1
|
Ni P, Zhang S, Zhang G, Zhang W, Zhang H, Zhu Y, Hu W, Diao M. Development and validation of machine learning-based prediction model for outcome of cardiac arrest in intensive care units. Sci Rep 2025; 15:8691. [PMID: 40082569 PMCID: PMC11907063 DOI: 10.1038/s41598-025-93182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Cardiac arrest (CA) poses a significant global health challenge and often results in poor prognosis. We developed an interpretable and applicable machine learning (ML) model for predicting in-hospital mortality of CA patients who survived more than 72 h. A total of 721 patients were extracted from the Medical Information Mart for Intensive Care IV database, divided into the training set (n = 576) and the internal validation set (n = 145). The external validation set containing 856 cases were collected from four tertiary hospitals in Zhejiang Province. The primary outcome was in-hospital mortality. Eleven ML algorithms were utilized to establish prediction models based on data from 72 h after return of spontaneous circulation (ROSC). The results indicate that the CatBoost model exhibited the best performance at 72 h. Eleven variables were ultimately selected as key features by recursive feature elimination (RFE) to construct a compact model. The final model achieved the highest AUC of 0.86 (0.80, 0.92) in the internal validation and 0.76 (0.73, 0.79) in the external validation. SHAP summary plots and force plots visually explained the predicted outcomes. In conclusion, 72-h CatBoost showed promising performance in predicting in-hospital mortality of CA patients who survived more than 72 h. The model still requires further optimization and improvement.
Collapse
Affiliation(s)
- Peifeng Ni
- Department of Critical Care Medicine, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310000, Zhejiang, China
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200000, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310000, China
| | - Weidong Zhang
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
- Department of Critical Care Medicine, The Fourth Clinical School of Zhejiang Chinese Medicine University, No. 548 Binwen Road, Hangzhou, 310000, Zhejiang, China
| | - Hongwei Zhang
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Ying Zhu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Wei Hu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310000, Zhejiang, China.
| | - Mengyuan Diao
- Department of Critical Care Medicine, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310000, Zhejiang, China.
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
2
|
Wei S, Guo X, He S, Zhang C, Chen Z, Chen J, Huang Y, Zhang F, Liu Q. Application of Machine Learning for Patients With Cardiac Arrest: Systematic Review and Meta-Analysis. J Med Internet Res 2025; 27:e67871. [PMID: 40063076 PMCID: PMC11933771 DOI: 10.2196/67871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Currently, there is a lack of effective early assessment tools for predicting the onset and development of cardiac arrest (CA). With the increasing attention of clinical researchers on machine learning (ML), some researchers have developed ML models for predicting the occurrence and prognosis of CA, with certain models appearing to outperform traditional scoring tools. However, these models still lack systematic evidence to substantiate their efficacy. OBJECTIVE This systematic review and meta-analysis was conducted to evaluate the prediction value of ML in CA for occurrence, good neurological prognosis, mortality, and the return of spontaneous circulation (ROSC), thereby providing evidence-based support for the development and refinement of applicable clinical tools. METHODS PubMed, Embase, the Cochrane Library, and Web of Science were systematically searched from their establishment until May 17, 2024. The risk of bias in all prediction models was assessed using the Prediction Model Risk of Bias Assessment Tool. RESULTS In total, 93 studies were selected, encompassing 5,729,721 in-hospital and out-of-hospital patients. The meta-analysis revealed that, for predicting CA, the pooled C-index, sensitivity, and specificity derived from the imbalanced validation dataset were 0.90 (95% CI 0.87-0.93), 0.83 (95% CI 0.79-0.87), and 0.93 (95% CI 0.88-0.96), respectively. On the basis of the balanced validation dataset, the pooled C-index, sensitivity, and specificity were 0.88 (95% CI 0.86-0.90), 0.72 (95% CI 0.49-0.95), and 0.79 (95% CI 0.68-0.91), respectively. For predicting the good cerebral performance category score 1 to 2, the pooled C-index, sensitivity, and specificity based on the validation dataset were 0.86 (95% CI 0.85-0.87), 0.72 (95% CI 0.61-0.81), and 0.79 (95% CI 0.66-0.88), respectively. For predicting CA mortality, the pooled C-index, sensitivity, and specificity based on the validation dataset were 0.85 (95% CI 0.82-0.87), 0.83 (95% CI 0.79-0.87), and 0.79 (95% CI 0.74-0.83), respectively. For predicting ROSC, the pooled C-index, sensitivity, and specificity based on the validation dataset were 0.77 (95% CI 0.74-0.80), 0.53 (95% CI 0.31-0.74), and 0.88 (95% CI 0.71-0.96), respectively. In predicting CA, the most significant modeling variables were respiratory rate, blood pressure, age, and temperature. In predicting a good cerebral performance category score 1 to 2, the most significant modeling variables in the in-hospital CA group were rhythm (shockable or nonshockable), age, medication use, and gender; the most significant modeling variables in the out-of-hospital CA group were age, rhythm (shockable or nonshockable), medication use, and ROSC. CONCLUSIONS ML represents a currently promising approach for predicting the occurrence and outcomes of CA. Therefore, in future research on CA, we may attempt to systematically update traditional scoring tools based on the superior performance of ML in specific outcomes, achieving artificial intelligence-driven enhancements. TRIAL REGISTRATION PROSPERO International Prospective Register of Systematic Reviews CRD42024518949; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=518949.
Collapse
Affiliation(s)
- Shengfeng Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangjian Guo
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shilin He
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhizhuan Chen
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianmei Chen
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Huang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiangqiang Liu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Zobeiri A, Rezaee A, Hajati F, Argha A, Alinejad-Rokny H. Post-Cardiac arrest outcome prediction using machine learning: A systematic review and meta-analysis. Int J Med Inform 2025; 193:105659. [PMID: 39481177 DOI: 10.1016/j.ijmedinf.2024.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Early and reliable prognostication in post-cardiac arrest patients remains challenging, with various factors linked to return of spontaneous circulation (ROSC), survival, and neurological results. Machine learning and deep learning models show promise in improving these predictions. This systematic review and meta-analysis evaluates how effective these approaches are in predicting clinical outcomes at different time points using structured data. METHODS This study followed PRISMA guidelines, involving a comprehensive search across PubMed, Scopus, and Web of Science databases until March 2024. Studies aimed at predicting ROSC, survival (or mortality), and neurological outcomes after cardiac arrest through the application of machine learning or deep learning techniques with structured data were included. Data extraction followed the guidelines of the CHARMS checklist, and the bias risk was evaluated using PROBAST tool. Models reporting the AUC metric with 95 % confidence intervals were incorporated into the quantitative synthesis and meta-analysis. RESULTS After extracting 2,753 initial records, 41 studies met the inclusion criteria, yielding 97 machine learning and 16 deep learning models. The pooled AUC for predicting favorable neurological outcomes (CPC 1 or 2) at hospital discharge was 0.871 (95 % CI: 0.813 - 0.928) for machine learning models and 0.877 (95 % CI: 0.831-0.924) across deep learning algorithms. For survival prediction, this value was found to be 0.837 (95 % CI: 0.757-0.916). Considerable heterogeneity and high risk of bias were observed, mainly attributable to inadequate management of missing data and the absence of calibration plots. Most studies focused on pre-hospital factors, with age, sex, and initial arrest rhythm being the most frequent features. CONCLUSION Predictive models utilizing AI-based approaches, including machine and deep learning models exhibit enhanced effectiveness compared to previous regression algorithms, but significant heterogeneity and high risk of bias limit their dependability. Evaluating state-of-the-art deep learning models tailored for tabular data and their clinical generalizability can enhance outcome prediction after cardiac arrest.
Collapse
Affiliation(s)
- Amirhosein Zobeiri
- Department of Mechatronics, School of Intelligent Systems, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Alireza Rezaee
- Department of Mechatronics, School of Intelligent Systems, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Farshid Hajati
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2350, Australia.
| | - Ahmadreza Argha
- School of Biomedical Engineering, UNSW Sydney, Randwick, NSW 2052, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, School of Biomedical Engineering, UNSW Sydney, Randwick, NSW 2052, Australia
| |
Collapse
|
4
|
Ni P, Zhang S, Hu W, Diao M. Application of multi-feature-based machine learning models to predict neurological outcomes of cardiac arrest. Resusc Plus 2024; 20:100829. [PMID: 39639943 PMCID: PMC11617783 DOI: 10.1016/j.resplu.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Cardiac arrest (CA) is a major disease burden worldwide and has a poor prognosis. Early prediction of CA outcomes helps optimize the therapeutic regimen and improve patients' neurological function. As the current guidelines recommend, many factors can be used to evaluate the neurological outcomes of CA patients. Machine learning (ML) has strong analytical abilities and fast computing speed; thus, it plays an irreplaceable role in prediction model development. An increasing number of researchers are using ML algorithms to incorporate demographics, arrest characteristics, clinical variables, biomarkers, physical examination findings, electroencephalograms, imaging, and other factors with predictive value to construct multi-feature prediction models for neurological outcomes of CA survivors. In this review, we explore the current application of ML models using multiple features to predict the neurological outcomes of CA patients. Although the outcome prediction model is still in development, it has strong potential to become a powerful tool in clinical practice.
Collapse
Affiliation(s)
- Peifeng Ni
- Department of Critical Care Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Department of Critical Care Medicine, Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Wei Hu
- Department of Critical Care Medicine, Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Mengyuan Diao
- Department of Critical Care Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Department of Critical Care Medicine, Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
5
|
Choi HJ, Lee C, Chun J, Seol R, Lee YM, Son YJ. Development of a Predictive Model for Survival Over Time in Patients With Out-of-Hospital Cardiac Arrest Using Ensemble-Based Machine Learning. Comput Inform Nurs 2024; 42:388-395. [PMID: 39248449 DOI: 10.1097/cin.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
As of now, a model for predicting the survival of patients with out-of-hospital cardiac arrest has not been established. This study aimed to develop a model for identifying predictors of survival over time in patients with out-of-hospital cardiac arrest during their stay in the emergency department, using ensemble-based machine learning. A total of 26 013 patients from the Korean nationwide out-of-hospital cardiac arrest registry were enrolled between January 1 and December 31, 2019. Our model, comprising 38 variables, was developed using the Survival Quilts model to improve predictive performance. We found that changes in important variables of patients with out-of-hospital cardiac arrest were observed 10 minutes after arrival at the emergency department. The important score of the predictors showed that the influence of patient age decreased, moving from the highest rank to the fifth. In contrast, the significance of reperfusion attempts increased, moving from the fourth to the highest rank. Our research suggests that the ensemble-based machine learning model, particularly the Survival Quilts, offers a promising approach for predicting survival in patients with out-of-hospital cardiac arrest. The Survival Quilts model may potentially assist emergency department staff in making informed decisions quickly, reducing preventable deaths.
Collapse
Affiliation(s)
- Hong-Jae Choi
- Author Affiliations: Red Cross College of Nursing (Mr Choi and Dr Son) and Department of Artificial Intelligence (Dr C. Lee), Chung-Ang University, Seoul; and Department of Preventive Medicine, College of Medicine (Drs Chun and Seol), and College of Nursing, Institute of Health Science Research (Dr Y.M. Lee), Inje University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
6
|
Toy J, Bosson N, Schlesinger S, Gausche-Hill M, Stratton S. Artificial intelligence to support out-of-hospital cardiac arrest care: A scoping review. Resusc Plus 2023; 16:100491. [PMID: 37965243 PMCID: PMC10641545 DOI: 10.1016/j.resplu.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Background Artificial intelligence (AI) has demonstrated significant potential in supporting emergency medical services personnel during out-of-hospital cardiac arrest (OHCA) care; however, the extent of research evaluating this topic is unknown. This scoping review examines the breadth of literature on the application of AI in early OHCA care. Methods We conducted a search of PubMed®, Embase, and Web of Science in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guidelines. Articles focused on non-traumatic OHCA and published prior to January 18th, 2023 were included. Studies were excluded if they did not use an AI intervention (including machine learning, deep learning, or natural language processing), or did not utilize data from the prehospital phase of care. Results Of 173 unique articles identified, 54 (31%) were included after screening. Of these studies, 15 (28%) were from the year 2022 and with an increasing trend annually starting in 2019. The majority were carried out by multinational collaborations (20/54, 38%) with additional studies from the United States (10/54, 19%), Korea (5/54, 10%), and Spain (3/54, 6%). Studies were classified into three major categories including ECG waveform classification and outcome prediction (24/54, 44%), early dispatch-level detection and outcome prediction (7/54, 13%), return of spontaneous circulation and survival outcome prediction (15/54, 20%), and other (9/54, 16%). All but one study had a retrospective design. Conclusions A small but growing body of literature exists describing the use of AI to augment early OHCA care.
Collapse
Affiliation(s)
- Jake Toy
- University of California Los Angeles, Fielding School of Public Health, 650 Charles E Young Drive South, Los Angeles, CA 90095, USA
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Nichole Bosson
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Shira Schlesinger
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Marianne Gausche-Hill
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Samuel Stratton
- University of California Los Angeles, Fielding School of Public Health, 650 Charles E Young Drive South, Los Angeles, CA 90095, USA
- Orange County California Emergency Medical Services Agency, 405 W. 5th Street, Santa Ana, CA 92705, USA
| |
Collapse
|