1
|
Kang P, Xiao L, Liu Y, Yang J, Li S, Wang L. Morusin ameliorates tubulointerstitial damage in diabetic mice through SIRT1/HIF-1α/IL-16 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156781. [PMID: 40382816 DOI: 10.1016/j.phymed.2025.156781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND AND PURPOSE Hypoxia is generally considered the major cause of renal tubular injury. The interaction between sirtuin 1 (SIRT1) and hypoxia inducible factor 1 subunit alpha (HIF-1α) is a key mediator of hypoxia-induced renal tubular damage. In this study, we identified morusin from a screen of SIRT1 inducers and reported its potential for the treatment of diabetic kidney disease (DKD). EXPERIMENTAL APPROACH Intraperitoneal injection of morusin in db/db and STZ-induced diabetic mice was assessed for its effect on tubulointerstitial damage. The expression and acetylation level of HIF-1α were analyzed by immunoblotting or immunostaining. The effects of morusin treatment on hypoxia-induced extracellular matrix (ECM) accumulation, apoptosis and IL-16 production in HK2 cells were evaluated by immunoblotting. Luciferase reporter gene and ChIP analysis was used to determine whether IL-16 was the target genes of HIF-1α. KEY RESULTS In db/db and STZ-induced mice, morusin treatment alleviated kidney injury and inhibited renal inflammation and fibrosis. Mechanistic analysis using animal models and HK2 cells revealed that morusin treatment upregulated SIRT1 expression by enhancing its stability, and reduced the expression and acetylation levels of HIF-1α as well as expression of its regulated genes, thereby inhibiting ECM accumulation, apoptosis and IL-16 production. Furthermore, morusin decreased expression of the IL-16 through inhibited HIF-1α binding to the IL-16 promoter. CONCLUSION AND IMPLICATIONS Our study is the first to demonstrate that morusin ameliorated tubulointerstitial damage in diabetic mice by regulating SIRT1/HIF-1α/IL-16 signaling pathway. Taken together, our findings suggest that morusin is a clinical candidate compound to prevent DKD.
Collapse
Affiliation(s)
- PeiYuan Kang
- Department of Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lin Xiao
- Department Of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - YiXian Liu
- Department Of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jiqing Yang
- Department Of Orthopaedic, Kingston Hospital NHS Foundation Trust, London, KT2 7QB, UK
| | - Sha Li
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China.
| | - Lixuan Wang
- Department Of Histology and embryology, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Li Y, Yu X, Liu Y, Miao S, Liu X, Wang Z, Zhou H. Pharmacodynamic components and molecular mechanism of Gastrodia elata Blume in treating hypertension: Absorbed components, network pharmacology analysis, molecular docking and in vivo experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119583. [PMID: 40058475 DOI: 10.1016/j.jep.2025.119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizome of Gastrodia elata Blume (RGE) is a valuable traditional Chinese Medicine (TCM) in the clinical practice. The Compendium of Materia Medica records that RGE has the effect of flatting liver wind out. It has sedative, analgesic, hypnotic, anticonvulsant, anti-hypertensive, anti-myocardial ischemia, anti-arrhythmic and anti-platelet aggregation effects. RGE is often used to relieve and treat vertigo, headache, hypertension, convulsions, and epilepsy in TCM clinic for thousands of years. Accumulated evidences have suggested that hypertension disease is related to the renin-angiotensin-aldosterone system (RAAS) disturbance. However, the potential pharmacodynamic components and anti-hypertensive mechanisms of RGE are unclear now. AIM OF THE STUDY The active component and mechanism of RGE in treating hypertension were elucidated to strengthen the quality control and development of anti-hypertensive drugs. MATERIALS AND METHODS The anti-hypertensive active components of RGE were analyzed by multi-dimensional qualitative analysis method including ethanol extract, in-vitro intestinal absorption, in-vivo plasma. The ultra high performance liquid chromatography-mass spectrometry (UPLC-Q-Exactive MS/MS) analysis technology was adopted to identify these components. Network pharmacology was applied to predicted anti-hypertensive active components, target proteins and pathways. Molecular docking was used to evaluate the potential molecular binding modes between 68 components and nine proteins. Spontaneously hypertensive rats (SHR) model was adopted to evaluate the activity of reducing systolic and diastolic blood pressure (SBP and DBP). Levels of renin, angiotcnsin II (Ang II) and aldosterone (ALD) in serum were determined by Elisa kit. Immunohistochemical were adopted to compare the changes of Ang II receptor 1 (AT1R) protein levels in SHR model and RGE groups. RESULTS The multi-dimensional components qualitative analysis method of RGE was established. The results showed that 79, 70 and 30 components were identified in RGE ethanol extract, in-vitro intestinal absorption and in-vivo plasma, respectively. These components were mainly parishins, nucleosides, amino acids, phenolic acids, flavonoids, organic acids et al. Network pharmacology results showed that anti-hypertensive active components were nucleosides and organic acids. It was speculated that RGE could exert its anti-hypertensive effect by regulating aldosterone-regulated sodium reabsorption, renin-angiotensin system pathways and related target proteins. Molecular docking results showed that 21 components including parishins, nucleosides and phenolic acids were potential active components of anti-hypertensive. Taking together, parishin A, B, E, C, D, adenosine, N6-(4-hydroxybenzyl) adenosine, guanosine, ferulic acid were the main anti-hypertensive active components of RGE. Pharmacodynamic results showed that RGE (0.7 g·kg-1) at low dosage could reduce SBP and DBP of SHR in vivo. Meanwhile, RGE (1.4 g·kg-1) markedly reduced the contents of renin, angiotcnsin II and ALD (p < 0.05) of SHR. Immunohistochemical data demonstrated that RGE (0.7 g·kg-1) could downregulate the protein expression of AT1R. In general, RGE can significantly reduce blood pressure of SHR by regulating RAAS. CONCLUSION The multi-dimensional components qualitative analysis combining network pharmacology and molecular docking technology provide a new perspective for discovering potential anti-hypertensive components of RGE. RGE possess anti-hypertensive activity by regulating multiple targets of RAAS. Thus, it has the potential to develop into the novel raw material of anti-hypertensive drugs.
Collapse
Affiliation(s)
- Yun Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaofei Yu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yezhi Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuxin Miao
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoqian Liu
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhimin Wang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Honglei Zhou
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Du MD, He KY, Fan SQ, Li JY, Liu JF, Lei ZQ, Qin G. The Mechanism by Which Cyperus rotundus Ameliorates Osteoarthritis: A Work Based on Network Pharmacology. J Inflamm Res 2024; 17:7893-7912. [PMID: 39494203 PMCID: PMC11531273 DOI: 10.2147/jir.s483652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Background Cyperus rotundus (CR) is widely used in traditional Chinese medicine to prevent and treat a variety of diseases. However, its functions and mechanism of action in osteoarthritis (OA) has not been elucidated. Here, a comprehensive strategy combining network pharmacology, molecular docking, molecular dynamics simulation and in vitro experiments was used to address this issue. Methods The bioactive ingredients of CR were screened in TCMSP database, and the potential targets of these ingredients were obtained through Swiss Target Prediction database. Genes in OA pathogenesis were collected through GeneCards, OMIM and DisGeNET databases. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using DAVID database. STRING database and Cytoscape 3.10 software were used to construct "component-target-pathway" network, and predict the core targets affected by CR. The binding affinity between bioactive components and the core targets was evaluated by molecular docking and molecular dynamics simulation. The therapeutic activity of kaempferol on chondrocytes in inflammatory conditions was verified by in vitro experiments. Results Fifteen CR bioactive ingredients were obtained, targeting 192 OA-related genes. A series of biological processes, cell components, molecular functions and pathways were predicted to be modulated by CR components. The core targets of CR in OA treatment were AKT serine/threonine kinase 1 (AKT1), interleukin 1 beta (IL1B), SRC proto-oncogene, non-receptor tyrosine kinase (SRC), BCL2 apoptosis regulator (BCL2), signal transducer and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR), hypoxia-inducible factor 1 subunit alpha (HIF1A), matrix metallopeptidase 9 (MMP9), estrogen receptor 1 (ESR1) and PPARG orthologs from vertebrates (PPARG), and the main bioactive ingredients of CR showed good binding affinity with these targets. In addition, kaempferol, one of the CR bioactive components, weakens the effects of IL-1β on the viability, apoptosis and inflammation of chondrocytes. Conclusion Theoretically, CR has great potential to ameliorate the symptoms and progression of OA, via multiple components, multiple targets, and multiple downstream pathways.
Collapse
Affiliation(s)
- Min-Dong Du
- Department of Osteoarthrosis, Xing-An Jieshou Orthopedics Hospital, Guilin, People’s Republic of China
- Department of Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Kai-Yi He
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Si-Qi Fan
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Jin-Yi Li
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Jin-Fu Liu
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Zi-Qiang Lei
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| | - Gang Qin
- Department of Osteoarthrosis, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, People’s Republic of China
| |
Collapse
|
4
|
Li H, Niu L, Wang M, Liu C, Wang Y, Su Y, Yang Y. Mechanism investigation of anti-NAFLD of Shugan Yipi Granule based on network pharmacology analysis and experimental verification. Heliyon 2024; 10:e35491. [PMID: 39170438 PMCID: PMC11336705 DOI: 10.1016/j.heliyon.2024.e35491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
As a classical traditional Chinese patent medicine, Shugan Yipi Granule is widely used in China to treat non-alcoholic fatty liver disease (NAFLD) recently. Our previous study confirmed that Shugan Yipi Granule are effective in NAFLD. However, its underlying mechanism is still unknown. This study aims to investigate the mechanism of Shugan Yipi Granule on NAFLD based on network pharmacology prediction, liquid chromatography-mass spectrometry (LC-MS) analysis and in vitro verification. We obtained the active ingredients and targets of Shugan Yipi Granule and NAFLD from 6 traditional Chinese medicine databases, and the crucial components and targets screened by protein-protein interaction (PPI) network were used for molecular docking. Plasma metabolomics of NAFLD patients treated with Shugan Yipi Granule for one month was analyzed using LC-MS methods and MetaboAnalyst 4.0 to obtain significant differential metabolites and pathways. Finally, free fatty acid (FFA) induced HepG2 cells were treated with different concentrations of quercetin and kaempferol, then oil red o (ORO) and triglyceride (TG) level were tested to verify the lipid deposition of the cell. Network pharmacology analysis showed that the main active ingredients of Shugan Yipi Granule include quercetin, kaempferol and other 58 ones, as well as 188 potential targets. PI3K/Akt signaling pathway was found to be the most relevant pathway for the treatment of NAFLD. Non-targeted metabolomics showed that quercetin and kaempferol were significantly up-regulated differential metabolites and were involved in metabolic pathways such as thyroid hormone signaling. In vitro results showed that quercetin, kaempferol were effective in reducing lipid deposition and TG content by inhibiting cellular fatty acid uptake. Ultimately, with the network pharmacology and serum metabolomics analysis, quercetin and kaempferol were found to be the important active ingredients and significantly up-regulated differential metabolites of Shugan Yipi Granule against NAFLD, which we inferred that they may regulate NAFLD through PI3K/Akt signaling pathway and thyroid hormone metabolism pathway. The in vitro experiment verification results showed that quercetin and kaempferol attenuated the lipid accumulation and TG content by inhibiting the fatty acid uptake in the FFA-induced HepG2 cell. Current study provides the necessary experimental basis for subsequent in-depth mechanism research.
Collapse
Affiliation(s)
- Hairong Li
- West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
- Guangdong Pharmaceutical University, Xiaoguwei street, Panyu District, Guangzhou, 510006, China
| | - lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiling Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Chunmei Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Yunlong Wang
- Academic Department, Giant Praise (HK) Pharmaceutical Group Limited, Changchun, 130033, China
| | - Yu Su
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Yubin Yang
- West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| |
Collapse
|
5
|
Zahran EM, Mohamad SA, Elsayed MM, Hisham M, Maher SA, Abdelmohsen UR, Elrehany M, Desoukey SY, Kamel MS. Ursolic acid inhibits NF-κB signaling and attenuates MMP-9/TIMP-1 in progressive osteoarthritis: a network pharmacology-based analysis. RSC Adv 2024; 14:18296-18310. [PMID: 38863821 PMCID: PMC11165403 DOI: 10.1039/d4ra02780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, characterized by infiltration of monocytes into the synovial joint which promotes inflammation, stiffness, joint swelling, cartilage degradation and further bone destruction. The leaves of Ocimum forskolei have been used for inflammation-related disease management in traditional medicine. Additionally, the downregulation of NF-κB and the MMP/TIMP-1 ratio has been shown to protect against OA. The LC-HR-MS metabolic analysis of Ocimum yielded 19 putative compounds, among which ursolic acid (UA) was detected. Ursolic acid possesses significant anti-inflammatory effects and has been reported to downregulate oxidative stress and inflammatory biomarkers. It was tested on rats in a model of intra-articular carrageenan injection to investigate its efficacy on osteoarthritis progression. The UA emulgel exerted chondroprotective, analgesic and local anaesthetic efficacies confirmed via histopathological investigation and radiographical imaging. A network pharmacology followed by molecular docking highlighted TNF-α, TGF-β and NF-κB as the top filtered genes. Quantitative real-time PCR analysis showed that UA significantly attenuated serum levels of TNF-α, IL-1β, NF-κB, MMP-9/TIMP-1 and elevated levels of TGF-β. Taken together, these results suggest that UA could serve as a functional food-derived phytochemical with a multi-targeted efficacy on progression of OA, regulating the immune and inflammatory responses, particularly, attenuating chondrocytes degeneration via suppression of NF-κB and MMP-9/TIMP-1. Accordingly, UA might be a promising alternative to conventional therapy for safe, easily applicable and effective management of OA.
Collapse
Affiliation(s)
- Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Mohamed M Elsayed
- Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Sherif A Maher
- Department of Biochemistry, Faculty of Pharmacy, New Valley University New Valley Elkharga 71511 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| |
Collapse
|
6
|
Ismail NZ, Khairuddean M, Alidmat MM, Abubakar S, Arsad H. Investigating the potential of mono-chalcone compounds in targeting breast cancer receptors through network pharmacology, molecular docking, molecular dynamics simulation, antiproliferative effects, and gene expressions. 3 Biotech 2024; 14:151. [PMID: 38737798 PMCID: PMC11087420 DOI: 10.1007/s13205-024-03991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The study aims to investigate various aspects of synthesized mono-chalcone compounds 5 and 8 concerning breast cancer, including network pharmacology, molecular docking, molecular dynamics (MD) simulations, antiproliferative effects, and gene expressions. Initially, the compounds underwent a network pharmacology analysis targeting breast cancer-related targets, with MalaCards, SwissTargetPrediction, and PharmMapper identifying 70 breast cancer target receptors. Subsequently, protein-protein interaction (PPI) network analysis revealed two distinct target gene clusters. Survival analysis identified seven significant target genes following Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) evaluation. Molecular docking and MD simulations were conducted on these seven target genes (AKT2, BRAF, ESR1, FGFR1, IGF1, IGF1R, and KIT), revealing that compound 8 exhibited the highest binding affinities, as well as better stability and compactness when interacting with the targeted proteins. Next, the compounds underwent cell viability assay and gene expression analysis to validate the in silico findings. Both compounds demonstrated the ability to suppress breast cancer proliferation, with compound 8 showing increased selectivity in targeting breast cancer cells while causing minimal harm to normal breast cells. The suppression of breast cancer cell proliferation was attributed to decreased expression levels of AKT2, BRAF, FGFR1, IGF1, IGF1R, KIT, and ESR1. Hence, the results provide insights into the molecular interaction responsible for the anti-breast cancer capabilities of mono-chalcone compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03991-y.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Sadiq Abubakar
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Pure and Industrial Chemistry, Bayero University Kano, Kano, 3011 Nigeria
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang Malaysia
| |
Collapse
|
7
|
Zhou Q, Liu J, Xin L, Fang Y, Hu Y, Qi Y, He M, Fang D, Chen X, Cong C. Association between traditional Chinese Medicine and osteoarthritis outcome: A 5-year matched cohort study. Heliyon 2024; 10:e26289. [PMID: 38390046 PMCID: PMC10881435 DOI: 10.1016/j.heliyon.2024.e26289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Objective The aim of this study was to investigate the relationship between Traditional Chinese medicine (TCM) and pain reduction, hospital readmission, and joint replacement in patients with osteoarthritis (OA). Chinese herbal medicine (CHM) prescription patterns were further analyzed to confirm the association with prognosis and quality of life in OA patients. Methods We retrospectively followed 3,850 hospitalized patients with osteoarthritis between January 2018 and December 2022 using the hospital's HIS system. Propensity score matching (PSM) was used for data matching. Cox's proportional risk model was used to assess the impact of various factors on the outcomes of patients with OA, including pain worsening, readmission, and joint replacement. The Kaplan-Meier survival curve was applied to determine the impact of TCM intervention time on patient outcomes. Data mining methods including association rules, cluster analysis, and random walks have been used to assess the efficacy of TCM. Results The utilization rate of TCM in OA patients was 67.01% (2,511/3,747). After PSM matching, 1,228 TCM non-user patients and 1,228 TCM user patients were eventually included. The outcomes of pain worsening, re-admission rate, and joint replacement rate of the TCM non-user group were observably higher than those of the TCM user group with OA (p < 0.05). Based on the Cox proportional risk model, TCM is an independent protective factor. Compared with non-TCM users, TCM users had 58.4% lower rates of pain, 51.1% lower rates of re-admission, and 42% lower rates of joint replacement. In addition, patients in the high-exposure subgroup (TCM>24 months) had a markedly lower risk of outcome events than those in the low-exposure subgroup (TCM ≤24 months). Data mining methods have shown that TCM therapy can significantly improve immune-inflammatory indices, VAS scores, and SF-36 scale scores in OA patients. Conclusion s TCM acts as a protective factor to improve the prognosis of patients with OA, and the benefits of long-term use of herbal medicines are even greater.
Collapse
Affiliation(s)
- Qiao Zhou
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China
- Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Ling Xin
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Yanyan Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Yuedi Hu
- Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Yajun Qi
- Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Mingyu He
- Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Dahai Fang
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Xiaolu Chen
- Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Chengzhi Cong
- Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
8
|
Liu X, Ke S, Wang X, Li Y, Lyu J, Liu Y, Geng Z. Interpretation of the anti-influenza active ingredients and potential mechanisms of Ge Gen Decoction based on spectrum-effect relationships and network analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117290. [PMID: 37806538 DOI: 10.1016/j.jep.2023.117290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ge Gen Decoction (GGD) is a classic traditional Chinese medicine (TCM) prescription that originated in the ancient Chinese medical book "Treatise on Febrile Diseases". The prescription consists of 7 herbs: Pueraria lobata (Willd.) Ohwi, Ephedra sinica Stapf, Cinnamomum cassia (L.) J.Presl, Paeonia lactiflora Pall., Glycyrrhiza uralensis Fisch., Zingiber officinale Rosc., and Ziziphus jujuba Mill. It can alleviate high fever and soreness in the neck and shoulders caused by exogenous wind chill and is widely used in both China and Japan. Currently, GGD is primarily utilized for treating flu and the common cold. GGD has been reported to show significant anti-influenza A virus (IAV) activity both in vitro and in vivo. However, the active ingredients responsible for its anti-influenza properties have not been elucidated, and the mechanisms underlying its anti-influenza effects require further research. AIM OF THE STUDY This study aims to investigate the active ingredients and molecular mechanisms of GGD in treating influenza. MATERIALS AND METHODS HPLC chromatograms were established for GGD water and different polar extracts. The effect of different GGD extracts on pulmonary virus titers and TNFα expression was assessed through RT-PCR analysis. Spectrum-effect relationships between chromatographic peaks of GGD and its virus inhibition rate and TNFα inhibition rate were investigated using partial least squares regression (PLSR) analysis. HPLC-Q-TOF-MS was utilized to identify the constituents absorbed into the blood after oral administration of GGD. Network analysis of the absorbed forms of active ingredients was conducted to predict the potential mechanisms of GGD. Subsequently, total SOD activity, CAT and HO-1 expression and Nrf2 nuclear translocation were then analyzed. Finally, the impact of interfering with HO-1 expression on the anti-IAV activity of GGD was examined. RESULTS The study identified 11 anti-influenza active ingredients in GGD, which are daidzein, ononin, genistin, daidzin, 3'-methoxypuerarin, puerarin, pseudoephedrine, paeoniflorin, pormononetin-7-xylosyl-glucoside, penistein-7-O-apiosyl-glucoside, and ephedrine. Network analysis revealed various biological activities of GGD, including responses to ROS and oxidative stress. GGD also involves multiple antiviral pathways, such as hepatitis B, IAV, and Toll-like receptor pathways. Experimental assays demonstrated that GGD possesses independent antioxidant activity both in vitro and in vivo. In vitro, GGD inhibits the increase in intracellular ROS induced by IAV. In vivo, it reduces MDA levels and increases total pulmonary SOD activity. Applying siRNA and flow cytometry analysis revealed that GGD alleviates IAV-induced oxidative burst by promoting the expression of HO-1 and CAT. Western blot analysis revealed that GGD effectively promotes Nrf2 nuclear translocation and enhances Nrf2 expression. Furthermore, this study found that the enhancement of HO-1 expression by GGD contributed to its anti-IAV activity. CONCLUSIONS The study identified the active ingredients of GGD against influenza and demonstrated the beneficial role of GGD's antioxidant activity in treating flu. The antioxidant activity of GGD is associated with the promotion of Nrf2 nuclear translocation and the upregulation of antioxidant enzymes such as SOD, HO-1, and CAT. Overall, this study provides evidence supporting the use of GGD as an adjunctive or complementary therapy for influenza.
Collapse
Affiliation(s)
- Xiyu Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Siyuan Ke
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiuyi Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yaqun Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jiantao Lyu
- Pharmacy Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China.
| | - Yu Liu
- Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Zikai Geng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
9
|
He Q, Yang J, Chen W, Pan Z, Chen B, Zeng J, Zhang N, Lin Y, Chen C, Xiao J, Li M, Li S, Wang H, Chen P. Biochanin A abrogates osteoclastogenesis in type 2 diabetic osteoporosis via regulating ROS/MAPK signaling pathway based on integrating molecular docking and experimental validation. BMC Complement Med Ther 2024; 24:24. [PMID: 38191438 PMCID: PMC10773052 DOI: 10.1186/s12906-023-04332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND There are accumulating type 2 diabetes patients who have osteoporosis simultaneously. More effective therapeutic strategies should be discovered. Biochanin A (BCA) has been indicated that can play a role in improving metabolic disorders of type 2 diabetes and preventing osteoporosis. But whether BCA can treat type 2 diabetic osteoporosis has not been studied. PURPOSE To investigate if the BCA can protect against type 2 diabetic osteoporosis and clarify the mechanism. METHODS Micro-CT and histology assays were performed to detect the trabecular bone and analyze the bone histomorphology effect of BCA. CCK-8 assay was performed to detect the toxicity of BCA. TRAcP staining, immunofluorescence and hydroxyapatite resorption assay were used to observe osteoclasts differentiation and resorptive activity. Molecular docking provided evidence about BCA regulating the MAPK axis via prediction by the algorithm. QRT-PCR and Western Blotting were utilized to detect the expression of osteoclastogenesis-related markers and MAPK signaling pathway. RESULTS Accumulation of bone volume after BCA treatment could be found based on the 3D reconstruction. Besides, there were fewer osteoclasts in db/db mice treated with BCA than db/db mice treated with saline. In vitro, we found that BCA hadn't toxicity in osteoclasts precursor, but also inhibited differentiation of osteoclasts. Further, we found that BCA suppresses osteoclastogenesis via ROS/MAPK signaling pathway. CONCLUSION BCA can prevent type 2 diabetic osteoporosis by restricting osteoclast differentiation via ROS/MAPK signaling pathway.
Collapse
Affiliation(s)
- Qi He
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Junzheng Yang
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
- Fifth School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
| | - Weijian Chen
- Fifth School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
| | - Zhaofeng Pan
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Baihao Chen
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Jiaxu Zeng
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Nenling Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P.R. China
| | - Yuewei Lin
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Chuyi Chen
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Jiacong Xiao
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Miao Li
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Shaocong Li
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China.
| | - Peng Chen
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China.
| |
Collapse
|
10
|
Huang P, Wang Y, Liu C, Zhang Q, Ma Y, Liu H, Wang X, Wang Y, Wei M, Ma L. Exploring the Mechanism of Zhishi-Xiebai-Guizhi Decoction for the Treatment of Hypoxic Pulmonary Hypertension based on Network Pharmacology and Experimental Analyses. Curr Pharm Des 2024; 30:2059-2074. [PMID: 38867532 DOI: 10.2174/0113816128293601240523063527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Hypoxic Pulmonary Hypertension (HPH), a prevalent disease in highland areas, is a crucial factor in various complex highland diseases with high mortality rates. Zhishi-Xiebai-Guizhi decoction (ZXGD), traditional Chinese medicine with a long history of use in treating heart and lung diseases, lacks a clear understanding of its pharmacological mechanism. OBJECTIVE This study aimed to investigate the pharmacological effects and mechanisms of ZXGD on HPH. METHODS We conducted a network pharmacological prediction analysis and molecular docking to predict the effects, which were verified through in vivo experiments. RESULTS Network pharmacological analysis revealed 51 active compounds of ZXGD and 701 corresponding target genes. Additionally, there are 2,116 targets for HPH, 311 drug-disease co-targets, and 17 core-targets. GO functional annotation analysis revealed that the core targets primarily participate in biological processes such as apoptosis and cellular response to hypoxia. Furthermore, KEGG pathway enrichment analysis demonstrated that the core targets are involved in several pathways, including the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway and Hypoxia Inducible Factor 1 (HIF1) signaling pathway. In vivo experiments, the continuous administration of ZXGD demonstrated a significant improvement in pulmonary artery pressure, right heart function, pulmonary vascular remodeling, and pulmonary vascular fibrosis in HPH rats. Furthermore, ZXGD was found to inhibit the expression of PI3K, Akt, and HIF1α proteins in rat lung tissue. CONCLUSION In summary, this study confirmed the beneficial effects and mechanism of ZXGD on HPH through a combination of network pharmacology and in vivo experiments. These findings provided a new insight for further research on HPH in the field of traditional Chinese medicine.
Collapse
Affiliation(s)
- Pan Huang
- Qinghai University Medical College, Xining 810016, China
| | - Yuxiang Wang
- Qinghai University Medical College, Xining 810016, China
| | - Chuanchuan Liu
- Hydatidosis Laboratory, Affiliated Hospital of Qinghai University, Xining 810012, China
| | - Qingqing Zhang
- Qinghai University Medical College, Xining 810016, China
| | - Yougang Ma
- Qinghai University Medical College, Xining 810016, China
| | - Hong Liu
- Qinghai University Medical College, Xining 810016, China
| | - Xiaobo Wang
- Qinghai University Medical College, Xining 810016, China
| | - Yating Wang
- Qinghai University Medical College, Xining 810016, China
| | - Minmin Wei
- Qinghai University Medical College, Xining 810016, China
- Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining 810099, China
| | - Lan Ma
- Qinghai University Medical College, Xining 810016, China
| |
Collapse
|
11
|
Ekowati J, Tejo BA, Maulana S, Kusuma WA, Fatriani R, Ramadhanti NS, Norhayati N, Nofianti KA, Sulistyowaty MI, Zubair MS, Yamauchi T, Hamid IS. Potential Utilization of Phenolic Acid Compounds as Anti-Inflammatory Agents through TNF-α Convertase Inhibition Mechanisms: A Network Pharmacology, Docking, and Molecular Dynamics Approach. ACS OMEGA 2023; 8:46851-46868. [PMID: 38107968 PMCID: PMC10720000 DOI: 10.1021/acsomega.3c06450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a dysregulated immune response characterized by an excessive release of proinflammatory mediators, such as cytokines and prostanoids, leading to tissue damage and various pathological conditions. Natural compounds, notably phenolic acid phytocompounds from plants, have recently garnered substantial interest as potential therapeutic agents to bolster well-being and combat inflammation recently. Based on previous research, the precise molecular mechanism underlying the anti-inflammatory activity of phenolic acids remains elusive. Therefore, this study aimed to predict the molecular mechanisms underpinning the anti-inflammatory properties of selected phenolic acid phytocompounds through comprehensive network pharmacology, molecular docking, and dynamic simulations. Network pharmacology analysis successfully identified TNF-α convertase as a potential target for anti-inflammatory purposes. Among tested compounds, chlorogenic acid (-6.90 kcal/mol), rosmarinic acid (-6.82 kcal/mol), and ellagic acid (-5.46 kcal/mol) exhibited the strongest binding affinity toward TNF-α convertase. Furthermore, phenolic acid compounds demonstrated molecular binding poses similar to those of the native ligand, indicating their potential as inhibitors of TNF-α convertase. This study provides valuable insights into the molecular mechanisms that drive the anti-inflammatory effects of phenolic compounds, particularly through the suppression of TNF-α production via TNF-α convertase inhibition, thus reinforcing their anti-inflammatory attributes.
Collapse
Affiliation(s)
- Juni Ekowati
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bimo Ario Tejo
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department
of Chemistry, Faculty of Science,, Universiti
Putra Malaysia, Serdang 43400, Malaysia
| | - Saipul Maulana
- Magister
Programe Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94148, Indonesia
| | - Wisnu Ananta Kusuma
- Department
of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
- Tropical
Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | - Rizka Fatriani
- Tropical
Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | | | - Norhayati Norhayati
- Magister
Programe Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kholis Amalia Nofianti
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Melanny Ika Sulistyowaty
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhammad Sulaiman Zubair
- Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94148, Indonesia
| | - Takayasu Yamauchi
- Faculty
of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | - Iwan Sahrial Hamid
- Faculty
of Veterinary Medicine,Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
12
|
Qiao X, Wang H, He Y, Song D, Altawil A, Wang Q, Yin Y. Grape Seed Proanthocyanidin Ameliorates LPS-induced Acute Lung Injury By Modulating M2a Macrophage Polarization Via the TREM2/PI3K/Akt Pathway. Inflammation 2023; 46:2147-2164. [PMID: 37566293 PMCID: PMC10673742 DOI: 10.1007/s10753-023-01868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Acute lung injury (ALI) is an acute and progressive pulmonary inflammatory disease that is difficult to cure and has a poor prognosis. Macrophages, which have various phenotypes and diverse functions, play an essential role in the pathogenesis of ALI. Grape seed proanthocyanidin (GSP) has received much attention over several decades, and many biological activities such as anti-apoptotic, antioxidant, and anti-inflammatory have been identified. This study aimed to determine the effect of GSP on lipopolysaccharide (LPS)-induced ALI. In this study, we established an ALI mouse model by tracheal instillation of LPS, and by pre-injection of GSP into mice to examine the effect of GSP on the ALI mouse model. Using H&E staining, flow cytometry, and ELISA, we found that GSP attenuated LPS-induced lung pathological changes and decreased inflammatory cytokine expression in ALI mice. In addition, GSP reduced the recruitment of monocyte-derived macrophages to the lung and significantly promoted the polarization of primary mouse lung macrophages from M1 to M2a induced by LPS. In vitro, GSP also decreased the expression levels of inflammatory cytokines such as TNF-α, IL-6, IL-1β, and M1 macrophage marker iNOS induced by LPS in MH-S cells, while increasing the expression levels of M2a macrophage marker CD206. Bioinformatics analysis identified TREM2 and the PI3K/Akt pathway as candidate targets and signaling pathways that regulate M1/M2a macrophage polarization in ALI, respectively. Furthermore, GSP activated PI3K/Akt and increased TREM2 expression in vivo and in vitro. Meanwhile, GSP's impact on M2a polarization and inflammation suppression was attenuated by the PI3K inhibitor LY294002 or siRNA knockdown TREM2. In addition, GSP-enhanced PI3K/Akt activity was prevented by TREM2 siRNA. In conclusion, this study demonstrated that GSP could ameliorate LPS-induced ALI by modulating macrophage polarization from M1 to M2a via the TREM2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yulin He
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Dongfang Song
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Tran MN, Baek SJ, Jun HJ, Lee S. Identifying target organ location of Radix Achyranthis Bidentatae: a bioinformatics approach on active compounds and genes. Front Pharmacol 2023; 14:1187896. [PMID: 37637410 PMCID: PMC10448535 DOI: 10.3389/fphar.2023.1187896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Background: Herbal medicines traditionally target organs for treatment based on medicinal properties, and this theory is widely used for prescriptions. However, the scientific evidence explaining how herbs act on specific organs by biological methods has been still limited. This study used bioinformatic tools to identify the target organ locations of Radix Achyranthis Bidentatae (RAB), a blood-activating herb that nourishes the liver and kidney, strengthens bones, and directs prescription to the lower body. Methods: RAB's active compounds and targets were collected and predicted using databases such as TCMSP, HIT2.0, and BATMAN-TCM. Next, the RAB's target list was analyzed based on two approaches to obtain target organ locations. DAVID and Gene ORGANizer enrichment-based approaches were used to enrich an entire gene list, and the BioGPS and HPA gene expression-based approaches were used to analyze the expression of core genes. Results: RAB's targets were found to be involved in whole blood, blood components, and lymphatic organs across all four tools. Each tool indicated a particular aspect of RAB's target organ locations: DAVID-enriched genes showed a predominance in blood, liver, and kidneys; Gene ORGANizer showed the effect on low body parts as well as bones and joints; BioGPS and HPA showed high gene expression in bone marrow, lymphoid tissue, and smooth muscle. Conclusion: Our bioinformatics-based target organ location prediction can serve as a modern interpretation tool for the target organ location theory of traditional medicine. Future studies should predict therapeutic target organ locations in complex prescriptions rather than single herbs and conduct experiments to verify predictions.
Collapse
Affiliation(s)
- Minh Nhat Tran
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
- Faculty of Traditional Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Su-Jin Baek
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyeong Joon Jun
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sanghun Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Sangande F, Agustini K, Budipramana K. Antihyperlipidemic mechanisms of a formula containing Curcuma xanthorrhiza, Sechium edule, and Syzigium polyanthum: In silico and in vitro studies. Comput Biol Chem 2023; 105:107907. [PMID: 37392529 DOI: 10.1016/j.compbiolchem.2023.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Herbal medicines are multi-component and can exhibit synergistic effects in the treatment of diseases. Sechium edule, Syzigium polyanthum, and Curcuma xanthorrhiza have been used in traditional medicine to reduce serum lipid levels. However, the molecular mechanism was not described clearly, especially as a mixture. Thus, we performed a network pharmacology study combined with molecular docking to find a rational explanation regarding the molecular mechanisms of this antihyperlipidemic formula. According to the network pharmacology study, we predicted that this extract mixture would act as an antihyperlipidemic agent by modulating several pathways including insulin resistance, endocrine resistance, and AMP-activated protein kinase (AMPK) signaling pathway. Based on the topology parameters, we identified 6 significant targets that play an important role in reducing lipid serum levels: HMG-CoA reductase (HMGCR), peroxisome proliferator-activated receptor alpha (PPARA), RAC-alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR), matrix metalloproteinase-9 (MMP9), and tumor necrosis factor-alpha (TNF). Meanwhile, 8 compounds: β-sitosterol, bisdesmethoxycurcumin, cucurbitacin D, cucurbitacin E, myricetin, phloretin, quercitrin, and rutin were the compounds with a high degree, indicating that these compounds have a multitarget effect. Our consensus docking study revealed that HMGCR was the only protein targeted by all potential compounds, and rutin was the compound with the best consensus docking score for almost all targets. The in vitro study revealed that the extract combination could inhibit HMGCR with an IC50 value of 74.26 µg/mL, indicating that HMGCR inhibition is one of its antihyperlipidemic mechanisms.
Collapse
Affiliation(s)
- Frangky Sangande
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor 16915, Indonesia.
| | - Kurnia Agustini
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor 16915, Indonesia
| | - Krisyanti Budipramana
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya 60293, Indonesia
| |
Collapse
|
15
|
Wang L, Liu H, Wang Y, Hong X, Huang X, Han M, Wang D, Shan W, Li P, Gu H, Liu B, Bao K. Sanqi Qushi Granule Alleviates Proteinuria and Podocyte Damage in NS Rat: A Network Pharmacology Study and in vivo Experimental Validation. Drug Des Devel Ther 2023; 17:1847-1861. [PMID: 37360573 PMCID: PMC10289100 DOI: 10.2147/dddt.s403617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Nephrotic syndrome (NS) and its numerous complications remain the leading causes of morbidity and mortality globally. Sanqi Qushi granule (SQG) is clinically effective in NS. However, its potential mechanisms have yet to be elucidated. Methods A network pharmacology approach was employed in this study. Based on oral bioavailability and drug-likeness, potential active ingredients were picked out. After acquiring overlapping targets for drug genes and disease-related genes, a component-target-disease network and protein-protein interaction analysis (PPI) were constructed using Cytoscape, followed by GO and KEGG enrichment analyses. Adriamycin was injected into adult male Sprague-Dawley (SD) rats via the tail vein to establish NS model. Kidney histology, 24-hr urinary protein level, creatinine (Cr), blood urea nitrogen (BUN), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL-C) level were assessed. Western blotting, immunohistochemistry, and TUNEL staining were applied. Results In total, 144 latent targets in SQG acting on NS were screened by a network pharmacology study, containing AKT, Bax, and Bcl-2. KEGG enrichment analysis suggested that PI3K/AKT pathway was enriched primarily. In vivo validation results revealed that SQG intervention ameliorated urine protein level and podocyte lesions in the NS model. Moreover, SQG therapy significantly inhibited renal cells apoptosis and decreased the ratio of Bax/Bcl-2 protein expression. Moreover, we found that Caspase-3 regulated the PI3K/AKT pathway in NS rats, which mediated the anti-apoptosis effect. Conclusion By combining network pharmacology with experimental verification in vivo, this work confirmed the treatment efficacy of SQG for NS. SQG protected podocyte from injury and inhibited kidney apoptosis in NS rats via the PI3K/AKT pathway at least partially.
Collapse
Affiliation(s)
- Lijuan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Huoliang Liu
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yi Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - XiaoFan Hong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaoyan Huang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou, People’s Republic of China
| | - Miaoru Han
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wenjun Shan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ping Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
| | - Haowen Gu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kun Bao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Liu W, Chen W, Hu M, Wang G, Hu Y, He Q, Xu Y, Tan J, Wang H, Huo L. Bioinformatics analysis combined with molecular dynamics simulation validation to elucidate the potential molecular mechanisms of Jianshen Decoction for treatment of osteoporotic fracture. Medicine (Baltimore) 2023; 102:e33610. [PMID: 37083798 PMCID: PMC10118375 DOI: 10.1097/md.0000000000033610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Osteoporotic fracture (OPF) is a prevalent skeletal disease in the middle-aged and elderly. In clinical practice, Jianshen Decoction (JSD) has been used to treat OPFs. However, the specific effective components and mechanisms of JSD on OPF have not been explored. Therefore, this study used bioinformatics analysis combined with molecular dynamics simulation validation to explore the molecular mechanism of JSD treatment of OPF. Public databases (TCMSP, Batman TCM) were used to find the effective active components and corresponding target proteins of JSD (screening conditions: OB ≥ 30%, drug-likeness ≥ 0.18, half-life ≥ 4). Differentially expressed genes (DEGs) related to OPF lesions were obtained based on the gene expression omnibus database (screening conditions: adjust P value < .01, | log2 FC | ≥ 1.0). The BisoGenet plug-in and the CytoNCA plug-in of Cytoscape were used to derive the potential core target proteins of JSD in the treatment of OPF. The JSD active ingredient target interaction network and the JSD-OPF target protein core network were constructed using the Cytoscape software. In addition, the R language Bioconductor package and clusterProfiler package were used to perform gene ontology (GO)/Kyoto Encylopedia Of Genes And Genome (KEGG) enrichment analysis on core genes to explain the biological functions and signal pathways of core proteins. Finally, molecular docking and molecular dynamics simulations were carried out through PyMOL, AutoDockTools 1.5.6, Vina, LeDock, Discovery Studio (DS) 2019, and other software to verify the binding ability of drug active ingredients and core target proteins. A total of 245 targets and 70 active components were identified. Through protein-protein interaction (PPI) network construction, 39 core targets were selected for further research. GO/KEGG enrichment analysis showed that the DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, MAPK signaling pathway, and ErbB signaling pathway were mainly involved. The results of molecular docking and molecular dynamics simulations supported the good interaction between MYC protein and Quercetin/Stigmasterol. In this study, bioinformatics, molecular docking, and molecular dynamics simulations were used for the first time to clarify the active components, molecular targets, and key biological pathways of JSD in the treatment of OPF, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Weinian Liu
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weijian Chen
- The Fifth Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengting Hu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guangwei Wang
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Third Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanhao Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qi He
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yidong Xu
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jun Tan
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial People’s Hospital’s Nanhai Hospital, Foshan, Guangdong, China
| | - Haibin Wang
- Department of Orthopaedics of the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liwei Huo
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Ma Y, Deng Y, Li N, Dong A, Li H, Chen S, Zhang S, Zhang M. Network pharmacology analysis combined with experimental validation to explore the therapeutic mechanism of Schisandra Chinensis Mixture on diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115768. [PMID: 36280016 DOI: 10.1016/j.jep.2022.115768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is one of the most common and serious microvascular complications of Diabetes mellitus (DM). The inflammatory response plays a critical role in DN. Schisandra Chinensis Mixture (SM) has shown promising clinical efficacy in the treatment of DN while the pharmacological mechanisms are still unclear. AIM OF THE STUDY In this study, a network pharmacology approach and bioinformatic analysis were adopted to predict the pharmacological mechanisms of SM in DN therapy. Based on the predicted results, molecular docking and in vivo experiments were used for verification. MATERIALS AND METHODS In this study, the candidate bioactive ingredients of SM were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and supplementing according to the literature. SM putative targets and the verified targets were acquired from TCMSP and SiwssTartgetPrediction Database. DN-related target genes were collected from GeneCards, OMIM, DisGeNET databases, and microarray data analysis. Biological function and pathway analysis were performed to further explore the pharmacological mechanisms of SM in DN therapy. The protein-protein interaction (PPI) network was established to screen the hub gene. The Receiver Operating Characteristic (ROC) analysis and the molecular docking simulations were performed to validate the potential target-drug interactions. The fingerprint spectrum of multi-components of the SM was characterized by UPLC-MS/MS. The signaling pathways associated with inflammation and hub genes were partially validated in SD rats. RESULTS A total of 36 bioactive ingredients were contained, and 666 component-related targets were screened from SM, of which 50 intersected with DN targets and were considered potential therapeutic targets. GO analyses revealed that the 50 intersection targets were mainly enriched in the inflammatory response, positive regulation of angiogenesis, and positive regulation of phosphatidylinositol 3-kinase(PI3K) signaling. KEGG analyses indicated that the PI3K-Akt signaling pathway was considered as the most important pathway for SM antagonism to the occurrence and development of DN, with the highest target count enrichment. PPI network results showed that the top 15 protein targets in degree value, VEGFA, JAK2, CSF1R, NOS3, CCR2, CCR5, TLR7, FYN, BTK, LCK, PLAT, NOS2, TEK, MMP1 and MCL1, were identified as hub genes. The results of ROC analysis showed that VEGFA and NOS3 were valuable in the diagnosis of DN. The molecular docking confirmed that the core bioactive ingredients had well-binding affinity for VEGFA and NOS3. The in vivo experiments confirmed that SM significantly inhibited the over-release of inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor receptor (TNF)-α in DN rats, while regulating the PI3K-AKT and VEGFA-NOS3 signaling pathways. CONCLUSION This study revealed the multi-component, multi-target and multi-pathway characteristics of SM therapeutic DN. SM inhibited the inflammatory response and improved renal pathological damage in DN rats, which was related to the regulation of the PI3K-Akt and VEGFA-NOS3 signaling pathways.
Collapse
Affiliation(s)
- Yu Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yuanyuan Deng
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Na Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ao Dong
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hongdian Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shu Chen
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sai Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Mianzhi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China; Tianjin Academy of Traditional Chinese Medicine, Tianjin, 300120, China.
| |
Collapse
|
18
|
Network pharmacology and molecular docking approaches to elucidate the potential compounds and targets of Saeng-Ji-Hwang-Ko for treatment of type 2 diabetes mellitus. Comput Biol Med 2022; 149:106041. [DOI: 10.1016/j.compbiomed.2022.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
|
19
|
Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, Sheikh RA, Goh KW, Ming LC, Bouyahya A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants (Basel) 2022; 11:1912. [PMID: 36290632 PMCID: PMC9598710 DOI: 10.3390/antiox11101912] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 07/30/2023] Open
Abstract
Stigmasterol is an unsaturated phytosterol belonging to the class of tetracyclic triterpenes. It is one of the most common plant sterols, found in a variety of natural sources, including vegetable fats or oils from many plants. Currently, stigmasterol has been examined via in vitro and in vivo assays and molecular docking for its various biological activities on different metabolic disorders. The findings indicate potent pharmacological effects such as anticancer, anti-osteoarthritis, anti-inflammatory, anti-diabetic, immunomodulatory, antiparasitic, antifungal, antibacterial, antioxidant, and neuroprotective properties. Indeed, stigmasterol from plants and algae is a promising molecule in the development of drugs for cancer therapy by triggering intracellular signaling pathways in numerous cancers. It acts on the Akt/mTOR and JAK/STAT pathways in ovarian and gastric cancers. In addition, stigmasterol markedly disrupted angiogenesis in human cholangiocarcinoma by tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor receptor-2 (VEGFR-2) signaling down-regulation. The association of stigmasterol and sorafenib promoted caspase-3 activity and down-regulated levels of the anti-apoptotic protein Bcl-2 in breast cancer. Antioxidant activities ensuring lipid peroxidation and DNA damage lowering conferred to stigmasterol chemoprotective activities in skin cancer. Reactive oxygen species (ROS) regulation also contributes to the neuroprotective effects of stigmasterol, as well as dopamine depletion and acetylcholinesterase inhibition. The anti-inflammatory properties of phytosterols involve the production of anti-inflammatory cytokines, the decrease in inflammatory mediator release, and the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Stigmasterol exerts anti-diabetic effects by reducing fasting glucose, serum insulin levels, and oral glucose tolerance. Other findings showed the antiparasitic activities of this molecule against certain strains of parasites such as Trypanosoma congolense (in vivo) and on promastigotes and amastigotes of the Leishmania major (in vitro). Some stigmasterol-rich plants were able to inhibit Candida albicans, virusei, and tropicalis at low doses. Accordingly, this review outlines key insights into the pharmacological abilities of stigmasterol and the specific mechanisms of action underlying some of these effects. Additionally, further investigation regarding pharmacodynamics, pharmacokinetics, and toxicology is recommended.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Biotechnologies and Innovation Team, Geo-Bio-Environment Engineering and Innovation Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, Fez 1975, Morocco
| | - Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
20
|
Ismail Y, Fahmy DM, Ghattas MH, Ahmed MM, Zehry W, Saleh SM, Abo-elmatty DM. Integrating experimental model, LC-MS/MS chemical analysis, and systems biology approach to investigate the possible antidiabetic effect and mechanisms of Matricaria aurea (Golden Chamomile) in type 2 diabetes mellitus. Front Pharmacol 2022; 13:924478. [PMID: 36160451 PMCID: PMC9490514 DOI: 10.3389/fphar.2022.924478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heterogeneous disease with numerous abnormal targets and pathways involved in insulin resistance, low-grade inflammation, oxidative stress, beta cell dysfunction, and epigenetic factors. Botanical drugs provide a large chemical space that can modify various targets simultaneously. Matricaria aurea (MA, golden chamomile) is a widely used herb in Middle Eastern communities for many ailments, including diabetes mellitus, without any scientific basis to support this tradition. For the first time, this study aimed to investigate the possible antidiabetic activity of MA in a type 2 diabetic rat model, identify chemical constituents by LC-MS/MS, and then elucidate the molecular mechanism(s) using enzyme activity assays, q-RTPCR gene expression analysis, network pharmacology analysis, and molecular docking simulation. Our results demonstrated that only the polar hydroethanolic extract of MA had remarkable antidiabetic activity. Furthermore, it improved dyslipidemia, insulin resistance status, ALT, and AST levels. LC-MS/MS analysis of MA hydroethanolic extract identified 62 compounds, including the popular chamomile flavonoids apigenin and luteolin, other flavonoids and their glycosides, coumarin derivatives, and phenolic acids. Based on pharmacokinetic screening and literature, 46 compounds were chosen for subsequent network analysis, which linked to 364 candidate T2DM targets from various databases and literature. The network analysis identified 123 hub proteins, including insulin signaling and metabolic proteins: IRS1, IRS2, PIK3R1, AKT1, AKT2, MAPK1, MAPK3, and PCK1, inflammatory proteins: TNF and IL1B, antioxidant enzymes: CAT and SOD, and others. Subsequent filtering identified 40 crucial core targets (major hubs) of MA in T2DM treatment. Functional enrichment analyses of the candidate targets revealed that MA targets were mainly involved in the inflammatory module, energy-sensing/endocrine/metabolic module, and oxidative stress module. q-RTPCR gene expression analysis showed that MA hydroethanolic extract was able to significantly upregulate PIK3R1 and downregulate IL1B, PCK1, and MIR29A. Moreover, the activity of the antioxidant hub enzymes was substantially increased. Molecular docking scores were also consistent with the networks’ predictions. Based on experimental and computational analysis, this study revealed for the first time that MA exerted antidiabetic action via simultaneous modulation of multiple targets and pathways, including inflammatory pathways, energy-sensing/endocrine/metabolic pathways, and oxidative stress pathways.
Collapse
Affiliation(s)
- Yassin Ismail
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
- *Correspondence: Yassin Ismail,
| | - Dina M. Fahmy
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Maivel H. Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mai M. Ahmed
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Walaa Zehry
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
21
|
Liu H, Hu Y, Qi B, Yan C, Wang L, Zhang Y, Chen L. Network pharmacology and molecular docking to elucidate the mechanism of pulsatilla decoction in the treatment of colon cancer. Front Pharmacol 2022; 13:940508. [PMID: 36003525 PMCID: PMC9393233 DOI: 10.3389/fphar.2022.940508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 01/01/2023] Open
Abstract
Objective: Colon cancer is a malignant neoplastic disease that seriously endangers the health of patients. Pulsatilla decoction (PD) has some therapeutic effects on colon cancer. This study is based on the analytical methods of network pharmacology and molecular docking to study the mechanism of PD in the treatment of colon cancer. Methods: Based on the Traditional Chinese Medicine Systems Pharmacology Database, the main targets and active ingredients in PD were filtered, and then, the colon cancer-related targets were screened using Genecards, OMIM, PharmGKB, and Drugbank databases. Then, the screened drug and disease targets were Venn analyzed to obtain the intersection targets. Cytoscape software was used to construct the “Components–Targets–Pathway” map, and the String database was used to analyze the protein interaction network of the intersecting targets and screen the core targets, and then, the core targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Molecular docking was implemented using AutoDockTools to predict the binding capacity for the core targets and the active components in PD. Results: Sixty-five ingredients containing 188 nonrepetitive targets were screened and 180 potential targets of PD anticolon cancer were identified, including 10 core targets, namely, MAPK1, JUN, AKT1, TP53, TNF, RELA, MAPK14, CXCL8, ESR1, and FOS. The results of GO analysis showed that PD anticolon cancer may be related to cell proliferation, apoptosis, energy metabolism, immune regulation, signal transduction, and other biological processes. The results of KEGG analysis indicated that the PI3K-Akt signaling pathway, MAPK signaling pathway, proteoglycans in cancer, IL-17 signaling pathway, cellular senescence, and TNF signaling pathway were mainly involved in the regulation of tumor cells. We further selected core targets with high degree values as receptor proteins for molecular docking with the main active ingredients of the drug, including MAPK1, JUN, and AKT1. The docking results showed good affinity, especially quercetin. Conclusion: This study preliminarily verified that PD may exert its effect on the treatment of colon cancer through multi-ingredients, multitargets, and multipathways. This will deepen our understanding of the potential mechanisms of PD anticolon cancer and establish a foundation for further basic experimental research.
Collapse
Affiliation(s)
- Huan Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Hu
- College of Integration Science, Yanbian University, Yanji, China
- *Correspondence: Yuting Hu, ; Liang Chen,
| | - Baoyu Qi
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chengqiu Yan
- Anorectal Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Lin Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Liang Chen
- Anorectal Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yuting Hu, ; Liang Chen,
| |
Collapse
|
22
|
Network Pharmacology-Based Investigation on the Mechanism of the JinGuanLan Formula in Treating Acne Vulgaris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6944792. [PMID: 35873639 PMCID: PMC9300327 DOI: 10.1155/2022/6944792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Background JinGuanLan (JGL) formula is a traditional Chinese medicine (TCM) developed by the Department of Pharmacology at the First Hospital of Lanzhou University. The network pharmacology approach was applied to determine the potential active compounds, therapeutic targets, and main pathways of the JGL formula to evaluate its application value in acne vulgaris. Methods Data on the active compounds and their related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Acne vulgaris-related targets were searched from the Online Mendelian Inheritance in Man (OMIM) database, GeneCards Database, Comparative Toxicogenomics Database (CTD), Therapeutic Target Database (TTD), and DisGeNET Database. Targets intersecting between JGL- and acne vulgaris-related targets were chosen as potential therapeutic targets. The protein-protein interaction (PPI) network of potential therapeutic targets was visualized using Cytoscape software based on the PPI data collected from the STRING database. Three topological features, namely, "Degree," "MCC," and "EPC" of each node in the PPI network were calculated using the cytoHubba plugin of Cytoscape to excavate the core targets. R program was used for the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the potential therapeutic targets. Finally, the compound-target-pathway network was constructed. Result Among the 148 active compounds that were identified, quercetin and kaempferol showed the highest degree of target interaction and thus may play essential roles in the pharmacological effect of the JGL formula for acne treatment. Among the 97 potential therapeutic targets that were screened out, the 6 core targets were TNF, JUN, IL6, STAT3, MAPK1, and MAPK3. A total of 2260 terms of GO enrichment analysis were obtained, including 2090 for biological processes (BP), 37 for cellular components (CC), and 133 for molecular function (MF). A total of 156 enriched KEGG pathways were identified, including TNF, IL-17, Th17 cell differentiation, MAPK, PI3K-Akt, T cell receptor, and Toll-like receptor signalling pathways. Conclusion This work showed that the JGL formula might reverse the pathological changes associated with acne vulgaris through its antiinflammatory effect and regulate the excessive lipogenesis in sebaceous glands via different signalling pathways. This new drug has application value and is worthy of further research and development.
Collapse
|
23
|
Ma C, Wang X, Zhang J, Zhao Y, Hua Y, Zhang C, Zheng G, Yang G, Guan J, Li H, Li M, Kang L, Xiang J, Fan G, Yang S. Exploring Ganweikang Tablet as a Candidate Drug for NAFLD Through Network Pharmacology Analysis and Experimental Validation. Front Pharmacol 2022; 13:893336. [PMID: 35774609 PMCID: PMC9239345 DOI: 10.3389/fphar.2022.893336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined as liver disease in which more than 5% of hepatocytes are steatotic with little or no alcohol consumption. NAFLD includes benign nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). Importantly, NASH is an advanced progression of NAFL and is characterized by steatosis, hepatocyte ballooning, lobular inflammation, and fibrosis. However, to date, no drugs specifically targeting NAFLD have been approved by the FDA. Therefore, a new drug or strategy for NAFLD treatment is necessary. However, the pathogenesis of NAFLD is complex and no single-target drugs have achieved the desired results. Noticeably, traditional Chinese medicine formulations are a complex system with multiple components, multiple targets, and synergistic effects between components. The Ganweikang tablet is a compound formula based on traditional Chinese medicine theory and clinical experience. In this study, network pharmacology analysis indicates Ganweikang tablet as a candidate for NAFLD treatment. Furthermore, we evaluated the therapeutic effects of Ganweikang tablet on the NAFL and NASH and tried to clarify the underlying molecular mechanisms in animal models and cell experiments. As expected, Ganweikang tablet was found to improve NAFL and NASH by modulating inflammation, apoptosis, and fatty acid oxidation by inhibiting NFκB, caspase-8, and activating PPARα, which not only indicates that Ganweikang tablet as a drug candidate but also provides a theoretical basis of Ganweikang tablet for the treatment of NAFL and NASH.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyu Wang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guobin Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jianli Guan
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Huahuan Li
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Meng Li
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People’s Hospital, Shenzhen, China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| | - Shu Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| |
Collapse
|
24
|
Meng Y, Li X, Wang X, Zhang L, Guan J. Network pharmacological prediction and molecular docking analysis of the combination of Atractylodes macrocephala Koidz. and Paeonia lactiflora Pall. in the treatment of functional constipation and its verification. Animal Model Exp Med 2022; 5:120-132. [PMID: 35451570 PMCID: PMC9043712 DOI: 10.1002/ame2.12226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Background We aimed to reveal the mechanism of functional constipation in the treatment of Atractylodes macrocephala Koidz. (AMK) and Paeonia lactiflora Pall. (PLP). Methods The main active ingredients of AMK and PLP were screened by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. A database of functional constipation targets was established by GeneCard and OMIM. An “ingredient‐target” network map was constructed with Cytoscape software (version 3.7.1), and molecular docking analysis was performed on the components and genes with the highest scores. The rats in the normal group were given saline, and those in the other groups were given 10 mg/kg diphenoxylate once a day for 14 days. The serum and intestinal tissue levels of adenosine monophosphate (cAMP), protein kinase A (PKA), and adenylyl cyclase (AC) of the rats and aquaporin (AQP)1, AQP3, and AQP8 were measured. Results AMK and PLP had a significant role in the regulation of targets in the treatment of functional constipation. After treatment with AMK, PLP, or mosapride, the serum and intestinal tissue levels of AC, cAMP, and PKA were significantly downregulated. Groups receiving AMK and PLP or mosapride exhibited a reduction in the level of AQP1, AQP3, and AQP8 to varying degrees. Conclusion Molecular docking analysis revealed that AMK and PLP had a significant role in the regulation of targets in the treatment of functional constipation. Studies have confirmed that AMK and PLP can also affect AC, cAMP, and PKA. AC, cAMP, and PKA in model rats were significantly downregulated. AQP expression is closely related to AC, cAMP, and PKA. AMK and PLP can reduce the expression of AQP1, AQP3, and AQP9 in the colon of constipated rats.
Collapse
Affiliation(s)
- Yuxiao Meng
- School of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiaojun Li
- School of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiaoting Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, China
| | - Lu Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jiaqi Guan
- School of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
25
|
Xiong W, Zhao J, Ma X, Feng Z. Mechanisms and Molecular Targets of BuShenHuoXue Formula for Osteoarthritis. ACS OMEGA 2022; 7:4703-4713. [PMID: 35155962 PMCID: PMC8830072 DOI: 10.1021/acsomega.1c07270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The aim was to identify latent mechanism of BuShenHuoXue (BSHX) formula for the management of osteoarthritis (OA) through the network pharmacology approach and experimental validation. We obtained OA-related targets through the Gene Expression Omnibus database and bioactive ingredients with corresponding targets in the formula via the Traditional Chinese Medicine Systems Pharmacology database. Subsequently, networks of the protein-protein interaction and compound-disease target were created and enrichment analysis was implemented. Furthermore, in vitro, IL-1β was applied to rat chondrocytes to mediate apoptosis through inflammation and the Alcian blue and type II collagen staining was used to observe cell morphology. The TUNEL and DAPI staining was performed to observe chondrocyte apoptosis, and the apoptosis rates were gauged via flow cytometry. In addition, we utilized Western blot and PCR to detect the protein and mRNA expression, respectively. A total of 104 potential chemicals and 42 intersecting targets were screened out. Quercetin and luteolin from BSHX formula were principal ingredients. The experiment validated quercetin might suppress chondrocyte apoptosis mediated by IL-1β and reduce SELE, MMP2, and COL1 expression. Via the AGE-RAGE signaling pathway in diabetic complications, quercetin could aim at SELE, MMP2, and COL1 and exert antagonistic effects against OA.
Collapse
Affiliation(s)
- Wen Xiong
- Department
of Orthopedics, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical
College, Huazhong University of Science
and Technology, 473 Street, Wuhan, Hubei 430033, China
| | - Jiazheng Zhao
- Department
of Orthopedics, The Fourth Hospital of Hebei
Medical University, 12
Health Road, Shijiazhuang, Hebei 050011, China
| | - Xiaowei Ma
- Department
of Orthopedics, The Fourth Hospital of Hebei
Medical University, 12
Health Road, Shijiazhuang, Hebei 050011, China
| | - Zhangying Feng
- Department
of Clinical Pharmacology, The Fourth Hospital
of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
26
|
Wang J, Yang GY, Sun HY, Meng T, Cheng CC, Zhao HP, Luo XL, Yang MM. Dioscin Reduces Vascular Damage in the Retina of db/db Mice by Inhibiting the VEGFA Signaling Pathway. Front Pharmacol 2022; 12:811897. [PMID: 35153764 PMCID: PMC8832152 DOI: 10.3389/fphar.2021.811897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes that has a serious impact on the quality of life of patients. VEGFA is necessary in the physiological state to maintain endothelial activity and physical properties of blood vessels. VEGFA plays an important role in the promotion of neovascularization; therefore, inhibition of VEGFA can degrade the structure of blood vessels and reduce neovascularization. In the present study, HERB, a high-throughput experimental and reference-oriented database of herbal medicines, was used for compound mining targeting VEGFA. The compounds most likely to interact with VEGFA were screened by molecular docking. Next, the compounds were used to verify whether it could inhibit the activity of the VEGF signaling pathway in vitro and neovascularization in vivo. In vitro, we found that dioscin could inhibit the activation of the VEGFA–VEGFR2 signaling pathway and cell proliferation of human retinal microvascular endothelial cells in a high-glucose (HG) environment. A more important dioscin intervention inhibits the expression of pro-angiogenic factors in the retinas of db/db mice. In conclusion, our study indicates that dioscin reduces the vascular damage and the expression of pro-angiogenic factors in the retina of db/db mice and implies an important and potential application of dioscin for treatment of DR in clinics.
Collapse
Affiliation(s)
- Jun Wang
- Department of Endocrinology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guang Yan Yang
- Department of Endocrinology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hong Yan Sun
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ting Meng
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Chu Chu Cheng
- Department of Endocrinology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hui Pan Zhao
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao Ling Luo
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ming Ming Yang
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Ming Ming Yang,
| |
Collapse
|
27
|
Liu L, Xu L, Wang S, Wang L, Wang X, Xu H, Li X, Ye H. Confirmation of inhibitingTLR4/MyD88/NF-κB Signalling Pathway by Duhuo Jisheng Decoction on Osteoarthritis: A Network Pharmacology Approach-Integrated Experimental Study. Front Pharmacol 2022; 12:784822. [PMID: 35140604 PMCID: PMC8818874 DOI: 10.3389/fphar.2021.784822] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
This study was conducted to identify whether the TLR4/MyD88/NF-κB signalling pathway plays a vital role in osteoarthritis (OA) treatment with Duhuo Jisheng Decoction (DHJSD) on the basis of a network pharmacology approach (NPA)-integrated experiment. Two experiments were conducted as follow: NPA for DHJSD using six OA-related gene series and the key pathway was screened out using NPA. NPA identified a vital role for the TLR4/MyD88/NF-κB signalling pathway in OA treatment with DHJSD, the conventional western blot analysis and qPCR confirmed it. Furthermore, changes of miR-146a-5p and miR-34a-5p in the cellular models were recovered by DHJSD administration, which synergistically contributed to OA therapy. The toll-like receptor signalling pathway and the NF-κB signalling pathway were meaningfully enriched by the miRNA-regulated gene pathways. This study identified and confirmed the TLR4/MyD88/NF-κB signalling pathway is an essential inflammatory signalling pathway in the DHJSD underlying OA treatment. The results provide a basis for further evaluation of the regulatory mechanism of the drug’s efficacy in treating OA.
Collapse
Affiliation(s)
- Linglong Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Limei Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengjie Wang
- College of Pharmacy Science, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huifeng Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
- *Correspondence: Xihai Li,
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| |
Collapse
|
28
|
Wang X, Xiang J, Huang G, Kang L, Yang G, Wu H, Jiang K, Liang Z, Yang S. Inhibition of Podocytes DPP4 Activity Is a Potential Mechanism of Lobeliae Chinensis Herba in Treating Diabetic Kidney Disease. Front Pharmacol 2021; 12:779652. [PMID: 34950037 PMCID: PMC8688925 DOI: 10.3389/fphar.2021.779652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and has become a serious public health problem worldwide. Dipeptidyl peptidase-4 (DPP4) inhibitors, an emerging drug for the treatment of diabetes, have been found to have renoprotective effects in addition to glucose-lowering effects and therefore have the potential to be a treatment modality for DKD. Lobeliae Chinensis Herba (LCH), a traditional Chinese herb widely used in the treatment of diabetes, has recently been found to have a hypoglycaemic mechanism related to the inhibition of DPP4. Firstly, analysis of single-cell sequencing data from mouse kidneys in the National Center for Biotechnology Information (NCBI) database revealed that DPP4 was specifically upregulated in DKD podocytes and was associated with podocyte proliferation. Subsequently, the network pharmacology approach was applied to the screening of compounds. Twelve LCH active ingredients targeting DPP4 were extracted from the Traditional Chinese Medicine System Pharmacology (TCMSP) database. In addition, these 12 compounds and DPP4 were molecularly docked to predict the probability of them affecting DPP4 activity. In vitro, Quercetin, Methyl rosmarinate, Kaempferol, Diosmetin and Acacetin were demonstrated to retard podocyte proliferation by inhibiting DPP4 activity and were the top five compounds predicted by molecular docking to be the most likely to affect DPP4 activity. The half maximal inhibitory concentration (IC50) of the five compounds for DPP4 activity were as follows. Acacetin Log IC50 = −8.349, 95%CI (−9.266, −7.265), Diosmtrin Log IC50 = −8.419, 95%CI (−8.889, −7.950), Log IC50 = −8.349, 95%CI (−9.266, −7.265), Methyl rosmarinate Log IC50 = −8.415, 95%CI (−8.751, −8.085), Kaempferol Log IC50 = −8.297, 95%CI (−9.001, −7.615), Quercetin Log IC50 = −8.864, 95%CI (−9.107, −8.615). Finally, Quercetin, Methyl rosmarinate, Kaempferol, Diosmetin and Acacetin qualified for pharmacokinetic and drug similarity screening and have the potential to be the most promising oral agents for the treatment of DKD.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jiaqing Xiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Guixiao Huang
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lin Kang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Guangyan Yang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Kewei Jiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Shu Yang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
29
|
Ma C, Xiang J, Huang G, Zhao Y, Wang X, Wu H, Jiang K, Liang Z, Kang L, Yang G, Yang S. Pterostilbene Alleviates Cholestasis by Promoting SIRT1 Activity in Hepatocytes and Macrophages. Front Pharmacol 2021; 12:785403. [PMID: 34899349 PMCID: PMC8656168 DOI: 10.3389/fphar.2021.785403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background and purpose: FXR is a promising target for the treatment of human cholestatic liver disease (CLD). SIRT1 is a deacetylase which promotes FXR activity through deacetylating FXR. Pterostilbene (PTE) is an activator of SIRT1. However, the role of PTE in cholestasis has so far not been investigated. We examined whether PTE treatment alleviate liver injury in DDC or ANIT-induced experimental cholestasis, and explored the underlying mechanisms. Experimental approach: Mice with DDC- or ANIT-induced cholestasis were treated with different dose of PTE. Primary hepatocytes and bone marrow derived macrophages were used in vitro to assess the molecular mechanism by which PTE may improve CLD. Identical doses of UDCA or PTE were administered to DDC- or ANIT-induced cholestasis mice. Key results: PTE intervention attenuated DDC or ANIT-induced cholestasis. PTE inhibited macrophage infiltration and activation in mouse liver through the SIRT1-p53 signaling pathway, and it improved hepatic bile metabolism through the SIRT1-FXR signaling pathway. Compare with UDCA, the same doses of PTE was more effective in improving cholestatic liver injury caused by DDC or ANIT. Conclusion and implications: SIRT1 activation in macrophages may be an effective CLD treatment avenue. Using CLD models, we thus identified PTE as a novel clinical candidate compound for the treatment of CLD.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Guixiao Huang
- The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yaxi Zhao
- Department of Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xinyu Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Han Wu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Kewei Jiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Shenzhen, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shu Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Chen W, Lin T, He Q, Yang P, Zhang G, Huang F, Wang Z, Peng H, Li B, Liang D, Wang H. Study on the potential active components and molecular mechanism of Xiao Huoluo Pills in the treatment of cartilage degeneration of knee osteoarthritis based on bioinformatics analysis and molecular docking technology. J Orthop Surg Res 2021; 16:460. [PMID: 34273999 PMCID: PMC8285844 DOI: 10.1186/s13018-021-02552-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Knee osteoarthritis is a common joint degenerative disease. Xiao Huoluo Pills (XHLP) has been used to treat degenerative diseases such as osteoarthritis and hyperosteogeny. However, XHLP’s specific effective ingredients and mechanism of action against osteoarthritis have not been explored. Therefore, bioinformatics technology and molecular docking technology are employed in this study to explore the molecular basis and mechanism of XHLP in the treatment of knee osteoarthritis. Methods Public databases (TCMSP, Batman-TCM, HERB, DrugBank, and UniProt) are used to find the effective active components and corresponding target proteins of XHLP (screening conditions: OB > 30%, DL ≥ 0.18). Differentially expressed genes related to cartilage lesions of knee osteoarthritis are obtained based on the GEO database (screening conditions: adjust P value < 0.01, |log2 FC|≥1.0). The Venn package in R language and the BisoGenet plug-in in Cytoscape are adopted to predict the potential molecules of XHLP in the treatment of knee osteoarthritis. The XHLP-active component-target interaction network and the XHLP-knee osteoarthritis-target protein core network are constructed using Cytoscape software. Besides, GO/KEGG enrichment analysis on core genes is performed using the Bioconductor package and clusterProfiler package in the R language to explain the biological functions and signal pathways of the core proteins. Finally, molecular docking is performed through software such as Vina, LeDock, Discovery Studio 2016, PyMOL, AutoDockTools 1.5.6, so as to verify the binding ability between the active components of the drug and the core target protein. Results XHLP has been screened out of 71 potentially effective active compounds for the treatment of OA, mainly including quercetin, Stigmasterol, beta-sitosterol, Izoteolin, and ellagic acid. Knee osteoarthritis cartilage lesion sequencing data (GSE114007) was screened out of 1672 differentially expressed genes, including 913 upregulated genes and 759 downregulated genes, displayed as heat maps and volcano maps. Besides, 33 core target proteins are calculated by Venn data package in R and BisoGenet plug-in in Cytoscape. The enrichment analysis on these target genes revealed that the core target genes are mainly involved in biological processes such as response to oxygen levels, mechanical stimulus, vitamin, drug, and regulation of smooth muscle cell proliferation. These core target genes are involved in signaling pathways related to cartilage degeneration of knee osteoarthritis such as TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking verification demonstrates that some active components of the drug have good molecular docking and binding ability with the core target protein, further confirming that XHLP has the effect of inhibiting cartilage degeneration in knee osteoarthritis. Conclusions In this study, based on the research foundation of bioinformatics and molecular docking technology, the active components and core target molecules of XHLP for the treatment of cartilage degeneration of knee osteoarthritis are screened out, and the potential mechanism of XHLP inhibiting cartilage degeneration of knee osteoarthritis is deeply explored. The results provide theoretical basis and new treatment plan for XHLP in the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China
| | - Tianye Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Department of Joint Orthopaedic, the Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Qi He
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Peng Yang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Department of Joint Orthopaedic, the Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gangyu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Fayi Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Zihao Wang
- Queen's University Belfast, University Road, Belfast, Northen Ireland, BT7 1NN, United Kingdom
| | - Hao Peng
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China
| | - Baolin Li
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China
| | - Du Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China. .,Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China. .,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Network Pharmacology Approach to Uncover the Mechanism Governing the Effect of Simiao Powder on Knee Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6971503. [PMID: 33376732 PMCID: PMC7738782 DOI: 10.1155/2020/6971503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022]
Abstract
Objective To explore the molecular mechanism of Simiao powder in the treatment of knee osteoarthritis. Methods Based on oral bioavailability and drug-likeness, the main active components of Simiao powder were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). GeneCard, OMIM, DisGeNET, DrugBank, PharmGkb, and the Therapeutic Target Database were used to establish target databases for knee osteoarthritis. Cytoscape software was used to construct a visual interactive network diagram of “active ingredient - action target – disease.” The STRING database was used to construct a protein interaction network and analyze related protein interaction relationships. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) biological process enrichment analysis were performed on the core targets. Additionally, Discovery Studio software was used for molecular docking verification of active pharmaceutical ingredients and disease targets. Results Thirty-seven active components of Simiao powder were screened, including 106 common targets. The results of network analysis showed that the targets were mainly involved in regulating biological processes such as cell metabolism and apoptosis. Simiao powder components were predicted to exert their therapeutic effect on the AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, and HIF-1 signaling pathway. The molecular docking results showed that the active components of Simiao powder had a good match with the targets of IL1B, MMP9, CXCL8, MAPK8, JUN, IL6, MAPK1, EGF, VEGFA, AKT1, and PTGS2. Conclusion Simiao powder has multisystem, multicomponent, and multitarget characteristics in treating knee osteoarthritis. Its possible mechanism of action includes inhibiting the inflammatory response, regulating immune function, and resisting oxidative stress to control the occurrence and development of the disease. Quercetin, wogonin, kaempferol, beta-sitosterol, and other active ingredients may be the material basis for the treatment of knee osteoarthritis.
Collapse
|
32
|
Shi X, Zhang H, Hu Y, Li X, Yin S, Xing R, Zhang N, Mao J, Wang P. Mechanism of Salviae Miltiorrhizae Radix et Rhizoma in the Treatment of Knee Osteoarthritis Based on Network Pharmacology. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20983130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective The molecular mechanism of Salviae Miltiorrhizae Radix et Rhizoma (SMRR) in the treatment of knee osteoarthritis (KOA) was analyzed based on network pharmacology. Methods Active components and potential targets of SMRR were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. KOA targets were obtained from the OMIM, DisGeNET, DrugBank, PharmGKB, and GeneCards Databases. The potential targets of SMRR in the treatment of KOA were identified by the Venn diagram. A protein-protein interaction network was generated with the STRING database. Visualization of the interactions in a potential pharmacodynamic component-target network was accomplished with Cytoscape software. The Database for Annotation, Visualization, and Integrated Discovery database and R software were used for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation analyses of common targets. Molecular docking of the potential leading components, as determined by efficacy with the core target molecules, was performed with Discovery Studio. Results Fifty-seven potential pharmacodynamic components and 58 potential targets of SMRR in the treatment of KOA were found. Bioinformatics analyses showed that the interleukin (IL)-17, hypoxia-inducible factor-1 (HIF-1), and tumor necrosis factor (TNF) signaling pathways, as well as the advanced glycation end product-receptor for advanced glycation end product signaling pathway in cases of diabetic complications, are related to the molecular mechanism of SMRR in the treatment of KOA. Molecular docking results showed that luteolin, tanshinone IIA, cryptotanshinone, and other components of SMRR had a strong affinity for MYC, signal transducer and activator of transcription 3, caspase-3 (CASP3), JUN, cyclin D1, prostaglandin endoperoxide synthase 2 (PTGS2), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), protein kinase B, vascular endothelial growth factor A, and other targets. Conclusion SMRR indirectly regulates IL-17, HIF-1, TNF, and other signal transduction pathways by regulating the expression of proteins, including PTGS2, MAPK1, EGFR, and CASP3, thus playing a role in promoting chondrocyte proliferation, improving microcirculation, eliminating free radicals, and inhibiting inflammatory factors.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Haosheng Zhang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Yue Hu
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, P. R. China
| | - Xiaochen Li
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Songjiang Yin
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Runlin Xing
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Nongshan Zhang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Jun Mao
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
33
|
Lee AY, Lee JY, Chun JM. Exploring the Mechanism of Gyejibokryeong-hwan against Atherosclerosis Using Network Pharmacology and Molecular Docking. PLANTS 2020; 9:plants9121750. [PMID: 33321972 PMCID: PMC7764045 DOI: 10.3390/plants9121750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
Gyejibokryeong-hwan (GBH) is a traditional formula comprised of five herbal medicines that is frequently used to treat blood stasis and related complex multifactorial disorders such as atherosclerosis. The present study used network pharmacology and molecular docking simulations to clarify the effect and mechanism of the components of GBH. Active compounds were selected using Oriental Medicine Advanced Searching Integrated System (OASIS) and the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), and target genes linked to the selected components were retrieved using Search Tool for Interacting Chemicals (STITCH) and GeneCards. Functional analysis of potential target genes was performed through the Annotation, Visualization and Integrated Discovery (DAVID) database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and molecular docking confirmed the correlation between five core compounds (quercetin, kaempferol, baicalein, ellagic acid, and baicalin) and six potential target genes (AKT1, CASP3, MAPK1, MAPK3, NOS2, and PTGS2). Molecular docking studies indicated that quercetin strongly interacted with six potential target proteins. Thus, these potential target proteins were closely related to TNF, HIF-1, FoxO, and PI3K-Akt signal pathways, suggesting that these factors and pathways may mediate the beneficial effects of GBH on atherosclerosis. Our results identify target genes and pathways that may mediate the clinical effects of the compounds contained within GBH on atherosclerosis.
Collapse
Affiliation(s)
- A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Korea;
| | - Joo-Youn Lee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Jin Mi Chun
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Korea;
- Correspondence: ; Tel.: +82-613-387-130
| |
Collapse
|
34
|
Li WH, Han JR, Ren PP, Xie Y, Jiang DY. Exploration of the mechanism of Zisheng Shenqi decoction against gout arthritis using network pharmacology. Comput Biol Chem 2020; 90:107358. [PMID: 33243703 DOI: 10.1016/j.compbiolchem.2020.107358] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND In this study, the network pharmacological methods were used to predict the target of effective components of compounds in Zisheng Shenqi Decoction (ZSD, or Nourishing Kidney Qi Decoction) in the treatment of gouty arthritis (GA). METHOD The main effective components and corresponding key targets of herbs in the ZSD were discerned through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP), Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) database. UniProt database and Swiss Target Prediction (STP) database was used to rectify and unify the target names and supply the target information. The targets related to GA were obtained by using GeneCards database. After we discovered the potential common targets between ZSD and GA, the interaction network diagram of "ZSD-component-GA-target" was constructed by Cytoscape software (Version 3.7.1). Subsequently, the Protein-protein interaction (PPI) network of ZSD effective components-targets and GA-related targets was constructed by Search Tool for the Retrieval of Interacting Genes Database (STRING). Bioconductor package "org.Hs.eg.db" and "cluster profiler" package were installed in R software (Version 3.6.0) which used for Gene Ontology analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis. RESULTS 146 components and 613 targets of 11 herbal medicines in the ZSD were got from TCMSP database and BATMAN-TCM database. 987 targets of GA were obtained from GeneCards database. After intersected and removed duplications, 132 common targets between ZSD and GA were screened out by Cytoscape software (Version 3.7.1). These common targets derived from 81 effective components of 146 components, such as quercetin, stigmasterol and kaempferol. They were closely related to anti-inflammatory, analgesic and anti oxidative stress and the principal targets comprised of Purinergic receptor P2X, ligand-gated ion channel 7 (P2x7R), Nod-like receptor protein 3 (NLRP3) and IL-1β. GO enrichment analysis and KEGG pathway enrichment analysis by R software (Version 3.6.0) showed that the key target genes had close relationship with oxidative stress, reactive oxygen species (ROS) metabolic process and leukocyte migration in aspects of biological process, cell components and molecular function. It also indicated that ZSD could decrease inflammatory reaction, alleviate ROS accumulation and attenuate pain by regulating P2 × 7R and NOD like receptor signaling pathway of inflammatory reaction. CONCLUSION A total of 81 effective components and 132 common target genes between ZSD and GA were screened by network pharmacology. The PPI network, GO enrichment analysis and KEGG pathway enrichment analysis suggested that ZSD can exerte anti-inflammatory and analgesic effects on the treatment of GA by reducing decreasing inflammatory reaction, alleviating ROS accumulation, and attenuating pain. The possible molecular mechanism of it mainly involved multiple components, multiple targets and multiple signaling pathways, which provided a comprehensive understanding for further study. In general, the network pharmacological method applied in this study provides an alternative strategy for the mechanism of ZSD in the treatment of GA.
Collapse
Affiliation(s)
- Wen-Hao Li
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Jie-Ru Han
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Peng-Peng Ren
- Department of Integrated Chinese and Western medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Ying Xie
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - De-You Jiang
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|