficiency, in addition exhibited sustained release of AmB over 72 h (26.7%) with faster onset time. On the other hand, fourfold improved antimicrobial efficiency, minimum inhibitory concentration (0.125 µg/ml), and minimum fungicidal concentration (0.5 µg/ml) was determined by DLLs against C. albicans compared to Ambisome®. Dose dependent effects of the DLLs were investigated by cytotoxicity studies on Vero and L-929 cells. No significant cytotoxicity observed for AmB/AmB-αCD complex DLLs and Ambisome at tested concentrations while free AmB caused severe cytotoxicity. Lastly the developed DLLs did not cause an increase in NGAL (an early biomarker for acute kidney toxicity) levels for both Vero and HK-2 cell lines compared to free AmB.
Collapse
Affiliation(s)
- N Basaran Mutlu-Agardan
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey
| | | | - Fatma Kaynak Onurdag
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Trakya University, Edirne, Turkey
| | - Nevin Celebi
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
The Predictive Role of the Biomarker Kidney Molecule-1 (KIM-1) in Acute Kidney Injury (AKI) Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2019; 20:ijms20205238. [PMID: 31652595 PMCID: PMC6834366 DOI: 10.3390/ijms20205238] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) following platinum-based chemotherapeutics is a frequently reported serious side-effect. However, there are no approved biomarkers that can properly identify proximal tubular injury while routine assessments such as serum creatinine lack sensitivity. Kidney-injury-molecule 1 (KIM-1) is showing promise in identifying cisplatin-induced renal injury both in vitro and in vivo studies. In this review, we focus on describing the mechanisms of renal tubular cells cisplatin-induced apoptosis, the associated inflammatory response and oxidative stress and the role of KIM-1 as a possible biomarker used to predict cisplatin associated AKI.
Collapse
|
12
|
Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2019; 20:ijms20123011. [PMID: 31226747 PMCID: PMC6627318 DOI: 10.3390/ijms20123011] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent used to treat solid tumours, such as ovarian, head and neck, and testicular germ cell. A known complication of cisplatin administration is acute kidney injury (AKI). The development of effective tumour interventions with reduced nephrotoxicity relies heavily on understanding the molecular pathophysiology of cisplatin-induced AKI. Rodent models have provided mechanistic insight into the pathophysiology of cisplatin-induced AKI. In the subsequent review, we provide a detailed discussion of recent advances in the cisplatin-induced AKI phenotype, principal mechanistic findings of injury and therapy, and pre-clinical use of AKI rodent models. Cisplatin-induced AKI murine models faithfully develop gross manifestations of clinical AKI such as decreased kidney function, increased expression of tubular injury biomarkers, and tubular injury evident by histology. Pathways involved in AKI include apoptosis, necrosis, inflammation, and increased oxidative stress, ultimately providing a translational platform for testing the therapeutic efficacy of potential interventions. This review provides a discussion of the foundation laid by cisplatin-induced AKI rodent models for our current understanding of AKI molecular pathophysiology.
Collapse
Affiliation(s)
- Sara J Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Andrew M Lombardi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Khoa N Nguyen
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Box C281, 12700 East, 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Lee SH, Lee HS, Park G, Oh SM, Oh DS. Dual actions on gout flare and acute kidney injury along with enhanced renal transporter activities by Yokuininto, a Kampo medicine. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:57. [PMID: 30871515 PMCID: PMC6419507 DOI: 10.1186/s12906-019-2469-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/28/2019] [Indexed: 11/20/2022]
Abstract
Background Prolonged hyperuricemia is associated with kidney disease or gouty arthritis. Whether Yokuininto, a commercially available Kampo medicine that has been used for osteoarthritis or rheumatoid arthritis, can exhibit anti-hyperuricemic and inflammatory effects remains elusive. In the present study, Yokuininto exerts multiple homeostatic action on serum uric acid (sUA) levels by blocking pro-inflammatory cytokine activities and inducing uricosuric function with anti-renal injury functions. Methods The sUA was measured in potassium oxonate (PO)-administered mice. Renal transporter uptake assays were performed using HEK293 cells overexpressing OAT1, OCT2 or OAT3, MDCKII cells overexpressing BCRP, and Xenopus oocytes overexpressing OAT3 or URAT1. Immunoblot and ELISA assays were performed to detect the molecules (OAT3, GLUT9, XO, NGAL, KIM-1 and IL-1α) in various human kidney cell lines. Cell viability analysis was performed to evaluate the cytotoxicity of Yokuininto [Ephedrine + pseudoephedrine 21.94%; Paeoniflorin 35.40% and Liquiritin 16.21% relatively measured by the ratios (HR-MS2 intensity / HR-MS1 intensity)]. Results Yokuininto (300 mg/kg) significantly reduced sUA by approximately 44% compared to that of PO-induced mice. The OAT3 levels were decreased in PO-induced hyperuricemic condition, whereas the GLUT9 transporter levels were markedly increased. However, PO did not alter the levels of URAT1. Yokuininto significantly inhibited the lipopolysaccharide (LPS)-induced secretion of IL-1α by approximately 63.2% compared to the LPS-treated macrophages. In addition, Yokuininto inhibited nitric oxide synthesis by approximately 33.7 (500 µg/mL) and 64.6% (1000 µg/mL), compared to that of LPS-treated macrophages. Yokuininto markedly increased xanthine oxidase inhibition activity. Furthermore, interleukin-1α (IL-1α), a pro-inflammatory cytokine, elevated neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) activities in LLC-PK1 cells. Expression of renal inflammatory biomarkers, NGAL and KIM-1, was reduced under the Yokuininto treatment by 36.9 and 72.1%, respectively. Conclusions Those results suggest that Yokuininto may suppress inflammation and protect against kidney dysfunction in hyperuricemia. The present findings demonstrated that Yokuininto lowered sUA through both increased uric acid excretion and decreased uric acid production. Our results may provide a basis for the protection of prolonged hyperuricemia-associated kidney injury with uric acid-lowering agents such as Yokuininto. Electronic supplementary material The online version of this article (10.1186/s12906-019-2469-9) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Tang Y, Wang C, Wang Y, Zhang J, Wang F, Li L, Meng X, Li G, Li Y, Wang L. Isoliquiritigenin attenuates LPS-induced AKI by suppression of inflammation involving NF-κB pathway. Am J Transl Res 2018; 10:4141-4151. [PMID: 30662657 PMCID: PMC6325500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Septic acute kidney injury (AKI) characterized as acute infection and renal inflammation, still lacks of effective therapies. Isoliquiritigenin (ISL) as a small molecular from licorice, is able to inhibit the expression of HMGB1. However, the role and mechanism of ISL in septic AKI has not been investigated. In this study, we used LPS injection to induce murine septic AKI. One hour before LPS injection, 50 mg/kg ISL was once orally given to the mice. For the in vitro study, HK2 human tubular cells were respectively treated with 50 μM and 100 μM ISL 5 hrs before 2 μg/ml LPS stimulation. Then we observed that ISL ameliorated renal dysfunction and attenuated renal tubular injury. ISL inhibited the phosphorylation of IκB-α and NF-κB p65 after LPS induction both in vivo and in vitro. ISL also inhibited NF-κB p65 translocation from cytoplasm to the nucleus upon LPS stimulation. Further, NF-κB p65 translocation could trigger macrophage polarization, neutrophil activation and pro-inflammatory cytokines secretion in LPS-induced inflammation. These results showed that ISL could alleviate LPS-induced AKI by suppressing NF-κB p65 translocation and inhibiting inflammatory responses, indicating protective effects of ISL in LPS-induced acute renal inflammation. This study might be useful for designing potential clinical trials to prevent and treat sepsis induced AKI in patients with serious illness.
Collapse
Affiliation(s)
- Yun Tang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s HospitalChengdu 610072, Sichuan, China
| | - Chan Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s HospitalChengdu 610072, Sichuan, China
| | - Yanmei Wang
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical CollegeNanchong 63700, Sichuan, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Fang Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Xianglong Meng
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Guisen Li
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s HospitalChengdu 610072, Sichuan, China
| | - Yi Li
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s HospitalChengdu 610072, Sichuan, China
| | - Li Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| |
Collapse
|
15
|
Borghi SM, Fattori V, Ruiz-Miyazawa KW, Bertozzi MM, Lourenco-Gonzalez Y, Tatakihara RI, Bussmann AJ, Mazzuco TL, Casagrande R, Verri WA. Pyrrolidine dithiocarbamate inhibits mouse acute kidney injury induced by diclofenac by targeting oxidative damage, cytokines and NF-κB activity. Life Sci 2018; 208:221-231. [DOI: 10.1016/j.lfs.2018.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
|
16
|
Yuan L, Zhu L, Zhang Y, Chen H, Kang H, Li J, Zhao X, Wan M, Miao Y, Tang W. Effect of Da-Cheng-Qi decoction for treatment of acute kidney injury in rats with severe acute pancreatitis. Chin Med 2018; 13:38. [PMID: 30013616 PMCID: PMC6045888 DOI: 10.1186/s13020-018-0195-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background The traditional Chinese formula Da-Cheng-Qi-decoction (DCQD) has been used to treat acute pancreatitis for decades. DCQD could ameliorate the disease severity and the complications of organ injuries, including those of the liver and lungs. However, the pharmacological effects in the kidney, a target organ, are still unclear. This study aimed to investigate the herbal tissue pharmacology of DCQD for acute kidney injury (AKI) in rats with severe acute pancreatitis (SAP). Methods Rats were randomly divided into the sham-operation group (SG), the model group (MG) and the low-, medium- and high-dose treatment groups (LDG, MDG, and HDG, respectively). Sodium taurocholate (3.5%) was retrogradely perfused into the biliopancreatic duct to establish the model of SAP in rats. Different doses of DCQD were administered to the treatment groups 2 h after the induction of SAP. The major components of DCQD in kidney tissues were detected by HPLC–MS/MS. Inflammatory mediators in the kidney tissues, as well as serum creatinine (Scr), blood urea nitrogen (BUN) and pathologic scores, were also evaluated. Results Ten components of DCQD were detected in the kidneys of the treatment groups, and their concentrations increased dose-dependently. Compared with the SG, the levels of inflammatory mediators, Scr, BUN and pathological scores in the MG were obviously increased (p < 0.05). The high dose of DCQD showed a maximal effect in downregulating the pro-inflammatory mediators interleukin-6 (IL)-6 and tumour necrosis factor-α (TNF-α), upregulating anti-inflammatory mediators IL-4 and IL-10 in the kidney and alleviating the pathological damages. DCQD decreased the pancreas and kidney pathological scores of rats with SAP, especially in the HDG (p < 0.05). Compared with the MG, the level of Scr in the HDG was significantly decreased (p < 0.05). Conclusions DCQD ameliorated AKI in rats with SAP via regulating the inflammatory response, which might be closely related to the distribution of its components in the kidney. Electronic supplementary material The online version of this article (10.1186/s13020-018-0195-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yumei Zhang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Hongxin Kang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Juan Li
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Xianlin Zhao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Meihua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yifan Miao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Wenfu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| |
Collapse
|