1
|
Perin N, Lončar B, Kadić M, Kralj M, Starčević K, Carvalho RA, Jarak I, Hranjec M. Design, Synthesis, Antitumor Activity and NMR-Based Metabolomics of Novel Amino Substituted Tetracyclic Imidazo[4,5-b]Pyridine Derivatives. ChemMedChem 2024; 19:e202300633. [PMID: 38757872 DOI: 10.1002/cmdc.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Newly prepared tetracyclic imidazo[4,5-b]pyridine derivatives were synthesized to study their antiproliferative activity against human cancer cells. Additionally, the structure-activity was studied to confirm the impact of the N atom position in pyridine nuclei as well as the chosen amino side chains on antiproliferative activity. Targeted amino substituted regioisomers were prepared by using uncatalyzed amination from corresponding chloro substituted precursors. The most active compounds 6 a, 8 and 10 showed improved activity in comparison to standard drug etoposide with IC50 values in a nanomolar range of concentration (0.2-0.9 μM). NMR-based metabolomics is a powerful instrument to elucidate activity mechanism of new chemotherapeutics. Multivariate and univariate statistical analysis of metabolic profiles of non-small cell lung cancer cells before and after exposure to 6 a revealed significant changes in metabolism of essential amino acids, glycerophospholipids and oxidative defense. Insight into the changes of metabolic pathways that are heavily involved in cell proliferation and survival provide valuable guidelines for more detailed analysis of activity metabolism and possible targets of this class of bioactive compounds.
Collapse
Affiliation(s)
- Nataša Perin
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| | | | - Matej Kadić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000, Zagreb, Croatia
| | - Rui A Carvalho
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| |
Collapse
|
2
|
Li Q, Yu Y, Kossinna P, Lun T, Liao W, Zhang Q. XA4C: eXplainable representation learning via Autoencoders revealing Critical genes. PLoS Comput Biol 2023; 19:e1011476. [PMID: 37782668 PMCID: PMC10569512 DOI: 10.1371/journal.pcbi.1011476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
Machine Learning models have been frequently used in transcriptome analyses. Particularly, Representation Learning (RL), e.g., autoencoders, are effective in learning critical representations in noisy data. However, learned representations, e.g., the "latent variables" in an autoencoder, are difficult to interpret, not to mention prioritizing essential genes for functional follow-up. In contrast, in traditional analyses, one may identify important genes such as Differentially Expressed (DiffEx), Differentially Co-Expressed (DiffCoEx), and Hub genes. Intuitively, the complex gene-gene interactions may be beyond the capture of marginal effects (DiffEx) or correlations (DiffCoEx and Hub), indicating the need of powerful RL models. However, the lack of interpretability and individual target genes is an obstacle for RL's broad use in practice. To facilitate interpretable analysis and gene-identification using RL, we propose "Critical genes", defined as genes that contribute highly to learned representations (e.g., latent variables in an autoencoder). As a proof-of-concept, supported by eXplainable Artificial Intelligence (XAI), we implemented eXplainable Autoencoder for Critical genes (XA4C) that quantifies each gene's contribution to latent variables, based on which Critical genes are prioritized. Applying XA4C to gene expression data in six cancers showed that Critical genes capture essential pathways underlying cancers. Remarkably, Critical genes has little overlap with Hub or DiffEx genes, however, has a higher enrichment in a comprehensive disease gene database (DisGeNET) and a cancer-specific database (COSMIC), evidencing its potential to disclose massive unknown biology. As an example, we discovered five Critical genes sitting in the center of Lysine degradation (hsa00310) pathway, displaying distinct interaction patterns in tumor and normal tissues. In conclusion, XA4C facilitates explainable analysis using RL and Critical genes discovered by explainable RL empowers the study of complex interactions.
Collapse
Affiliation(s)
- Qing Li
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Yang Yu
- Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
| | - Pathum Kossinna
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Theodore Lun
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Wenyuan Liao
- Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
| | - Qingrun Zhang
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Xue BX, He RS, Lai JX, Mireku-Gyimah NA, Zhang LH, Wu HH. Phytochemistry, data mining, pharmacology, toxicology and the analytical methods of Cyperus rotundus L. (Cyperaceae): a comprehensive review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-46. [PMID: 37359712 PMCID: PMC10183317 DOI: 10.1007/s11101-023-09870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Cyperus rotundus L. has been widely used in the treatment and prevention of numerous diseases in traditional systems of medicine around the world, such as nervous, gastrointestinal systems diseases and inflammation. In traditional Chinese medicine (TCM), its rhizomes are frequently used to treat liver disease, stomach pain, breast tenderness, dysmenorrheal and menstrual irregularities. The review is conducted to summarize comprehensively the plant's vernacular names, distribution, phytochemistry, pharmacology, toxicology and analytical methods, along with the data mining for TCM prescriptions containing C. rotundus. Herein, 552 compounds isolated or identified from C. rotundus were systematically collated and classified, concerning monoterpenoids, sesquiterpenoids, flavonoids, phenylpropanoids, phenolics and phenolic glycosides, triterpenoids and steroids, diterpenoids, quinonoids, alkaloids, saccharides and others. Their pharmacological effects on the digestive system, nervous system, gynecological diseases, and other bioactivities like antioxidant, anti-inflammatory, anti-cancer, insect repellent, anti-microbial activity, etc. were summarized accordingly. Moreover, except for the data mining on the compatibility of C. rotundus in TCM, the separation, identification and analytical methods of C. rotundus compositions were also systematically summarized, and constituents of the essential oils from different regions were re-analyzed using multivariate statistical analysis. In addition, the toxicological study progresses on C. rotundus revealed the safety property of this herb. This review is designed to serve as a scientific basis and theoretical reference for further exploration into the clinical use and scientific research of C. rotundus. Graphical Abstract Supplementary Information The online version contains supplementary materials available at 10.1007/s11101-023-09870-3.
Collapse
Affiliation(s)
- Bian-Xia Xue
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Ru-Shang He
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Jia-Xin Lai
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Nana Ama Mireku-Gyimah
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Li-Hua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| | - Hong-Hua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617 People’s Republic of China
| |
Collapse
|
4
|
Shao W, Wang X, Liu Z, Song X, Wang F, Liu X, Yu Z. Cyperotundone combined with adriamycin induces apoptosis in MCF-7 and MCF-7/ADR cancer cells by ROS generation and NRF2/ARE signaling pathway. Sci Rep 2023; 13:1384. [PMID: 36697441 PMCID: PMC9877033 DOI: 10.1038/s41598-022-26767-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Breast cancer has become the most prevalent cancer, globally. Adriamycin is a first-line chemotherapeutic agent, however, cancer cells acquire resistance to it, which is one of the most common causes of treatment failure. ROS and NRF2 are essential oxidative stress factors that play a key role in the oxidative stress process and are associated with cancer. Our goal is to create novel therapeutic drugs or chemical sensitizers that will improve chemotherapy sensitivity. The optimal concentration and duration for MCF-7 and MCF-7/ADR cells in ADR and CYT were determined using the CCK-8 assay. We found that ADR + CYT inhibited the activity of MCF-7 and MCF-7/ADR cells in breast cancer, as well as causing apoptosis in MCF-7 and MCF-7/ADR cells and blocking the cell cycle in the G0/G1 phase. ADR + CYT induces apoptosis in MCF-7 and MCF-7/ADR cells through ROS generation and the P62/NRF2/HO-1 signaling pathway. In breast cancer-bearing nude mice, ADR + CYT effectively suppressed tumor development in vivo. Overall, our findings showed that CYT in combination with ADR has potent anti-breast cancer cell activity both in vivo and in vitro, suggesting CYT as the main drug used to improve chemosensitivity.
Collapse
Affiliation(s)
- Wenna Shao
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xinzhao Wang
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China.,RemeGen, Ltd, 58 Middle Beijing Road, Yantai Economic & Technological Development Area, Yantai, 264006, Shandong, People's Republic of China
| | - Zhaoyun Liu
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xiang Song
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Fukai Wang
- Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Xiaoyu Liu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China
| | - Zhiyong Yu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China. .,Breast Cancer CenterShandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Li X, Zhang C, Wu E, Han L, Deng X, Shi Z. UPLC-Q-TOF/MS-Based Metabolomics Approach Reveals Osthole Intervention in Breast Cancer 4T1 Cells. Int J Mol Sci 2023; 24:ijms24021168. [PMID: 36674685 PMCID: PMC9861432 DOI: 10.3390/ijms24021168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Osthole (OST) is a simple coumarin derivative with pharmacological effects in many types of cancer cells. However, its role and its mechanism of action in breast cancer 4T1 cells remain unclear. In this study, we explored the effects and potential mechanisms of action of OST in 4T1 cells. The MTT, PI, and Annexin V-FITC/PI methods were used to evaluate the effects of OST-treated and untreated 4T1 cells on viability, cell cycle, and apoptosis, respectively. UPLC-Q-TOF/MS combined with multivariate data analysis was used to screen potential biomarkers relevant to the therapeutic mechanisms of OST. Additionally, mTOR, SREBP1, and FASN protein levels were detected using western blotting in OST-treated and untreated 4T1 cells. OST inhibited 4T1 cell proliferation, blocked the cells from remaining in S-phase, and induced apoptosis. In 4T1 cells, OST mainly affected the phospholipid biosynthesis, methyl histidine metabolism, pyrimidine metabolism, and β-oxidation of very long chain fatty acid pathways, suggesting that metabolic changes related to lipid metabolism-mediated signaling systems were the most influential pathways, possibly via inhibition of mTOR/SREBP1/FASN signaling. Our findings reveal biomarkers with potential therapeutic effects in breast cancer and provide insight into the therapeutic and metabolic mechanisms of OST in 4T1 cells.
Collapse
Affiliation(s)
- Xiuyun Li
- School of Pharmacy, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chenglun Zhang
- School of Pharmacy, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Enhui Wu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liang Han
- School of Health, Guangdong Light and Health Engineering R&D Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangliang Deng
- School of Chinese Medicine, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.D.); (Z.S.)
| | - Zhongfeng Shi
- School of Pharmacy, The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.D.); (Z.S.)
| |
Collapse
|
6
|
Zhao Y, Chard Dunmall LS, Cheng Z, Wang Y, Si L. Natural products targeting glycolysis in cancer. Front Pharmacol 2022; 13:1036502. [PMID: 36386122 PMCID: PMC9663463 DOI: 10.3389/fphar.2022.1036502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 09/05/2023] Open
Abstract
Many energy metabolism pathways exist in cancer, including glycolysis, amino acid metabolism, fatty acid oxidation, and mitochondrial respiration. Tumor cells mainly generate energy through glycolysis to maintain growth and biosynthesis of tumor cells under aerobic conditions. Natural products regulate many steps in glycolysis and targeting glycolysis using natural products is a promising approach to cancer treatment. In this review, we exemplify the relationship between glycolysis and tumors, demonstrate the natural products that have been discovered to target glycolysis for cancer treatment and clarify the mechanisms involved in their actions. Natural products, such as resveratrol mostly found in red grape skin, licochalcone A derived from root of Glycyrrhiza inflate, and brusatol found in Brucea javanica and Brucea mollis, largely derived from plant or animal material, can affect glycolysis pathways in cancer by targeting glycolytic enzymes and related proteins, oncogenes, and numerous glycolytic signal proteins. Knowledge of how natural products regulate aerobic glycolysis will help illuminate the mechanisms by which these products can be used as therapeutics to inhibit cancer cell growth and regulate cellular metabolism. Systematic Review Registration: https://pubmed.ncbi.nlm.nih.gov/, https://clinicaltrials.gov/, http://lib.zzu.edu.cn/.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Lingling Si
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Gao H, Song Y, Ma J, Zhai J, Zhang Y, Qu X. Untargeted metabolomics analysis of omeprazole-enhanced chemosensitivity to cisplatin in mice with non-small cell lung cancer. Chem Biol Interact 2022; 360:109933. [PMID: 35447140 DOI: 10.1016/j.cbi.2022.109933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
Abstract
Drug resistance of tumors remains a major barrier in cisplatin (CDDP)-based chemotherapy. Omeprazole (OME) is often utilized during chemotherapy to alleviate gastrointestinal symptoms. In a previous investigation, we demonstrated a protective effect of OME against CDDP-induced kidney injury. To further establish whether OME could enhance chemosensitivity to CDDP and the underlying mechanisms, an in vivo tumor-bearing mouse model with CDDP-resistant A549 non-small cell lung cancer (A549/CDDP) was established in the current study. A high-performance liquid chromatography-time of flight mass spectrometry (HPLC-TOF/MS)-based untargeted metabolomics approach for tumor tissue and serum was employed to explore the mechanisms underlying the enhanced therapeutic effects of co-administration of CDDP and OME. Notably, tumor weights of mice in the CDDP + OME group were significantly decreased compared with those treated with CDDP alone. HE and TUNEL staining revealed more significant apoptosis of tumor cells in the group co-administered CDDP + OME relative to CDDP alone. Overexpression of multidrug resistance-associated protein 2 in CDDP-resistant tumors was significantly reversed upon treatment with CDDP + OME. PCA score plots of the groups co-treated with CDDP + OME were clearly separated from those treated with CDDP alone in metabolomics analysis for tumor and serum samples, clearly suggesting that co-administration of OME enhances the antitumor effect of CDDP. Subsequently, 10 and 7 metabolites in CDDP + OME group with significant changes in tumor and serum compared with CDDP group, respectively, were identified. Pathway analysis both in tumor and serum samples revealed regulation of the metabolism of purines, several amino acids and riboflavin in enhanced chemotherapy with both OME and CDDP. The collective findings provide beneficial novel insights into drug-drug interactions, which could improve the application of CDDP in clinical practice.
Collapse
Affiliation(s)
- Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Jie Ma
- Department of Pharmacy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, 130021, Changchun, China
| | - Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University, 130021, Changchun, China.
| |
Collapse
|
8
|
Yin F, Nian M, Wang N, Wu H, Wu H, Zhao W, Cao S, Wu P, Zhou A. Protective Mechanism of Gandou Decoction in a Copper-Laden Hepatolenticular Degeneration Model: In Vitro Pharmacology and Cell Metabolomics. Front Pharmacol 2022; 13:848897. [PMID: 35401189 PMCID: PMC8984159 DOI: 10.3389/fphar.2022.848897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Gandou decoction (GDD) is a classic prescription for the treatment of hepatolenticular degeneration (HLD) in China; however, the liver-protecting mechanism of this prescription needs further evaluation. In the present study, we explored the protective mechanisms of GDD in a copper-laden HLD model using integrated pharmacology and cellular metabolomics in vitro. The results revealed that GDD could significantly promote copper excretion in copper-laden HLD model cells and improve the ultrastructural changes in hepatocytes. In addition, GDD could decrease the extent of lipid peroxidation, levels of reactive oxygen species, and the release rate of lactate dehydrogenase while increasing the activity of superoxide dismutase and the ratio of glutathione to oxidized glutathione in the copper-laden HLD model cells. On conducting statistical analysis of significant metabolic changes, 47 biomarkers and 30 related metabolic pathways were screened as pharmacological reactions induced by GDD in HLD model cells. d-glutamate and d-glutamine metabolic pathways showed the highest importance and significance among the 30 metabolic pathways, and the differential expression levels of the glutamine synthetase (GS) and the renal type and liver type GLS (GLS1 and GLS2) proteins were verified by Western blotting. Collectively, our data established the underlying mechanism of GDD therapy, such as the promotion of copper excretion and improvement in oxidative stress by regulating the expressions of GS, GLS1, and GLS2 protein to protect hepatocytes from injury.
Collapse
Affiliation(s)
- Fengxia Yin
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Mengnan Nian
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Na Wang
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Huan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Peng Wu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
9
|
Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics. Molecules 2021; 26:molecules26216541. [PMID: 34770949 PMCID: PMC8587539 DOI: 10.3390/molecules26216541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolite profiling of cancer cells presents many opportunities for anticancer drug discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer therapeutics as documented in traditional folklores. In-depth scientific information relating to mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer mechanisms of action of plants but this has remained largely unexplored. This review, therefore, presents the available metabolomics studies on the anticancer effects of herbal medicines commonly used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’ for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of using metabolomics to uncover the underlying mechanisms of potential anticancer herbs and the progress made in this regard.
Collapse
|
10
|
Impact of the Pd 2Spm (Spermine) Complex on the Metabolism of Triple-Negative Breast Cancer Tumors of a Xenograft Mouse Model. Int J Mol Sci 2021; 22:ijms221910775. [PMID: 34639114 PMCID: PMC8509401 DOI: 10.3390/ijms221910775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022] Open
Abstract
The interest in palladium(II) compounds as potential new anticancer drugs has increased in recent years, due to their high toxicity and acquired resistance to platinum(II)-derived agents, namely cisplatin. In fact, palladium complexes with biogenic polyamines (e.g., spermine, Pd2Spm) have been known to display favorable antineoplastic properties against distinct human breast cancer cell lines. This study describes the in vivo response of triple-negative breast cancer (TNBC) tumors to the Pd2Spm complex or to cisplatin (reference drug), compared to tumors in vehicle-treated mice. Both polar and lipophilic extracts of tumors, excised from a MDA-MB-231 cell-derived xenograft mouse model, were characterized through nuclear magnetic resonance (NMR) metabolomics. Interestingly, the results show that polar and lipophilic metabolomes clearly exhibit distinct responses for each drug, with polar metabolites showing a stronger impact of the Pd(II)-complex compared to cisplatin, whereas neither drug was observed to significantly affect tumor lipophilic metabolism. Compared to cisplatin, exposure to Pd2Spm triggered a higher number of, and more marked, variations in some amino acids, nucleotides and derivatives, membrane precursors (choline and phosphoethanolamine), dimethylamine, fumarate and guanidine acetate, a signature that may be relatable to the cytotoxicity and/or mechanism of action of the palladium complex. Putative explanatory biochemical hypotheses are advanced on the role of the new Pd2Spm complex in TNBC metabolism.
Collapse
|
11
|
Chen H, Yang J, Yang Y, Zhang J, Xu Y, Lu X. The Natural Products and Extracts: Anti-Triple-Negative Breast Cancer in Vitro. Chem Biodivers 2021; 18:e2001047. [PMID: 34000082 DOI: 10.1002/cbdv.202001047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 11/10/2022]
Abstract
Triple-negative breast cancer (TNBC) makes up 15 % to 20 % of all breast cancer (BC) cases, and represents one of the most challenging malignancies to treat. For many years, chemotherapy has been the main treatment option for TNBC. Natural products isolated from marine organisms and terrestrial organisms with great structural diversity and high biochemical specificity form a compound library for the assessment and discovery of new drugs. In this review, we mainly focused on natural compounds and extracts (from marine and terrestrial environments) with strong anti-TNBC activities (IC50 <100 μM) and their possible mechanisms reported in the past six years (2015-2021).
Collapse
Affiliation(s)
- Han Chen
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Jiaping Yang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Yanlong Yang
- School of Traditional Chinese Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Jianpeng Zhang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Yao Xu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Xiaoling Lu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| |
Collapse
|
12
|
Babiaka SB, Moumbock AFA, Günther S, Ntie-Kang F. Natural products in Cyperus rotundus L. (Cyperaceae): an update of the chemistry and pharmacological activities. RSC Adv 2021. [DOI: 10.1039/d1ra00478f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyperus rotundus L. (Nutgrass, family Cyperaceae) is a notorious weed which is widespread in temperate tropical and subtropical regions of the world.
Collapse
Affiliation(s)
| | - Aurélien F. A. Moumbock
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-Universitӓt Freiburg
- D-79104 Freiburg
- Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-Universitӓt Freiburg
- D-79104 Freiburg
- Germany
| | - Fidele Ntie-Kang
- Department of Chemistry
- University of Buea
- Buea
- Cameroon
- Institute of Pharmacy
| |
Collapse
|