1
|
Zhang M, Zhong J, Song Z, Xu Q, Chen Y, Zhang Z. Regulatory mechanisms and potential therapeutic targets in precancerous lesions of gastric cancer: A comprehensive review. Biomed Pharmacother 2024; 177:117068. [PMID: 39018877 DOI: 10.1016/j.biopha.2024.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Precancerous lesions of gastric cancer (PLGC) represent a critical pathological stage in the transformation from normal gastric mucosa to gastric cancer (GC). The global incidence of PLGC has been rising over the past few decades, with a trend towards younger onset ages. Increasing evidence suggests that early prevention and treatment of PLGC can effectively reverse the malignant development of gastric mucosal epithelial cells. However, there is currently a lack of effective therapeutic drugs and methods. Recent years have witnessed substantial advancements in PLGC research, with the elucidation of novel regulatory mechanisms offering promising avenues for clinical intervention and drug development. This review aims to delineate potential targets for early prevention and diagnosis of GC while exploring innovative approaches to PLGC management. This article focuses on elucidating the regulatory mechanisms of the inflammatory microenvironment, bile acids (BA), glycolysis, autophagy, apoptosis, ferroptosis, and cellular senescence. We pay particular attention to potential therapeutic targets for PLGC, with the goal of providing insights and theoretical basis for clinical research on PLGC.
Collapse
Affiliation(s)
- Maofu Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jialin Zhong
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhongyang Song
- Department of Oncology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730020, China
| | - Qian Xu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yuchan Chen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730050, China.
| |
Collapse
|
2
|
Zhou Q, Li X, Zhou H, Zhao J, Zhao H, Li L, Zhou Y. Mitochondrial respiratory chain component NDUFA4: a promising therapeutic target for gastrointestinal cancer. Cancer Cell Int 2024; 24:97. [PMID: 38443961 PMCID: PMC10916090 DOI: 10.1186/s12935-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrointestinal cancer, one of the most common cancers, continues to be a major cause of mortality and morbidity globally. Accumulating evidence has shown that alterations in mitochondrial energy metabolism are involved in developing various clinical diseases. NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4), encoded by the NDUFA4 gene located on human chromosome 7p21.3, is a component of mitochondrial respiratory chain complex IV and integral to mitochondrial energy metabolism. Recent researchers have disclosed that NDUFA4 is implicated in the pathogenesis of various diseases, including gastrointestinal cancer. Aberrant expression of NDUFA4 leads to the alteration in mitochondrial energy metabolism, thereby regulating the growth and metastasis of cancer cells, indicating that it might be a new promising target for cancer intervention. This article comprehensively reviews the structure, regulatory mechanism, and biological function of NDUFA4. Of note, the expression and roles of NDUFA4 in gastrointestinal cancer including colorectal cancer, liver cancer, gastric cancer, and so on were discussed. Finally, the existing problems of NDUFA4-based intervention on gastrointestinal cancer are discussed to provide help to strengthen the understanding of the carcinogenesis of gastrointestinal cancer, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Honglian Zhou
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Juanjuan Zhao
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lijuan Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
3
|
Zhang JX, Bao SC, Chen J, Chen T, Wei HL, Zhou XY, Li JT, Yan SG. Xiaojianzhong decoction prevents gastric precancerous lesions in rats by inhibiting autophagy and glycolysis in gastric mucosal cells. World J Gastrointest Oncol 2023; 15:464-489. [PMID: 37009319 PMCID: PMC10052669 DOI: 10.4251/wjgo.v15.i3.464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Gastric precancerous lesions (GPL) precede the development of gastric cancer (GC). They are characterized by gastric mucosal intestinal metaplasia and dysplasia caused by various factors such as inflammation, bacterial infection, and injury. Abnormalities in autophagy and glycolysis affect GPL progression, and their effective regulation can aid in GPL treatment and GC prevention. Xiaojianzhong decoction (XJZ) is a classic compound for the treatment of digestive system diseases in ancient China which can inhibit the progression of GPL. However, its specific mechanism of action is still unclear.
AIM To investigate the therapeutic effects of XJZ decoction on a rat GPL model and the mechanisms underlying its effects on autophagy and glycolysis regulation in GPLs.
METHODS Wistar rats were randomly divided into six groups of five rats each and all groups except the control group were subjected to GPL model construction for 18 wk. The rats’ body weight was monitored every 2 wk starting from the beginning of modeling. Gastric histopathology was examined using hematoxylin-eosin staining and Alcian blue-periodic acid-Schiff staining. Autophagy was observed using transmission electron microscopy. The expressions of autophagy, hypoxia, and glycolysis related proteins in gastric mucosa were detected using immunohistochemistry and immunofluorescence. The expressions of the following proteins in gastric tissues: B cell lymphoma/Leukemia-2 and adenovirus E1B19000 interacting protein 3 (Bnip-3), microtubule associated protein 1 light chain 3 (LC-3), moesin-like BCL2-interacting protein 1 (Beclin-1), phosphatidylinositol 3-kimase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), p53, AMP-activated protein kinase (AMPK), and Unc-51 like kinase 1 (ULK1) were detected using western blot. The relative expressions of autophagy, hypoxia, and glycolysis related mRNA in gastric tissues was detected using reverse transcription-polymerase chain reaction.
RESULTS Treatment with XJZ increased the rats’ body weight and improved GPL-related histopathological manifestations. It also decreased autophagosome and autolysosome formation in gastric tissues and reduced Bnip-3, Beclin-1, and LC-3II expressions, resulting in inhibition of autophagy. Moreover, XJZ down-regulated glycolysis-related monocarboxylate transporter (MCT1), MCT4, and CD147 expressions. XJZ prevented the increase of autophagy level by decreasing gastric mucosal hypoxia, activating the PI3K/AKT/mTOR pathway, inhibiting the p53/AMPK pathway activation and ULK1 Ser-317 and Ser-555 phosphorylation. In addition, XJZ improved abnormal gastric mucosal glucose metabolism by ameliorating gastric mucosal hypoxia and inhibiting ULK1 expression.
CONCLUSION This study demonstrates that XJZ may inhibit autophagy and glycolysis in GPL gastric mucosal cells by improving gastric mucosal hypoxia and regulating PI3K/AKT/mTOR and p53/ AMPK/ULK1 signaling pathways, providing a feasible strategy for the GPL treatment.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Sheng-Chuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Hai-Liang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Department of General Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Xiao-Yan Zhou
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Department of Gastroenterology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Jing-Tao Li
- Departments of Infectious Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Shu-Guang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
4
|
Zhong YL, Wang PQ, Hao DL, Sui F, Zhang FB, Li B. Traditional Chinese medicine for transformation of gastric precancerous lesions to gastric cancer: A critical review. World J Gastrointest Oncol 2023; 15:36-54. [PMID: 36684050 PMCID: PMC9850768 DOI: 10.4251/wjgo.v15.i1.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal tumor. Gastric precancerous lesions (GPL) are the last pathological stage before normal gastric mucosa transforms into GC. However, preventing the transformation from GPL to GC remains a challenge. Traditional Chinese medicine (TCM) has been used to treat gastric disease for millennia. A series of TCM formulas and active compounds have shown therapeutic effects in both GC and GPL. This article reviews recent progress on the herbal drugs and pharmacological mechanisms of TCM in preventing the transformation from GPL to GC, especially focusing on anti-inflammatory, anti-angiogenesis, proliferation, and apoptosis. This review may provide a meaningful reference for the prevention of the transformation from GPL to GC using TCM.
Collapse
Affiliation(s)
- Yi-Lin Zhong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng-Bin Zhang
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
5
|
Zhao Y, Chard Dunmall LS, Cheng Z, Wang Y, Si L. Natural products targeting glycolysis in cancer. Front Pharmacol 2022; 13:1036502. [PMID: 36386122 PMCID: PMC9663463 DOI: 10.3389/fphar.2022.1036502] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 09/05/2023] Open
Abstract
Many energy metabolism pathways exist in cancer, including glycolysis, amino acid metabolism, fatty acid oxidation, and mitochondrial respiration. Tumor cells mainly generate energy through glycolysis to maintain growth and biosynthesis of tumor cells under aerobic conditions. Natural products regulate many steps in glycolysis and targeting glycolysis using natural products is a promising approach to cancer treatment. In this review, we exemplify the relationship between glycolysis and tumors, demonstrate the natural products that have been discovered to target glycolysis for cancer treatment and clarify the mechanisms involved in their actions. Natural products, such as resveratrol mostly found in red grape skin, licochalcone A derived from root of Glycyrrhiza inflate, and brusatol found in Brucea javanica and Brucea mollis, largely derived from plant or animal material, can affect glycolysis pathways in cancer by targeting glycolytic enzymes and related proteins, oncogenes, and numerous glycolytic signal proteins. Knowledge of how natural products regulate aerobic glycolysis will help illuminate the mechanisms by which these products can be used as therapeutics to inhibit cancer cell growth and regulate cellular metabolism. Systematic Review Registration: https://pubmed.ncbi.nlm.nih.gov/, https://clinicaltrials.gov/, http://lib.zzu.edu.cn/.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Lingling Si
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Yang P, Yang H, Zhou H, Li Q, Wei S, Wang Q, Yan Y, Liu Y, Pan H, Li S. Weipiling decoction alleviates N-methyl-N-nitro-N′-nitrosoguanidine-induced gastric precancerous lesions via NF-κB signalling pathway inhibition. Chin Med 2022; 17:104. [PMID: 36085156 PMCID: PMC9463785 DOI: 10.1186/s13020-022-00663-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022] Open
Abstract
Aim of the study We aimed to explore how weipiling (WPL) decoction WPL alleviates gastric precancerous lesions (GPLs) and uncover its anti-inflammatory roles in GPL treatment. Materials and methods The anti-GPL action mechanisms of WPL were analysed using a network pharmacological method. The WPL extract was prepared in a traditional way and evaluated for its major components using high-performance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS). BALB/c mice were exposed to N-methyl-N-nitro-N-nitrosoguanidine (MNNG) (150 μg/mL) for 6 weeks to induce GPLs. GPL mice were administered WPL (3.75 g/kg/day and 15 g/kg/day) for an additional 8 weeks. Haematoxylin and eosin (H&E) staining was used to investigate histological alterations in gastric tissues. Expression of the T helper 1 (Th1) cell markers CD4+ and interferon-gamma (INF-γ) were tested using immunohistochemistry (IHC). Inflammatory protein and mRNA levels in the nuclear factor kappa B (NF-κB) pathway were detected using western blotting and a quantitative reverse transcription polymerase chain reaction (RT-qPCR), respectively. Results We identified and selected 110 active compounds and 146 targets from public databases and references. Four representative components of WPL were established and quantified by HPLC–MS/MS analysis. WPL attenuated MNNG-induced GPLs, including epithelial shedding, cavity fusion, basement membranes with asymmetrical thickness, intestinal metaplasia, dysplasia, pro-inflammatory Th1-cell infiltration, and INF-γ production, indicating that WPL prevents inflammation in the gastric mucosa. Furthermore, WPL reversed MNNG-induced activation of the IκB/NF-κB signalling pathway and subsequently attenuated the upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase (NOX)) family members NOX2 and NOX4. Conclusion WPL attenuated GPLs by controlling the generation of pro-inflammatory elements and inhibiting the NF-κB signalling pathway in vivo.
Collapse
|
7
|
m6A RNA methylation-mediated NDUFA4 promotes cell proliferation and metabolism in gastric cancer. Cell Death Dis 2022; 13:715. [PMID: 35977935 PMCID: PMC9385701 DOI: 10.1038/s41419-022-05132-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Gastric cancer (GC) is a malignancy with poor prognosis. NDUFA4 is reported to correlate with the progression of GC. However, its underlying mechanism in GC is unknown. Our study was to reveal the pathogenic mechanism of NDUFA4 in GC. NDUFA4 expression was explored in single-cell and bulk RNA-seq data as well as GC tissue microarray. Mitochondrial respiration and glycolysis were estimated by oxygen consumption rate and extracellular acidification rate, respectively. The interaction between NDUFA4 and METTL3 was validated by RNA immunoprecipitation. Flow cytometry was used to estimate cell cycle, apoptosis and mitochondrial activities. NDUFA4 was highly expressed in GC and its high expression indicated a poor prognosis. The knockdown of NDUFA4 could reduce cell proliferation and inhibit tumor growth. Meanwhile, NDUFA4 could promote glycolytic and oxidative metabolism in GC cells, whereas the inhibition of glycolysis suppressed the proliferation and tumor growth of GC. Besides, NDUFA4 inhibited ROS level and promoted MMP level in GC cells, whereas the inhibition of mitochondrial fission could reverse NDUFA4-induced glycolytic and oxidative metabolism and tumor growth of GC. Additionally, METTL3 could increase the m6A level of NDUFA4 mRNA via the m6A reader IGF2BP1 to promote NDUFA4 expression in GC cells. Our study revealed that NDUFA4 was increased by m6A methylation and could promote GC development via enhancing cell glycolysis and mitochondrial fission. NDUFA4 was a potential target for GC treatment.
Collapse
|
8
|
A Network Pharmacology Approach for Uncovering the Antitumor Effects and Potential Mechanisms of the Sijunzi Decoction for the Treatment of Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9364313. [PMID: 35463069 PMCID: PMC9019414 DOI: 10.1155/2022/9364313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Background Sijunzi decoction (SJZD), a classic Chinese formula, has been clinically used for the treatment of gastrointestinal disorders. However, few studies have uncovered its antitumor effects and its potential mechanisms against gastric cancer (GC). Therefore, this work aimed to identify the active compounds and putative targets of the SJZD and to further explore the potential mechanisms involved in the treatment of GC. Materials and Methods The active compounds and potential targets of the SJZD and related genes for GC treatment were collected from a public database. Traditional Chinese medicine (TCM)-compound-target-disease networks, Venn diagrams, protein–protein interactions (PPIs), gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to obtain the bioactive compounds, key targets, and potential pathways. Next, the human gastric adenocarcinoma cell line NUGC-4 was inoculated subcutaneously into the right flank of NCG mice to build a tumor-bearing mouse model to further verify the findings. Results There were 117 compounds in the SJZD in total. The SJZD and GC had 161 and 3288 potential targets, respectively, among which 123 targets overlapped. The network analysis showed that quercetin, kaempferol formononetin, ginsenoside, atractylenolide III, etc., were bioactive molecules. The tumor necrosis factor (TNF), interleukin-6 (IL-6), cellular tumor antigen p53 (TP53), transcription factor AP-1 (JUN), and vascular endothelial growth factor A (VEGFA) were potential targets. A KEGG pathway enrichment analysis revealed 110 pathways involved in the pathways for cancer, including the PI3K-AKT signaling pathway. Validation experiments showed that the SJZD inhibited tumor growth and induced apoptosis in tumor cells. In addition, the SJZD downregulated expressions of VEGFA, iNOS, COX-2, and Bax/Bcl2 and inhibited the expressions of p-PI3K and p-AKT. Conclusion The SJZD treats GC by inhibiting blood vessel hyperplasia and inducing cell apoptosis by regulating the PI3K/AKT pathway.
Collapse
|
9
|
Mechanism of N-Methyl-N-Nitroso-Urea-Induced Gastric Precancerous Lesions in Mice. JOURNAL OF ONCOLOGY 2022; 2022:3780854. [PMID: 35342404 PMCID: PMC8942688 DOI: 10.1155/2022/3780854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Early diagnosis and treatment of gastric precancerous lesions (GPL) are key factors for reducing the incidence and morbidity of gastric cancer. The study is aimed at examining GPL in mice induced by N-methyl-N-nitroso-urea (MNU) and to illustrate the underlying mechanisms of tumorigenesis. In this study, we utilized an in vivo MNU-induced GPL mouse model, and histopathological changes of the gastric mucosa were observed by hematoxylin and eosin (H&E-stain) and alcian blue (AB-PAS-stain). The level of miR-194-5p in the gastric mucosa was determined by real-time polymerase chain reaction. We used transmission electron microscopy to observe the effects of MNU on gastric chief cells and parietal cells. We performed immunohistochemical detection of HIF-1α, vWF, Ki-67, and P53, while the changes in the protein expression of key genes in LKB1-AMPK and AKT-FoxO3 signaling pathways were detected by western blot analysis. We demonstrated that the miR-194-5p expression was upregulated under hypoxia in GPL gastric tissues, and that a high miR-194-5p expression level closely related with tumorigenesis. Mechanistically, miR-194-5p exerted the acceleration of activities related to metabolic reprogramming through LKB1-AMPK and AKT-FoxO3 pathways. Furthermore, similar to miR-194-5p, high expression levels of AMPK and AKT were also related to the metabolic reprogramming of GPL. Moreover, we revealed the correlation between the expression levels of miR-194-5p, p-AMPKα, p-AKT, and FoxO3a. These findings suggest that miR-194-5p/FoxO3 pathway is important for the reversal of metabolic reprogramming in GPL. Thus, exploring strategies to regulate the miR-194-5p/FoxO3a pathway may provide an efficient strategy for the prevention and treatment of GPL.
Collapse
|
10
|
Xu W, Li B, Xu M, Yang T, Hao X. Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed Pharmacother 2021; 146:112542. [PMID: 34929576 DOI: 10.1016/j.biopha.2021.112542] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of death due to cancer worldwide. The gastric mucosa often undergoes many years of precancerous lesions of gastric cancer (PLGC) stages before progressing to gastric malignancy. Unfortunately, there are no effective Western drugs for patients with PLGC. In recent years, traditional Chinese medicine (TCM) has been proven effective in treating PLGC. Classical TCM formulas and chemical components isolated from some Chinese herbal medicines have been administered to treat PLGC, and the main advantage is their comprehensive intervention with multiple approaches and multiple targets. In this review, we focus on recent studies using TCM treatment for PLGC, including clinical observations and experimental research, with a focus on targets and mechanisms of drugs. This review provides some ideas and a theoretical basis for applying TCM to treat PLGC and prevent GC.
Collapse
Affiliation(s)
- Weichao Xu
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China; Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine Gastroenterology, Shijiazhuang 050011, China
| | - Bolin Li
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China; Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine Gastroenterology, Shijiazhuang 050011, China
| | - Miaochan Xu
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinyu Hao
- Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
11
|
Ao YJ, Wu TT, Cao ZZ, Zhou SH, Bao YY, Shen LF. Role and mechanism of Glut-1 and H+/K+-ATPase expression in pepsin-induced development of vocal cord leukoplakia. Eur Arch Otorhinolaryngol 2021; 279:1413-1424. [PMID: 34800155 PMCID: PMC8897356 DOI: 10.1007/s00405-021-07172-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE We investigated the role of Glut-1 and H+/K+-ATPase expression in pepsin-induced development of human vocal cord leukoplakia cells (HVCLCs). Next, we analyzed the relationship between Glut-1 and H+/K+-ATPase expression with the clinicopathological features of laryngeal carcinoma. METHODS Glut-1 and H+/K+-ATPase expression levels in HVCLCs were determined after treatment with artificial gastric juice containing pepsin and laryngeal carcinoma tissues. RESULTS Exposure to pepsin-containing artificial gastric juice significantly enhanced the migration and proliferation of VSCLCs in a time-dependent manner. The apoptotic rate of VSCLCs decreased over time after exposure to pepsin and reached a nadir on day 7 (p < 0.01). With increasing duration of exposure to pepsin, the proportion of VSCLCs in G0/G1 phase decreased and the proportions in the S and G2/M phases significantly increased (p < 0.05). After treatment with pepsin-containing artificial gastric juice, RT-PCR and Western blotting showed that the expression of Glut-1 and H+/K+-ATPase α, β significantly increased in HVCLCs compared to in the absence of pepsin (p < 0.05). The expression of Glut-1 and H+/K+-ATPase α, β gradually increased from vocal cord leukoplakia (VLC) to laryngeal carcinoma (p < 0.05). Lentivirus-mediated inhibition of Glut-1 expression in VCL significantly inhibited the cells' migration and proliferation (p < 0.05) but enhanced their apoptosis (p < 0.05). Also, inhibition of Glut-1 expression resulted in an increased proportion of cells in G0/G1 phase and a significantly decreased proportion in G2/M phase (p < 0.05). CONCLUSIONS Elevated Glut-1 expression may promote the development of VCL by upregulating laryngeal H+/K+-ATPase expression to reactivate absorbed pepsin, thus damaging the laryngeal mucosa.
Collapse
Affiliation(s)
- Yin-Jie Ao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, 310003, People's Republic of China
| | - Ting-Ting Wu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, 310003, People's Republic of China
| | - Zai-Zai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, 310003, People's Republic of China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, 310003, People's Republic of China.
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, 310003, People's Republic of China
| | - Li-Fang Shen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, 310003, People's Republic of China
| |
Collapse
|