1
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
2
|
Anwar MM, Boseila AA, Mabrouk AA, Abdelkhalek AA, Amin A. Impact of Lyophilized Milk Kefir-Based Self-Nanoemulsifying System on Cognitive Enhancement via the Microbiota-Gut-Brain Axis. Antioxidants (Basel) 2024; 13:1205. [PMID: 39456459 PMCID: PMC11504727 DOI: 10.3390/antiox13101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic inflammatory bowel disorders (IBDs) are characterized by altered intestinal permeability, prompting inflammatory, oxidative stress, and immunological factors. Gut microbiota disorders impact brain function via the bidirectional gut-brain axis, influencing behavior through inflammatory cascades, oxidative stress, and neurotransmitter levels. This study highlights the potential effect of integrating lyophilized milk kefir alone and lyophilized milk kefir as solid carriers loaded with a self-nanoemulsifying self-nanosuspension (SNESNS) of licorice extract on an induced chronic IBD-like model in rats. Licorice-SNESNS was prepared by the homogenization of 30 mg of licorice extract in 1 g of the selected SNEDDS (30% Caraway oil, 60% Tween 20, and 10% propylene glycol (w/w)). Licorice-SNESNS was mixed with milk kefir and then freeze-dried. Dynamic TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Daily oral administration of lyophilized milk kefir (100 mg/kg) loaded with SNESNS (10 mg/kg Caraway oil and 1 mg/kg licorice) restored normal body weight and intestinal mucosa while significantly reducing submucosal inflammatory cell infiltration in induced rats. Importantly, this treatment demonstrated superior efficacy compared to lyophilized milk kefir alone by leading to a more significant alleviation of neurotransmitter levels and improved memory functions, thereby addressing gut-brain axis disorders. Additionally, it normalized fecal microbiome constituents, inflammatory cytokine levels, and oxidative stress in examined tissues and serum. Moreover, daily administration of kefir-loaded SNESNS normalized the disease activity index, alleviated histopathological changes induced by IBD induction, and partially restored the normal gut microbiota. These alterations are associated with improved cognitive functions, attributed to the maintenance of normal neurotransmitter levels and the alleviation of triggered inflammatory factors and oxidative stress levels.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
| | - Abeer A. Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | | | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Ayustaningwarno F, Anjani G, Ayu AM, Fogliano V. A critical review of Ginger's ( Zingiber officinale) antioxidant, anti-inflammatory, and immunomodulatory activities. Front Nutr 2024; 11:1364836. [PMID: 38903613 PMCID: PMC11187345 DOI: 10.3389/fnut.2024.1364836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Ginger (Zingiber officinale) is a rhizome that has been used as a healthy herbal plant for years. Ginger's chemical components are recognized to provide beneficial health effects, namely as antioxidants and anti-inflammatory agents with the potential to operate as immunomodulators. This literature review covers numerous publications concerning ginger's immunomodulatory potential, associated with antioxidant and anti-inflammatory effects in modifying the body's immune system. Pathophysiology of oxidative stress and inflammation were introduced before diving deep down into the herbal plants as an immunomodulator. Ginger's antioxidant and anti-inflammatory properties are provided by gingerol, shogaols, paradol, and zingerone. Ginger's antioxidant mechanism is linked to Nrf2 signaling pathway activation. Its anti-inflammatory mechanism is linked to Akt inhibition and NF-KB activation, triggering the release of anti-inflammatory cytokines while reducing proinflammatory cytokines. Ginger consumption as food and drink was also explored. Overall, ginger and its active components have been shown to have strong antioxidant properties and the potential to reduce inflammation. Challenges and future prospects of ginger are also elaborated for future development. Future collaborations between researchers from various fields, including chemists, biologists, clinicians, pharmacists, and the food industry, are required further to investigate the effect of ginger on human immunity. Collaboration between researchers and industry can help accelerate the advancement of ginger applications.
Collapse
Affiliation(s)
- Fitriyono Ayustaningwarno
- Nutrition Science Department, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Universitas Diponegoro, Semarang, Indonesia
| | - Gemala Anjani
- Nutrition Science Department, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Universitas Diponegoro, Semarang, Indonesia
| | - Azzahra Mutiara Ayu
- Nutrition Science Department, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Xiang S, Jian Q, Chen W, Xu Q, Li J, Wang C, Wang R, Zhang D, Lin J, Zheng C. Pharmacodynamic components and mechanisms of ginger (Zingiber officinale) in the prevention and treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117733. [PMID: 38218504 DOI: 10.1016/j.jep.2024.117733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginger is a "medicine-food homology" natural herb and has a longstanding medicinal background in treating intestinal diseases. Its remarkable bioactivities, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, and anticancer properties, make it a promising natural medicine for colorectal cancer (CRC) prevention and treatment. AIM OF THE REVIEW The purpose is to review the relevant literature on ginger and pharmacodynamic components for CRC prevention and treatment, summarize the possible mechanisms of ginger from clinical studies and animal and in vitro experiments, to provide theoretical support for the use of ginger preparations in the daily prevention and clinical treatment of CRC. MATERIALS AND METHODS Literatures about ginger and CRC were searched from electronic databases, such as PubMed, Web of Science, ScienceDirect, Google Scholar and China National Knowledge Infrastructure (CNKI). RESULTS This article summarizes the molecular mechanisms of ginger and its pharmacodynamic components in the prevention and treatment of CRC, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, inhibit CRC cell proliferation, induce CRC cell cycle blockage, promote CRC cell apoptosis, suppress CRC cell invasion and migration, enhance the anticancer effect of chemotherapeutic drugs. CONCLUSIONS Ginger has potential for daily prevention and clinical treatment of CRC.
Collapse
Affiliation(s)
- Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rongrong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
5
|
Asaad GF, Mostafa RE. Amelioration of acetic acid-induced ulcerative colitis in rats by cetirizine and loratadine via regulation of the PI3K/Akt/Nrf2 signalling pathway and pro-inflammatory cytokine release. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:761-767. [PMID: 38645494 PMCID: PMC11024406 DOI: 10.22038/ijbms.2024.75889.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Objectives Ulcerative colitis is a chronic inflammatory bowel disease (IBD) that causes inflammation and ulcers in the rectum and the innermost layer of the large intestine. Our study aimed to elucidate the ameliorative effect of cetirizine (CTZ) and loratadine (LOR) against acetic acid-induced ulcerative colitis in rats via assessment of the PI3K/p-Akt/Nrf2 signaling pathway and proinflammatory cytokine release. Materials and Methods Thirty-two rats were allocated into four groups (n=8). Group (I) was considered normal control. Acetic acid (AA) was injected intrarectally in groups (2-4). Group (2) was kept untreated. Group (3) was administered CTZ (20 mg/kg/day) for 7 days. Group (4) was administered LOR (10 mg/kg/day) for 7 days. Results AA showed severe macroscopic colonic lesions associated with increased ulcer number, area, and severity with significantly elevated PI3K, p-Akt, Nrf2, TNF-α, and IL-6 in colorectal tissue as compared to the normal control group. All the aforementioned indicators were greatly improved by CTZ and LOR therapy. Conclusion This is the first study to elucidate the ameliorative effect of CTZ and LOR against AA-induced UC in rats. CTZ and LOR treatment mitigates UC via amelioration of the PI3K/p-Akt/Nrf2 pathway and proinflammatory cytokine release.
Collapse
Affiliation(s)
- Gihan F. Asaad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rasha E. Mostafa
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Parihar N, Bhatt LK. Topotecan alleviates acetic acid-induced ulcerative colitis in rats via attenuation of the RORγT transcription factor. Life Sci 2023; 328:121915. [PMID: 37414139 DOI: 10.1016/j.lfs.2023.121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
AIMS Ulcerative colitis is characterized as a chronic immune-mediated inflammatory condition, affecting the intestinal gastroenteric tissue. Previous studies revealed that Th-17 cells are key players in the pathogenesis of ulcerative colitis. RORγT (Retinoic-acid-receptor-related orphan receptor-gamma T) is a lineage-specific transcription factor of Th-17 cells and thus has a role in their differentiation. Transient inhibition of RORγT has been reported to attenuate the differentiation of Th-17 cells and secretion of interleukin-17 (IL-17). Here, we investigated the efficacy of topotecan in ameliorating ulcerative colitis in rodents, via inhibition of the RORγT transcription factor. MAIN METHODS AND KEY FINDINGS Experimental ulcerative colitis was induced in rats by intrarectal acetic acid administration. Topotecan attenuated the severity of ulcerative colitis in rats by revoking neutrophils and macrophage infiltration to the colon. It also alleviated diarrhea and rectal bleeding and improved body weight. Further, attenuation of RORγT and IL-17 expression was observed in topotecan treated animals. Levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in the colon tissue were reduced by topotecan treatment. Significant reduction in malondialdehyde level, elevation of superoxide dismutase (SOD) and catalase activity was observed in the colon tissue of rats treated with topotecan compared to the diseased group. SIGNIFICANCE This study shows the therapeutic potential of topotecan in attenuating ulcerative colitis in rats probably via inhibition of the RORγT transcription factor and downstream mediators of Th-17 cells.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
7
|
Kashef SM, Yassien RI, El-Ghazouly DES. The possible effect of lycopene in ameliorating experimentally induced ulcerative colitis in adult male albino rats (A histological, immunohistochemical, and ultrastructural study). Ultrastruct Pathol 2023; 47:172-187. [PMID: 36869024 DOI: 10.1080/01913123.2023.2185718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Ulcerative colitis (UC) is considered a long-term inflammatory disorder worldwide. Its pathogenesis is associated with reduced antioxidant capacity. Lycopene (LYC) is a powerful antioxidant with strong free radical scavenging property. The present work has done to assess changes of colonic mucosa in induced UC and the possible ameliorative effects of LYC. Forty-five adult male albino rats were randomly divided into four groups: group I (control), group II was given 5 mg/kg/day (LYC) by oral gavage for 3 weeks. Group III (UC) was received single intra-rectal injection of acetic acid. Group IV (LYC+UC) received LYC in same dose and duration as before and acetic acid on 14th day of the experiment. UC group showed loss of surface epithelium with destructed crypts. Congested blood vessels with heavy cellular infiltration were observed. Significant decrease in goblet cell numbers and the mean area percentage of ZO-1 immunoexpression were noticed. Significant increase in the mean area percentage of collagen and the mean area percentage of COX-2 were also noticed. Ultrastructural changes were matched with light microscopic results that showed abnormal destructive columnar and goblet cells. Histological, immunohistochemical, and ultrastructural findings in group IV supported the ameliorative role of LYC against destructive changes induced by UC.
Collapse
|
8
|
Binmahfouz LS, Almukadi H, Alamoudi AJ, El-Halawany AM, Abdallah HM, Algandaby MM, Mohamed GA, Ibrahim SRM, Alghamdi FA, Al-Shaeri M, Abdel-Naim AB. 6-Paradol Alleviates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by Inhibiting AKT/mTOR Axis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2602. [PMID: 36235468 PMCID: PMC9571361 DOI: 10.3390/plants11192602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) is a common disease among elderly men. Its pharmacological treatment is still unsatisfactory. 6-Paradol (6-PD) is an active metabolite found in many members of the Zingiberaceae family. It was reported to possess anti-proliferative, antioxidant, and anti-inflammatory activities. The present study aimed at exploring the potential of 6-PD to inhibit testosterone-induced BPH in rats as well as the probable underlying mechanism. METHODS Male Wistar rats were divided into 6 groups and treated as follows: Group 1 (control group) received vehicles only, Group 2 testosterone only, Groups 3 and 4 received 6-PD (2.5 and 5.0 mg/kg; respectively) and testosterone, and Group 6 received finasteride and testosterone. RESULTS Daily treatment of animals with 6-PD at the two dose levels of 2.5 and 5 mg/kg significantly ameliorated a testosterone-induced rise in prostate index and weight. This was confirmed by histological examinations of prostatic tissues that indicated a reduction in the pathological changes as well as inhibition of the rise in glandular epithelial height in 6-PD treated rats. Immunohistochemical investigations showed that 6-PD prevented the up-regulation of cyclin D1 induced by testosterone injections. Further, 6-PD significantly modulated mRNA expression of both Bcl2 and Bax in prostate tissues of testosterone-treated rats in favor of anti-proliferation. It also showed antioxidant activities as evidenced by inhibition of accumulation of malondialdehyde (MDA) and exhaustion of catalase (CAT) activity. In addition, 6-PD displayed significant anti-inflammatory activities as it prevented up-regulation of interleukin-6 (IL-6) and nuclear factor kappa B (NF-κB). Immunoblotting analysis revealed that 6-PD significantly inhibited testosterone-induced activation of AKT and mTOR in prostate tissues. CONCLUSIONS 6-PD protects against testosterone-induced BPH in rats. This can be attributed, at least partly, to its antiproliferative, antioxidant, and anti-inflammatory properties as well as its ability to inhibit activation of the AKT/mTOR axis.
Collapse
Affiliation(s)
- Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Faraj A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Celani LMS, Egito EST, Azevedo ÍM, Oliveira CN, Dourado D, Medeiros AC. Treatment of colitis by oral negatively charged nanostructured curcumin in rats. Acta Cir Bras 2022; 37:e370602. [PMID: 35976279 PMCID: PMC9377652 DOI: 10.1590/acb370602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE To examine the effects of a negatively charged nanostructured curcumin microemulsion in experimental ulcerative colitis (UC) in rats. METHODS Four percent acetic acid was used to induce UC. The animals were treated for seven days and randomly assigned to four groups: normal control (NC), colitis/normal saline (COL/NS), colitis/curcumin (COL/CUR), and colitis/mesalazine (COL/MES). The nanostructured curcumin was formulated with a negative zeta potential (-16.70 ± 1.66 mV). Dosage of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-β (IL-1β), interleukin 6 (IL-6), and antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase), macro and microscopic evaluation of the colon tissue were analyzed. RESULTS The COL/CUR group had a higher level of antioxidant enzymes compared to the COL/MESgroup. The levels of TNF-α, IL-1β and IL-6 were significantly lower in the colonic tissue of the COL/CUR group rats, when compared to the COL/NS and COL/MES groups (p < 0.001). The presence of ulcers in the colonic mucosa in rats of the COL/NSgroup was significantly higher than in the COL/MES group (p < 0.001). In the NC and COL/CUR groups, there were no ulcers in the colonic mucosa. CONCLUSIONS The nanostructured microemulsion of curcumin, used orally, positively influenced the results of the treatment of UC in rats. The data also suggests that nanostructured curcumin with negative zeta potential is a promising phytopharmaceutical oral delivery system for UC therapy. Further research needs to be done to better understand the mechanisms of the negatively charged nanostructured curcumin microemulsion in UC therapy.
Collapse
Affiliation(s)
- Lívia Medeiros Soares Celani
- Fellow master degree. Universidade Federal do Rio Grande do Norte – Postgraduate Program in Health Sciences – Natal (RN), Brazil
| | - Eryvaldo Sócrates Tabosa Egito
- PhD, full professor, chairman. Universidade Federal do Rio Grande do Norte – Laboratory of Dispersed Systems – Natal (RN), Brazil
| | | | - Cláudia Nunes Oliveira
- PhD. Universidade Federal do Rio Grande do Norte – Pathology Department – Health Sciences – Natal (RN), Brazil
| | - Douglas Dourado
- Fellow PhD degree. Universidade Federal do Rio Grande do Norte – Postgraduate Program in Health Sciences – Natal (RN), Brazil
| | - Aldo Cunha Medeiros
- PhD, full professor, chairman. Universidade Federal do Rio Grande do Norte – Nucleus of Experimental Surgery – Natal (RN), Brazil
| |
Collapse
|
10
|
Ibrahim MA, Abdelmonaem AA, Abdel-Gaber SA, Hafez HM, Abdel Hafez SMN, Yehia Abdelzaher W. Rupatadine ameliorated ulcerative colitis in rats via modulation of platelet-activatiweng factor/interleukin-6/vascular endothelial growth factor signalling pathway. J Pharm Pharmacol 2022; 74:537-546. [PMID: 35134225 DOI: 10.1093/jpp/rgab170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to analyse the potential effect of rupatadine (RUP) on ulcerative colitis (UC) induced by acetic acid (AA). METHODS Forty male adult Wistar rats were divided into five groups: Control group: received vehicles for 14 days; AA model group: received AA at the 13th day; Sulfasalazine (SLZ) + AA group: received SLZ (250 mg/kg) for 14 days and AA at the 13th day; RUP-3 + AA group: received RUP (3 mg/kg/day) for 14 days and AA at the 13th day; and RUP-6 + AA group: received RUP (6 mg/kg/day) for 14 days and AA at the 13th day. Evidence of UC was assessed both macroscopically and microscopically. Oxidative stress markers (total antioxidant capacity and malondialdehyde), antioxidant enzyme (superoxide dismutase), histamine and platelet-activating factor (PAF) were determined. Immunohistochemical estimations of vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) were done. KEY FINDINGS The AA group showed evidence of UC that was associated with a significant increase in oxidative stress, histamine and PAF levels with significant elevation in colonic VEGF and IL-6 immuno-expressions. RUP, in a dose-dependent manner, significantly ameliorated UC. CONCLUSION RUP protects against UC by reducing oxidative stress and by regulating the PAF/IL-6/VEGF pathway.
Collapse
Affiliation(s)
- Mohamed A Ibrahim
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Seham A Abdel-Gaber
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba M Hafez
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | |
Collapse
|
11
|
Awasthi V, Gupta Y, Chauhan R, Kempaiah P, Das J. Growth inhibition of plasmodium falciparum by Nano-molar concentrations of 1-(4‑hydroxy-3-methoxyphenyl) decan-3-one (6-paradol); is a cure at hand? PHYTOMEDICINE PLUS 2022; 2:100208. [DOI: 10.1016/j.phyplu.2021.100208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
|
12
|
Wang R, Liu T, Chen J, Zhang D. Paradol Induces Cell Cycle Arrest and Apoptosis in Glioblastoma Cells. Nutr Cancer 2022; 74:3007-3014. [PMID: 35040364 DOI: 10.1080/01635581.2022.2028866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Despite being the most common primary malignant tumor of the central nervous system, the prognosis of glioblastoma (GBM) is still remarkably poor. Paradol is a flavor phenolic constituent found in pepper and ginger, with anti-tumor, anti-inflammatory, and antioxidant activities. However, the effects of paradol on GBM cells remain unknown. In this study, we investigated the cytotoxicity of paradol on U-87 and U-251 GBM cells. Cell viability and Transwell assays revealed that paradol treatment markedly inhibited the viability and migration of GBM cells. Flow cytometry analysis showed G0/G1 cell cycle arrest, which was verified by the downregulation of CCNA and CCNB expression using western blotting. Paradol-induced cell apoptosis was confirmed by annexin V-FITC/PI staining and nuclear morphology. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) was determined by western blotting. Collectively, our data revealed that paradol inhibited cell viability and migration of GBM cells by inducing G0/G1 phase arrest and apoptosis, and activating ERK and p38 MAPK signaling.
Collapse
Affiliation(s)
- Rui Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Tingting Liu
- Department of Pathology, Central Hospital of Yingkou Economic and Technological Development Zone, Yingkou, China
| | - Jiayu Chen
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Krajewska JB, Włodarczyk J, Jacenik D, Kordek R, Taciak P, Szczepaniak R, Fichna J. New Class of Anti-Inflammatory Therapeutics Based on Gold (III) Complexes in Intestinal Inflammation-Proof of Concept Based on In Vitro and In Vivo Studies. Int J Mol Sci 2021; 22:ijms22063121. [PMID: 33803793 PMCID: PMC8003307 DOI: 10.3390/ijms22063121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are at the top of the worldwide rankings for gastrointestinal diseases as regards occurrence, yet efficient and side-effect-free treatments are currently unavailable. In the current study, we proposed a new concept for anti-inflammatory treatment based on gold (III) complexes. A new gold (III) complex TGS 121 was designed and screened in the in vitro studies using a mouse macrophage cell line, RAW264.7, and in vivo, in the dextran sulphate sodium (DSS)-induced mouse model of colitis. Physicochemical studies showed that TGS 121 was highly water-soluble; it was stable in water, blood, and lymph, and impervious to sunlight. In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, the complex showed a potent anti-inflammatory profile, as evidenced in neutral red uptake and Griess tests. In the DSS-induced mouse model of colitis, the complex administered in two doses (1.68 μg/kg, intragastrically, and 16.8 μg/kg, intragastrically, once daily) produced a significant (* p < 0.05) anti-inflammatory effect, as shown by macroscopic score. The mechanism of action of TGS 121 was related to the enzymatic and non-enzymatic antioxidant system; moreover, TGS 121 induced changes in the tight junction complexes expression in the intestinal wall. This is the first study proving that gold (III) complexes may have therapeutic potential in the treatment of IBD.
Collapse
Affiliation(s)
- Julia B. Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.K.); (J.W.)
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.K.); (J.W.)
| | - Damian Jacenik
- Department of Cytobiochemistry, University of Lodz, 90-236 Lodz, Poland;
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, 92-213 Lodz, Poland;
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | | | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (J.B.K.); (J.W.)
- Correspondence:
| |
Collapse
|
14
|
Rafeeq M, Murad HAS, Abdallah HM, El-Halawany AM. Correction to: Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats. BMC Complement Med Ther 2021; 21:60. [PMID: 33568090 PMCID: PMC7876782 DOI: 10.1186/s12906-021-03241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- Misbahuddin Rafeeq
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University (KAU), Rabigh Campus, Jeddah, 21,589, Saudi Arabia.
| | - Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University (KAU), Rabigh Campus, Jeddah, 21,589, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, 11,562, Egypt
| | - Hossam Mohammed Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, KAU, Jeddah, 21,589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11,562, Egypt
| | - Ali M El-Halawany
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, KAU, Jeddah, 21,589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11,562, Egypt
| |
Collapse
|