1
|
Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera. Food Chem 2023; 412:135581. [PMID: 36731239 DOI: 10.1016/j.foodchem.2023.135581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Nelumbo nucifera Gaertn, commonly known as lotus, is a genus comprising perennial and rhizomatous aquatic plants, found throughout Asia and Australia. This review aimed to cover the biosynthesis of flavonoids, alkaloids, and lipids in plants and their types in different parts of lotus. This review also examined the physiological functions of bioactive compounds in lotus and the extracts from different organs of the lotus plant. The structures and identities of flavonoids, alkaloids, and lipids in different parts of lotus as well as their biosynthesis were illustrated and updated. In the traditional medicine systems and previous scientific studies, bioactive compounds and the extracts of lotus have been applied for treating inflammation, cancer, liver disease, Alzheimer's disease, etc. We suggest future studies to be focused on standardization of the extract of lotus, and their pharmacological mechanisms as drugs or functional foods. This review is important for the lotus-based food processing and application.
Collapse
|
2
|
Li J, Wu Y, Dong S, Yu Y, Wu Y, Xiang B, Li Q. Research Progress on Neuroprotective Effects of Isoquinoline Alkaloids. Molecules 2023; 28:4797. [PMID: 37375352 DOI: 10.3390/molecules28124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal injury and apoptosis are important causes of the occurrence and development of many neurodegenerative diseases, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs, it is of great significance to alleviate the symptoms and improve the prognosis of these diseases. Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These substances have a wide range of pharmacological effects and significant activity. Although some studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and summarizes their common characteristics. This information can serve as a reference for further research on the neuroprotective effects of isoquinoline alkaloids.
Collapse
Affiliation(s)
- Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yarong Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Shuze Dong
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Ye Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yuhao Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Benhan Xiang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| |
Collapse
|
3
|
Wang MY, Zhang SS, An MF, Xia YF, Fan MS, Sun ZR, Zhang LJ, Zhao YL, Sheng J, Wang XJ. Neferine ameliorates nonalcoholic steatohepatitis through regulating AMPK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154798. [PMID: 37031639 DOI: 10.1016/j.phymed.2023.154798] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD), peculiarly nonalcoholic steatohepatitis (NASH), has become the main cause of liver transplantation and liver-related death. However, the US Food and Drug Administration has not approved a specific medication for treating NASH. Neferine (NEF), a natural bisbenzylisoquinoline alkaloid separated from the traditional Chinese medicine Nelumbinis plumula, has a variety of pharmacological properties, especially on metabolic diseases. Nevertheless, the anti-NASH effect and mechanisms of NEF remain unclear. PURPOSE This study aimed to investigate the amelioration of NEF on NASH and the potential mechanisms. STUDY DESIGN HepG2 cells, hepatic stellate cells (HSCs) and high-fat diet (HFD)+carbon tetrachloride (CCl4) induced C57BL/6 mice were used to observe the effect of NEF against NASH and investigate the engaged mechanism. METHODS HSCs and HepG2 cells stimulated by oleic acid (OA) were treated with NEF. C57BL/6 mice were fed with HFD+CCl4 to induce NASH mouse model and treated with or without NEF (5 mg/kg or 10 mg/kg, once daily, i.p) for 4 weeks. RESULTS NEF significantly attenuated the accumulation of lipid droplets, intracellular triglyceride (TG) levels and hepatocytes apoptosis in OA-exposed HepG2 cells. NEF not only enhanced the AMPK and ACC phosphorylation in OA-stimulated HepG2 cells, but also reduced inflammatory response and fibrosis in lipopolysaccharide (LPS)-stimulated HepG2 and in LX-2, respectively. In HFD+CCl4-induced NASH mice, pathological staining confirmed NEF treatment mitigated hepatic lipid deposition, inflammatory cell infiltration as well as hepatic fibrosis. Furthermore, the liver weight, serum and hepatic TG and total cholesterol (TC) and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were decreased compared with the model group. HFD+CCl4 also induced the upregulation of specific proteins and genes associated to inflammation (ILs, TNF-α, NLRP3, ASC, CCL2 and CXCL10) and hepatic fibrosis (collagens, α-SMA, TGF-β and TIPM1), which were also suppressed by NEF treatment. CONCLUSION Our results demonstrated that NEF played a protective role in hepatic steatosis via the regulation of AMPK pathways, which may serve as an attractive candidate for a potential novel strategy on prevention and treatment of NASH.
Collapse
Affiliation(s)
- Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Shao-Shi Zhang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Science, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Yue-Fei Xia
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Ze-Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Li-Juan Zhang
- School of Basic Medicine, Yunnan University of Chinese Medicine Chinese, Kunming 650500, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Science, Yunnan Agricultural University, Kunming 650224, P. R. China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650224, P. R. China.
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China; Yunnan Research Institute of Plateau Characteristic Agricultural and Industry, Yunnan Agricultural University, Kunming 650224, P. R. China.
| |
Collapse
|
4
|
He J, Fang J, Wang Y, Ge C, Liu S, Jiang Y. Discovery of Small-Molecule Antagonists of Orexin 1/2 Receptors from Traditional Chinese Medicinal Plants with a Hypnotic Effect. Pharmaceuticals (Basel) 2023; 16:ph16040542. [PMID: 37111298 PMCID: PMC10146837 DOI: 10.3390/ph16040542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Insomnia is an important public health problem. The currently available treatments for insomnia can cause some adverse effects. Orexin receptors 1 (OX1R) and 2 (OX2R) are burgeoning targets for insomnia treatment. It is an effective approach to screening OX1R and OX2R antagonists from traditional Chinese medicine, which contains abundant and diverse chemical components. This study established an in-home ligand library of small-molecule compounds from medicinal plants with a definite hypnotic effect, as described in the Chinese Pharmacopoeia. Molecular docking was applied to virtually screen potential orexin receptor antagonists using molecular operating environment software, and surface plasmon resonance (SPR) technology was used to detect the binding affinity between potential active compounds and orexin receptors. Finally, the results of virtual screening and SPR analysis were verified through in vitro assays. We successfully screened one potential lead compound (neferine) as an orexin receptor antagonist from the in-home ligand library, which contained more than 1000 compounds. The screened compound was validated as a potential agent for insomnia treatment through comprehensive biological assays. This research enabled the discovery of a potential small-molecule antagonist of orexin receptors for the treatment of insomnia, providing a novel screening approach for the detection of potential candidate compounds for corresponding targets.
Collapse
Affiliation(s)
- Jia He
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Fang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuxin Wang
- College of Pharmacy, Dali University, Dali 671000, China
| | - Chengyu Ge
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Huang Q, Zhang X, Jia A, Huang Q, Jiang Y, Xie L. The Pharmacokinetics/Pharmacodynamics and Neurotoxicity of Tigecycline Intraventricular Injection for the Treatment of Extensively Drug-Resistant Acinetobacter baumannii Intracranial Infection. Infect Drug Resist 2022; 15:4809-4817. [PMID: 36043158 PMCID: PMC9420438 DOI: 10.2147/idr.s377772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to provide feasible suggestions for intraventricular injection of tigecycline to treat intractable Acinetobacter baumannii intracranial infections by studying its pharmacokinetics/pharmacodynamics and neurotoxicity. Methods A simple and reliable two-dimensional high-performance liquid chromatography (2D-HPLC) method was used to determine tigecycline concentration. The pharmacokinetics (PK) of tigecycline in cerebrospinal fluid (CSF) was investigated by performing therapeutic drug monitoring (TDM). The pharmacodynamics (PD) of tigecycline was evaluated by its minimum inhibitory concentration (MIC) against XDR A. baumannii. CCK8 assay was used to evaluate the cytotoxicity of different concentrations of tigecycline effect on PC12 cells, and apoptosis assay was analyzed by flow cytometry. Results Tigecycline retention time in 2D-HPLC was 7.636 min. The lower limit of quantitation (LLOQ) was 0.1mg/L, which met the requirements of concentration determination for TDM. The MIC50 and MIC90 values of tigecycline for A. baumannii were 2 and 4 mg/L, respectively. After a dose of 5mg tigecycline, Cmax in CSF was 37.894 mg/L which was high above the MIC values. The t 1/2 of tigecycline was estimated to be 2.73 hours. Tigecycline significantly decreased cell viability as assessed and induced apoptosis of the PC12 cell. The IC50 value of PC12 cells treated with tigecycline was about 51.35 mg/L. Conclusion Intraventricular injection of tigecycline is a promising method for treating XDR A. baumannii intracranial infection. Since a high concentration of tigecycline in CSF may have potential neurotoxicity, and the t 1/2 was short, giving small doses of less than 5 mg at least twice a day may be safer and more effective. Intraventricular injection of tigecycline must be selected cautiously and best carried out under TDM.
Collapse
Affiliation(s)
- Qi Huang
- Department of Pharmacy, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| | - Xingwen Zhang
- Emergency Intensive Care Unit, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| | - Aijun Jia
- Emergency Intensive Care Unit, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| | - Liangyi Xie
- Department of Laboratory Medicine, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| |
Collapse
|
6
|
Xiao X, Luo F, Fu M, Jiang Y, Liu S, Liu B. Evaluating the therapeutic role of selected active compounds in Plumula Nelumbinis on pulmonary hypertension via network pharmacology and experimental analysis. Front Pharmacol 2022; 13:977921. [PMID: 36059960 PMCID: PMC9428143 DOI: 10.3389/fphar.2022.977921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are critical factors leading to vascular remodeling in pulmonary hypertension (PH). This study aimed to explore the effect and potential mechanism of Plumula Nelumbinis on PH by using network pharmacology and experimental analysis. Network pharmacology and molecular docking results indicated that the potential active components of Plumula Nelumbinis against PH were mainly alkaloid compounds, including neferine, liensinine, and isoliensinine. Subsequently, by constructing a Su5416 plus hypoxia (SuHx)-induced PH rat model, we found that the total alkaloids of Plumula Nelumbinis (TAPN) can reduce the right ventricular systolic pressure, delay the process of pulmonary vascular and right ventricular remodeling, and improve the right heart function in PH rats. In addition, TAPN can effectively reverse the upregulation of collagen1, collagen3, MMP2, MMP9, PCNA, PIM1, and p-SRC protein expression in lung tissue of PH rats. Finally, by constructing a hypoxia-induced PASMCs proliferation and migration model, we further found that TAPN, neferine, liensinine, and isoliensinine could inhibit the proliferation and migration of PASMCs induced by hypoxia; reverse the upregulation of collagen1, collagen3, MMP2, MMP9, PCNA, PIM1 and p-SRC protein expression in PASMCs. Based on these observations, we conclude that the alkaloid compounds extracted from Plumula Nelumbinis (such as neferine, liensinine, and isoliensinine) can inhibit the abnormal proliferation and migration of PASMCs by regulating the expression of p-SRC and PIM1, thereby delaying the progression of PH.
Collapse
Affiliation(s)
- Xinghua Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Fangmei Luo
- Department of Pharmacy, Hunan Children’s Hospital, Changsha, China
| | - Minyi Fu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Bin Liu,
| |
Collapse
|
7
|
Chian S, Jiang ZC, Jiang LX, Wang KT, Fan YX, Liao T, Chen WS, Yao WX. Caffeine-induced neurotoxicity mediated by Nrf2 pathway in PC12 cells and zebrafish larvae. J Appl Toxicol 2021; 42:629-637. [PMID: 34590332 DOI: 10.1002/jat.4244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022]
Abstract
Caffeine is one of the most widely used psychostimulants in the world and possesses central excitative, anti-depressive, and neuroprotective properties. However, excessive ingestion or abuse of caffeine can lead to intoxication. Many toxic effects are attributed to oxidative damage, and nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical intracellular regulator of the oxidative stress response. Here, we investigated the neurotoxicity of caffeine in rat pheochromocytoma PC12 cells and zebrafish larvae. It was found that caffeine inhibited the viability of PC12 cells in a dose- and time-dependent manner. Furthermore, it induced PC12 cell apoptosis and elevated reactive oxygen species (ROS) production. Quantitative polymerase chain reaction (qPCR) and western blotting revealed that caffeine also inhibited the expression levels of Nrf2 mRNA and protein and its target genes (e.g., NADPH quinone oxidoreductase 1 [NQO1]). Furthermore, Nrf2 silencing attenuated the toxic effects of caffeine. In addition, zebrafish larvae were treated with different doses of caffeine. Behavioral experiments showed that a low dose of caffeine (0.05 to 0.3 mM) increased the average distance of movement and promoted excitation. Survivorship curves showed that caffeine (0.2 to 1.5 mM) caused lethality. Finally, qPCR revealed that a higher dose of caffeine inhibited mRNA levels in the Nrf2 pathway. Based on these results, this study identified for the first time that overuse of caffeine can induce neurotoxicity by inhibiting the Nrf2 pathway. These results will provide a new perspective for studies on caffeine toxicity.
Collapse
Affiliation(s)
- Song Chian
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, China
| | - Zi-Cheng Jiang
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, China
| | - Ling-Xia Jiang
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, China
| | - Ke-Ting Wang
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, China
| | - Yu-Xuan Fan
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, China
| | - Tinghao Liao
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, China
| | - Wen-Shuang Chen
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, China
| | - Wei-Xuan Yao
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, China
| |
Collapse
|