1
|
Findley CA, McFadden SA, Hill T, Peck MR, Quinn K, Hascup KN, Hascup ER. Sexual dimorphism, altered hippocampal glutamatergic neurotransmission, and cognitive impairment in APP knock-in mice. J Alzheimers Dis 2024; 102:491-505. [PMID: 39543985 PMCID: PMC11639043 DOI: 10.3233/jad-240795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND It is well established that glutamatergic neurotransmission plays an essential role in learning and memory. Previous studies indicate that glutamate dynamics shift with Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. OBJECTIVE In this study, we characterized hippocampal glutamatergic signaling with age and disease progression in a knock-in mouse model of AD (APPNL-F/NL--F). METHODS At 2-4 and 18+ months old, male and female APPNL/NL, APPNL-F/NL-F, and C57BL/6 mice underwent cognitive assessment using Morris water maze (MWM) and Novel Object Recognition (NOR). Then, basal and 70 mM KCl stimulus-evoked glutamate release was measured in the dentate gyrus (DG), CA3, and CA1 regions of the hippocampus using a glutamate-selective microelectrode in anesthetized mice. RESULTS Glutamate recordings support elevated stimulus-evoked glutamate release in the DG and CA3 of young APPNL-F/NL-F male mice that declined with age compared to age-matched control mice. Young female APPNL-F/NL-F mice exhibited increased glutamate clearance in the CA1 that slowed with age compared to age-matched control mice. Male and female APPNL-F/NL-F mice exhibited decreased CA1 basal glutamate levels, while males also showed depletion in the CA3. Cognitive assessment demonstrated impaired spatial cognition in aged male and female APPNL-F/NL-F mice, but only aged females displayed recognition memory deficits compared to age-matched control mice. CONCLUSIONS These findings confirm a sex-dependent hyper-to-hypoactivation glutamatergic paradigm in APPNL-F/NL-F mice. Further, data illustrate a sexually dimorphic biological aging process resulting in a more severe cognitive phenotype for female APPNL-F/NL-F mice than their male counterparts. Research outcomes mirror that of human AD pathology and provide further evidence of divergent AD pathogenesis between sexes.
Collapse
Affiliation(s)
- Caleigh A. Findley
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Samuel A. McFadden
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Tiarra Hill
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Mackenzie R. Peck
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kathleen Quinn
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Departments of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
2
|
Ueda S, Kuzuya A, Kawata M, Okawa K, Honjo C, Wada T, Matsumoto M, Goto K, Miyamoto M, Yonezawa A, Tanabe Y, Ikeda A, Kinoshita A, Takahashi R. Acute inhibition of AMPA receptors by perampanel reduces amyloid β-protein levels by suppressing β-cleavage of APP in Alzheimer's disease models. FASEB J 2023; 37:e23252. [PMID: 37850918 DOI: 10.1096/fj.202300837r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Hippocampal hyperexcitability is a promising therapeutic target to prevent Aβ deposition in AD since enhanced neuronal activity promotes presynaptic Aβ production and release. This article highlights the potential application of perampanel (PER), an AMPA receptor (AMPAR) antagonist approved for partial seizures, as a therapeutic agent for AD. Using transgenic AD mice combined with in vivo brain microdialysis and primary neurons under oligomeric Aβ-evoked neuronal hyperexcitability, the acute effects of PER on Aβ metabolism were investigated. A single oral administration of PER rapidly decreased ISF Aβ40 and Aβ42 levels in the hippocampus of J20, APP transgenic mice, without affecting the Aβ40 /Aβ42 ratio; 5 mg/kg PER resulted in declines of 20% and 31%, respectively. Moreover, PER-treated J20 manifested a marked decrease in hippocampal APP βCTF levels with increased FL-APP levels. Consistently, acute treatment of PER reduced sAPPβ levels, a direct byproduct of β-cleavage of APP, released to the medium in primary neuronal cultures under oligomeric Aβ-induced neuronal hyperexcitability. To further evaluate the effect of PER on ISF Aβ clearance, a γ-secretase inhibitor was administered to J20 1 h after PER treatment. PER did not influence the elimination of ISF Aβ, indicating that the acute effect of PER is predominantly on Aβ production. In conclusion, acute treatment of PER reduces Aβ production by suppressing β-cleavage of amyloid-β precursor protein effectively, indicating a potential effect of PER against Aβ pathology in AD.
Collapse
Affiliation(s)
- Sakiho Ueda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayoshi Kawata
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Kohei Okawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Honjo
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Wada
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Matsumoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Goto
- Department of Regulation of Neurocognitive Disorders, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Miyamoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Yasuto Tanabe
- Department of Regulation of Neurocognitive Disorders, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayae Kinoshita
- School of Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Cozzolino F, Canè L, Sacchettino L, Gatto MC, Iacobucci I, Gatta C, De Biase D, Di Napoli E, Paciello O, Avallone L, Monti M, d’Angelo D, Napolitano F. Preliminary evaluation of the proteomic profiling in the hippocampus of aged grazing cattle. Front Aging Neurosci 2023; 15:1274073. [PMID: 37965495 PMCID: PMC10641839 DOI: 10.3389/fnagi.2023.1274073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Brain aging is a physiological process associated with physical and cognitive decline; however, in both humans and animals, it can be regarded as a risk factor for neurodegenerative disorders, such as Alzheimer's disease. Among several brain regions, hippocampus appears to be more susceptible to detrimental effects of aging. Hippocampus belongs to limbic system and is mainly involved in declarative memories and context-dependent spatial-learning, whose integrity is compromised in an age-dependent manner. In the present work, taking advantage of liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics, we sought to identify proteins differentially expressed in the hippocampus of the aged grazing milk cows. Our exploratory findings showed that, out of 707 identified proteins, 112 were significantly altered in old cattle, when compared to the adult controls, and functional clusterization highlighted their involvement in myelination, synaptic vesicle, metabolism, and calcium-related biological pathways. Overall, our preliminary data pave the way for the future studies, aimed at better characterizing the role of such a subcortical brain region in the age-dependent cognitive decline, as well as identifying early aging markers to improve animal welfare and husbandry practices of dairy cattle from intensive livestock.
Collapse
Affiliation(s)
- Flora Cozzolino
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Luisa Canè
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Claudia Gatto
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
| | - Ilaria Iacobucci
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Claudia Gatta
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Evaristo Di Napoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Monti
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesco Napolitano
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Asadi MR, Abed S, Kouchakali G, Fattahi F, Sabaie H, Moslehian MS, Sharifi-Bonab M, Hussen BM, Taheri M, Ghafouri-Fard S, Rezazadeh M. Competing endogenous RNA (ceRNA) networks in Parkinson's disease: A systematic review. Front Cell Neurosci 2023; 17:1044634. [PMID: 36761351 PMCID: PMC9902725 DOI: 10.3389/fncel.2023.1044634] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Parkinson's disease (PD) is a distinctive clinical syndrome with several causes and clinical manifestations. Aside from an infectious cause, PD is a rapidly developing neurological disorder with a global rise in frequency. Notably, improved knowledge of molecular pathways and the developing novel diagnostic methods may result in better therapy for PD patients. In this regard, the amount of research on ceRNA axes is rising, highlighting the importance of these axes in PD. CeRNAs are transcripts that cross-regulate one another via competition for shared microRNAs (miRNAs). These transcripts may be either coding RNAs (mRNAs) or non-coding RNAs (ncRNAs). This research used a systematic review to assess validated loops of ceRNA in PD. The Prisma guideline was used to conduct this systematic review, which entailed systematically examining the articles of seven databases. Out of 309 entries, forty articles met all criteria for inclusion and were summarized in the appropriate table. CeRNA axes have been described through one of the shared vital components of the axes, including lncRNAs such as NEAT1, SNHG family, HOTAIR, MALAT1, XIST, circRNAs, and lincRNAs. Understanding the multiple aspects of this regulatory structure may aid in elucidating the unknown causal causes of PD and providing innovative molecular therapeutic targets and medical fields.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Fattahi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Iraq
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Wei P, Dong M, Bi Y, Chen S, Huang W, Li T, Liu B, Fu X, Yang Y. Identification and validation of a signature based on macrophage cell marker genes to predict recurrent miscarriage by integrated analysis of single-cell and bulk RNA-sequencing. Front Immunol 2022; 13:1053819. [PMID: 36439123 PMCID: PMC9692009 DOI: 10.3389/fimmu.2022.1053819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Recurrent miscarriage (RM) is a chronic, heterogeneous autoimmune disease that has serious social and personal consequences. No valid and reliable diagnostic markers or therapeutic targets for RM have been identified. Macrophages impact the innate immune system and can be used as diagnostic and prognostic markers for many diseases. We first collected 16 decidua and villi tissue samples from 5 normal patients and 3 RM patients for single-cell RNA sequencing data analysis and identified 1293 macrophage marker genes. We then screened a recurrent miscarriage cohort (GSE165004) for 186 macrophage-associated marker genes that were significantly differentially expressed between RM patients and the normal pregnancy endometrial tissues, and performed a functional enrichment analysis of differentially expressed genes. We then identified seven core genes (ACTR2, CD2AP, MBNL2, NCSTN, PUM1, RPN2, and TBC1D12) from the above differentially expressed gene group that are closely related to RM using the LASSO, Random Forest and SVM-RFE algorithms. We also used GSE26787 and our own collection of clinical specimens to further evaluate the diagnostic value of the target genes. A nomogram was constructed of the expression levels of these seven target genes to predict RM, and the ROC and calibration curves showed that our nomogram had a high diagnostic value for RM. These results suggest that ACTR2 and NCSTN may be potential targets for preventative RM treatments.
Collapse
Affiliation(s)
- Peiru Wei
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Mingyou Dong
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Molecular Pathology (For Hepatobiliary Diseases) of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yin Bi
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Saiqiong Chen
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ting Li
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoqian Fu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yihua Yang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
6
|
Ge X, Yao T, Zhang C, Wang Q, Wang X, Xu LC. Human microRNA-4433 (hsa-miR-4443) Targets 18 Genes to be a Risk Factor of Neurodegenerative Diseases. Curr Alzheimer Res 2022; 19:511-522. [PMID: 35929619 PMCID: PMC9906632 DOI: 10.2174/1567205019666220805120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease patients (AD), Huntington's disease (HD) and Parkinson's disease (PD), are common causes of morbidity, mortality, and cognitive impairment in older adults. OBJECTIVE We aimed to understand the transcriptome characteristics of the cortex of neurodegenerative diseases and to provide an insight into the target genes of differently expressed microRNAs in the occurrence and development of neurodegenerative diseases. METHODS The Limma package of R software was used to analyze GSE33000, GSE157239, GSE64977 and GSE72962 datasets to identify the differentially expressed genes (DEGs) and microRNAs in the cortex of neurodegenerative diseases. Bioinformatics methods, such as GO enrichment analysis, KEGG enrichment analysis and gene interaction network analysis, were used to explore the biological functions of DEGs. Weighted gene co-expression network analysis (WGCNA) was used to cluster DEGs into modules. RNA22, miRDB, miRNet 2.0 and TargetScan7 databases were performed to predict the target genes of microRNAs. RESULTS Among 310 Alzheimer's disease (AD) patients, 157 Huntington's disease (HD) patients and 157 non-demented control (Con) individuals, 214 co-DEGs were identified. Those co-DEGs were filtered into 2 different interaction network complexes, representing immune-related genes and synapserelated genes. The WGCNA results identified five modules: yellow, blue, green, turquoise, and brown. Most of the co-DEGs were clustered into the turquoise module and blue module, which respectively regulated synapse-related function and immune-related function. In addition, human microRNA-4433 (hsa-miR-4443), which targets 18 co-DEGs, was the only 1 co-up-regulated microRNA identified in the cortex of neurodegenerative diseases. CONCLUSION 214 DEGs and 5 modules regulate the immune-related and synapse-related function of the cortex in neurodegenerative diseases. Hsa-miR-4443 targets 18 co-DEGs and may be a potential molecular mechanism in neurodegenerative diseases' occurrence and development.
Collapse
Affiliation(s)
- Xing Ge
- Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Tingting Yao
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Chaoran Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Qingqing Wang
- Department of Nephrology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu 221000, China
| | - Xuxu Wang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China;
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; ,Address correspondence to this author at the School of Public Health, Xuzhou Medical University, Xuzhou, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China; Tel: +86-516-83262650; Fax: +86-516-83262650; E-mail:
| |
Collapse
|
7
|
Yeo XY, Cunliffe G, Ho RC, Lee SS, Jung S. Potentials of Neuropeptides as Therapeutic Agents for Neurological Diseases. Biomedicines 2022; 10:343. [PMID: 35203552 PMCID: PMC8961788 DOI: 10.3390/biomedicines10020343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent leaps in modern medicine, progress in the treatment of neurological diseases remains slow. The near impermeable blood-brain barrier (BBB) that prevents the entry of therapeutics into the brain, and the complexity of neurological processes, limits the specificity of potential therapeutics. Moreover, a lack of etiological understanding and the irreversible nature of neurological conditions have resulted in low tolerability and high failure rates towards existing small molecule-based treatments. Neuropeptides, which are small proteinaceous molecules produced by the body, either in the nervous system or the peripheral organs, modulate neurological function. Although peptide-based therapeutics originated from the treatment of metabolic diseases in the 1920s, the adoption and development of peptide drugs for neurological conditions are relatively recent. In this review, we examine the natural roles of neuropeptides in the modulation of neurological function and the development of neurological disorders. Furthermore, we highlight the potential of these proteinaceous molecules in filling gaps in current therapeutics.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
8
|
Zarbock KR, Han JH, Singh AP, Thomas SP, Bendlin BB, Denu JM, Yu JPJ, Rey FE, Ulland TK. Trimethylamine N-Oxide Reduces Neurite Density and Plaque Intensity in a Murine Model of Alzheimer's Disease. J Alzheimers Dis 2022; 90:585-597. [PMID: 36155509 PMCID: PMC9881463 DOI: 10.3233/jad-220413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common aging-associated neurodegenerative disease; nevertheless, the etiology and progression of the disease is still incompletely understood. We have previously shown that the microbially-derived metabolite trimethylamine N-oxide (TMAO) is elevated in the cerebrospinal fluid (CSF) of individuals with cognitive impairment due to AD and positively correlates with increases in CSF biomarkers for tangle, plaque, and neuronal pathology. OBJECTIVE We assessed the direct impact of TMAO on AD progression. METHODS To do so, transgenic 5XFAD mice were supplemented with TMAO for 12 weeks. Neurite density was assessed through quantitative brain microstructure imaging with neurite orientation dispersion and density imaging magnetic resonance imaging (MRI). Label-free, quantitative proteomics was performed on cortex lysates from TMAO-treated and untreated animals. Amyloid-β plaques, astrocytes, and microglia were assessed by fluorescent immunohistochemistry and synaptic protein expression was quantified via western blot. RESULTS Oral TMAO administration resulted in significantly reduced neurite density in several regions of the brain. Amyloid-β plaque mean intensity was reduced, while plaque count and size remained unaltered. Proteomics analysis revealed that TMAO treatment impacted the expression of 30 proteins (1.5-fold cut-off) in 5XFAD mice, including proteins known to influence neuronal health and amyloid-β precursor protein processing. TMAO treatment did not alter astrocyte and microglial response nor cortical synaptic protein expression. CONCLUSION These data suggest that elevated plasma TMAO impacts AD pathology via reductions in neurite density.
Collapse
Affiliation(s)
- Katie R. Zarbock
- University of Wisconsin-Madison, Department of Bacteriology
- University of Wisconsin-Madison, Department of Pathology and Laboratory Medicine
| | - Jessica H. Han
- University of Wisconsin-Madison, Department of Bacteriology
- University of Wisconsin-Madison, Department of Biomolecular Chemistry
| | - Ajay P. Singh
- University of Wisconsin-Madison, Department of Radiology, Division of Neuroradiology
| | - Sydney P. Thomas
- University of Wisconsin-Madison, Department of Biomolecular Chemistry
| | - Barbara B. Bendlin
- University of Wisconsin-Madison, Department of Medicine, Division of Geriatrics and Gerontology
- Wisconsin Alzheimer’s Disease Research Center
| | - John M. Denu
- University of Wisconsin-Madison, Department of Biomolecular Chemistry
| | - John-Paul J. Yu
- University of Wisconsin-Madison, Department of Radiology, Division of Neuroradiology
| | | | - Tyler K. Ulland
- University of Wisconsin-Madison, Department of Pathology and Laboratory Medicine
| |
Collapse
|
9
|
Zhang Y, Hu Y, Han Z, Geng Y, Xia Z, Zhou Y, Wang Z, Wang Y, Kong E, Wang X, Jia J, Zhang H. Cattle Encephalon Glycoside and Ignotin Ameliorate Palmitoylation of PSD-95 and Enhance Expression of Synaptic Proteins in the Frontal Cortex of a APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2022; 88:141-154. [PMID: 35570485 DOI: 10.3233/jad-220009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Synaptic abnormalities in synaptic proteins are the initial hallmarks of Alzheimer's disease (AD). The higher level of palmitoylation of synaptic proteins was closely associated with amyloid-β (Aβ) in AD. Cattle encephalon glycoside and ignotin (CEGI) have been shown to act as multitarget neurotrophic agents in APPswe/PS1dE9 (APP/PS1) transgenic AD mice. However, it is not clear whether CEGI can influence Aβ deposition or whether it does so by the regulation of protein palmitoylation and expression of synaptic proteins in transgenic AD mice. OBJECTIVE In this study, we investigated the roles of CEGI in modulating postsynaptic density protein 95 (PSD-95) palmitoylation, Aβ pathologies, and expression of synaptic-associated proteins in APP/PS1 mice. METHODS Five-month-old APP/PS1 mice were treated intraperitoneally with 6.6 mL/kg of CEGI for 6 weeks. At the end of the treatment period, APP/PS1 mice were subjected to Morris water maze to test their cognitive functions. Acyl-biotinyl exchange (ABE) for PSD-95 palmitoylation, immunofluorescent staining for expression of PSD-95, N-methyl-D-aspartic acid receptor subunit 2B (NR2B), and synaptotagmin 1 (SYT1) were assessed in mouse brain sections. RESULTS CEGI treatment in APP/PS1 mice significantly reduced Aβ deposition, relieved memory deficits, and decreased PSD-95 palmitoylation while markedly increasing the expression of PSD-95, NR2B, and SYT1 in the frontal cortex. There was a significant correlation between Aβ expression and PSD-95 palmitoylation in APP/PS1 mice. CONCLUSION Our findings demonstrate that CEGI improved AD-like neuropathology, possibly by inhibiting PSD-95 palmitoylation, improving learning memory, and enhancing expression of synaptic-associated proteins, representing a potential therapy for AD treatment.
Collapse
Affiliation(s)
- Yinghan Zhang
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
- Department of Neurology, Xuchang Hospital, Xuchang, Henan, China
| | - Yazhuo Hu
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhitao Han
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Geng
- Department of Neurology, The 3rd Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zheng Xia
- Department of Zhantansi, Medical District of Central Beijing, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yongsheng Zhou
- Department of Neurology, Xuchang Hospital, Xuchang, Henan, China
| | - Zhenfu Wang
- Department of Neurology, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuanyuan Wang
- Department of Neurology, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoning Wang
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jianjun Jia
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Honghong Zhang
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
10
|
Haytural H, Benfeitas R, Schedin-Weiss S, Bereczki E, Rezeli M, Unwin RD, Wang X, Dammer EB, Johnson ECB, Seyfried NT, Winblad B, Tijms BM, Visser PJ, Frykman S, Tjernberg LO. Insights into the changes in the proteome of Alzheimer disease elucidated by a meta-analysis. Sci Data 2021; 8:312. [PMID: 34862388 PMCID: PMC8642431 DOI: 10.1038/s41597-021-01090-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
Mass spectrometry (MS)-based proteomics is a powerful tool to explore pathogenic changes of a disease in an unbiased manner and has been used extensively in Alzheimer disease (AD) research. Here, by performing a meta-analysis of high-quality proteomic studies, we address which pathological changes are observed consistently and therefore most likely are of great importance for AD pathogenesis. We retrieved datasets, comprising a total of 21,588 distinct proteins identified across 857 postmortem human samples, from ten studies using labeled or label-free MS approaches. Our meta-analysis findings showed significant alterations of 757 and 1,195 proteins in AD in the labeled and label-free datasets, respectively. Only 33 proteins, some of which were associated with synaptic signaling, had the same directional change across the individual studies. However, despite alterations in individual proteins being different between the labeled and the label-free datasets, several pathways related to synaptic signaling, oxidative phosphorylation, immune response and extracellular matrix were commonly dysregulated in AD. These pathways represent robust changes in the human AD brain and warrant further investigation.
Collapse
Affiliation(s)
- Hazal Haytural
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, S-10691, Stockholm, Sweden
| | - Sophia Schedin-Weiss
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Melinda Rezeli
- Division of Clinical Protein Science & Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Richard D Unwin
- Stoller Biomarker Discovery Centre, and Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, CityLabs 1.0, Nelson Street, Manchester, M13 9NQ, UK
| | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
- Karolinska University Hospital, Theme of Inflammation and Aging, Huddinge, Sweden
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Susanne Frykman
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Lars O Tjernberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
11
|
Shen Y, Cui X, Hu Y, Zhang Z, Zhang Z. LncRNA-MIAT regulates the growth of SHSY5Y cells by regulating the miR-34-5p-SYT1 axis and exerts a neuroprotective effect in a mouse model of Parkinson's disease. Am J Transl Res 2021; 13:9993-10013. [PMID: 34650678 PMCID: PMC8507009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
To examine the neuroprotective roles of lncRNA-MIAT in Parkinson's disease (PD). RNA sequencing expression profiles were utilized to screen the dysregulated lncRNAs in patients with PD and to explore the underlying molecular mechanisms by which the lncRNAs regulate the pathogenesis of PD. 6-hydroxydopamine-induced SH-SY5Y cell lines and a PD mouse model were used to prove how the overexpressing or knocking-down of MIAT produce a marked effect in both in vitro and in vivo experiments. Subsequently, the subcellular localization of MIAT was detected via RNA fluorescence in situ hybridization (FISH) assays. Quantitative PCR, as well as western blotting, were used to determine the expression levels of the associated genes and proteins. We utilized Cell Counting Kit-8 (CCK8) assays to measure the viability of the cells, and the apoptotic rate was determined using Annexin V-FITC/PI double staining. The expressions of tyrosine hydroxylase (TH) and Parkin were quantified in the substantia nigra using immunohistochemical staining. Also, TUNEL staining was performed to visualize the apoptotic cells in the substantia nigra. Compared with the normal rats, the downregulation of MIAT was observed in the cortex, hippocampus, substantia nigra, and striatum of the PD rats. Overexpression of MIAT exhibited a neuroprotective effect on the SH-SY5Y cells. Through RNA-sequencing of the PD mice treated with an overexpression of MIAT and through a differentially expressed genes analysis, it was hypothesized that MIAT could upregulate the expression of synaptotagmin-1 (SYT1) through sponging of miR-34-5p. Interactions between MIAT, miR-34-5p, and SYT1 were confirmed using RIP and dual-luciferase reporter assays. At the same time, the MIAT overexpression group exhibited elevated Parkin and TH protein levels, increased cell viability but a decreased apoptosis rate of the SH-SY5Y cells in contrast with the negative control (NC) group. In vivo, compared with the NC group, the overexpression of MIAT resulted in an increase in the positive rates of Parkin and TH, and the apoptosis was decreased in the PD mice. The behavioral test results showed that the motor coordination and autonomous activity of the mice were enhanced in the MIAT overexpression group compared with the NC group. LncRNA-MIAT regulates the growth of SHSY5Y cells by sponging miR-34-5p which targets SYT1 and exerts a neuroprotective effect in a mouse model of PD.
Collapse
Affiliation(s)
- Yue’e Shen
- Department of Neurology, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Xintao Cui
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Yuhang Hu
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Zhizhuang Zhang
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Zhenyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| |
Collapse
|
12
|
A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells. SENSORS 2020; 20:s20215980. [PMID: 33105735 PMCID: PMC7660074 DOI: 10.3390/s20215980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Presenilin (PS)/γ-secretase plays a pivotal role in essential cellular events via proteolytic processing of transmembrane proteins that include APP and Notch receptors. However, how PS/γ-secretase activity is spatiotemporally regulated by other molecular and cellular factors and how the changes in PS/γ-secretase activity influence signaling pathways in live cells are poorly understood. These questions could be addressed by engineering a new tool that enables multiplexed imaging of PS/γ-secretase activity and additional cellular events in real-time. Here, we report the development of a near-infrared (NIR) FRET-based PS/γ-secretase biosensor, C99 720-670 probe, which incorporates an immediate PS/γ-secretase substrate APP C99 with miRFP670 and miRFP720 as the donor and acceptor fluorescent proteins, respectively. Extensive validation demonstrates that the C99 720-670 biosensor enables quantitative monitoring of endogenous PS/γ-secretase activity on a cell-by-cell basis in live cells (720/670 ratio: 2.47 ± 0.66 (vehicle) vs. 3.02 ± 1.17 (DAPT), ** p < 0.01). Importantly, the C99 720-670 and the previously developed APP C99 YPet-Turquoise-GL (C99 Y-T) biosensors simultaneously report PS/γ-secretase activity. This evidences the compatibility of the C99 720-670 biosensor with cyan (CFP)-yellow fluorescent protein (YFP)-based FRET biosensors for reporting other essential cellular events. Multiplexed imaging using the novel NIR biosensor C99 720-670 would open a new avenue to better understand the regulation and consequences of changes in PS/γ-secretase activity.
Collapse
|
13
|
Piras IS, Krate J, Delvaux E, Nolz J, Mastroeni DF, Persico AM, Jepsen WM, Beach TG, Huentelman MJ, Coleman PD. Transcriptome Changes in the Alzheimer's Disease Middle Temporal Gyrus: Importance of RNA Metabolism and Mitochondria-Associated Membrane Genes. J Alzheimers Dis 2020; 70:691-713. [PMID: 31256118 DOI: 10.3233/jad-181113] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We used Illumina Human HT-12 v4 arrays to compare RNA expression of middle temporal gyrus (MTG; BA21) in Alzheimer's disease (AD = 97) and non-demented controls (ND = 98). A total of 938 transcripts were highly differentially expressed (adj p < 0.01; log2 FC ≥ |0.500|, with 411 overexpressed and 527 underexpressed in AD. Our results correlated with expression profiling in neurons from AD and ND obtained by laser capture microscopy in MTG from an independent dataset (log2 FC correlation: r = 0.504; p = 2.2e-16). Additionally, selected effects were validated by qPCR. ANOVA analysis yielded no difference between genders in response to AD, but some gender specific genes were detected (e.g., IL8 and AGRN in males, and HSPH1 and GRM1 in females). Several transcripts were associated with Braak staging (e.g., AEBP1 and DNALI1), antemortem MMSE (e.g., AEBP1 and GFAP), and tangle density (e.g., RNU1G2, and DNALI1). At the pathway level, we detected enrichment of synaptic vesicle processes and GABAergic transmission genes. Finally, applying the Weighted Correlation Network Analysis, we identified four expression modules enriched for neuronal and synaptic genes, mitochondria-associated membrane, chemical stimulus and olfactory receptor and non-coding RNA metabolism genes. Our results represent an extensive description of MTG mRNA profiling in a large sample of AD and ND. These data provide a list of genes associated with AD, and correlated to neurofibrillary tangles density. In addition, these data emphasize the importance of mitochondrial membranes and transcripts related to olfactory receptors in AD.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jonida Krate
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Elaine Delvaux
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Jennifer Nolz
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Diego F Mastroeni
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, "Gaetano Martino" University Hospital, University of Messina, Messina, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Wayne M Jepsen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, US
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Paul D Coleman
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
14
|
Barthet G, Mulle C. Presynaptic failure in Alzheimer's disease. Prog Neurobiol 2020; 194:101801. [PMID: 32428558 DOI: 10.1016/j.pneurobio.2020.101801] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Synaptic loss is the best correlate of cognitive deficits in Alzheimer's disease (AD). Extensive experimental evidence also indicates alterations of synaptic properties at the early stages of disease progression, before synapse loss and neuronal degeneration. A majority of studies in mouse models of AD have focused on post-synaptic mechanisms, including impairment of long-term plasticity, spine structure and glutamate receptor-mediated transmission. Here we review the literature indicating that the synaptic pathology in AD includes a strong presynaptic component. We describe the evidence indicating presynaptic physiological functions of the major molecular players in AD. These include the amyloid precursor protein (APP) and the two presenilin (PS) paralogs PS1 or PS2, genetically linked to the early-onset form of AD, in addition to tau which accumulates in a pathological form in the AD brain. Three main mechanisms participating in presynaptic functions are highlighted. APP fragments bind to presynaptic receptors (e.g. nAChRs and GABAB receptors), presenilins control Ca2+ homeostasis and Ca2+-sensors, and tau regulates the localization of presynaptic molecules and synaptic vesicles. We then discuss how impairment of these presynaptic physiological functions can explain or forecast the hallmarks of synaptic impairment and associated dysfunction of neuronal circuits in AD. Beyond the physiological roles of the AD-related proteins, studies in AD brains also support preferential presynaptic alteration. This review features presynaptic failure as a strong component of pathological mechanisms in AD.
Collapse
Affiliation(s)
- Gael Barthet
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, France.
| |
Collapse
|
15
|
Miyamoto M, Kuzuya A, Noda Y, Ueda S, Asada-Utsugi M, Ito S, Fukusumi Y, Kawachi H, Takahashi R, Kinoshita A. Synaptic Vesicle Protein 2B Negatively Regulates the Amyloidogenic Processing of AβPP as a Novel Interaction Partner of BACE1. J Alzheimers Dis 2020; 75:173-185. [DOI: 10.3233/jad-200071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Masakazu Miyamoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuha Noda
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sakiho Ueda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Megumi Asada-Utsugi
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayae Kinoshita
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Tan YX, Hong Y, Jiang S, Lu MN, Li S, Chen B, Zhang L, Hu T, Mao R, Mei R, Xiyang YB. MicroRNA‑449a regulates the progression of brain aging by targeting SCN2B in SAMP8 mice. Int J Mol Med 2020; 45:1091-1102. [PMID: 32124967 PMCID: PMC7053848 DOI: 10.3892/ijmm.2020.4502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 12/23/2022] Open
Abstract
Our previous study demonstrated that the expression of sodium channel voltage-gated beta 2 (SCN2B) increased with aging in senescence-accelerated mouse prone 8 (SAMP8) mice, and was identified to be associated with a decline in learning and memory, while the underlying mechanism is unclear. In the present study, multiple differentially expressed miRNAs, which may be involved in the process of aging by regulating target genes, were identified in the prefrontal cortex and hippocampus of SAMP8 mice though miRNA microarray analysis. Using bioinformatics prediction, SCN2B was identified to be one of the potential target genes of miR-449a, which was downregulated in the hippocampus. Previous studies demonstrated that miR-449a is involved in the occurrence and progression of aging by regulating a variety of target genes. Therefore, it was hypothesized that miR-449a may be involved in the process of brain aging by targeting SCN2B. To verify this hypothesis, the following experiments were conducted: A reverse transcription-quantitative polymerase chain reaction assay revealed that the expression level of miR-449a was significantly decreased in the prefrontal cortex and hippocampus of 12-month old SAMP8 mice; a dual-luciferase reporter assay verified that miR-449a regulated SCN2B expression by binding to the 3′-UTR 'seed region'; an anti-Ago co-immunoprecipitation combined with Affymetrix micro-array analyses demonstrated that the target mRNA highly enriched with Ago-miRNPs was confirmed to be SCN2B. Finally, overexpression of miR-449a or inhibition of SCN2B promoted the extension of hippocampal neurons in vitro. The results of the present study suggested that miR-449a was downregulated in the prefrontal cortex and hippocampus of SAMP8 mice and may regulate the process of brain aging by targeting SCN2B.
Collapse
Affiliation(s)
- Ya-Xin Tan
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ying Hong
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Shui Jiang
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Min-Nan Lu
- Science and Technology Achievement Incubation Center, Kunming, Yunnan 650500, P.R. China
| | - Shan Li
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Bo Chen
- Science and Technology Achievement Incubation Center, Kunming, Yunnan 650500, P.R. China
| | - Li Zhang
- Editorial Department of Journal of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Tao Hu
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Rui Mao
- School of Stomatology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Yan-Bin Xiyang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
17
|
Maesako M, Zoltowska KM, Berezovska O. Synapsin 1 promotes Aβ generation via BACE1 modulation. PLoS One 2019; 14:e0226368. [PMID: 31830091 PMCID: PMC6907790 DOI: 10.1371/journal.pone.0226368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
It has been revealed that β-amyloid (Aβ) is generated and released from the presynaptic terminals in activity-dependent manner. However, molecules modulating the presynaptic Aβ generation remain elusive. Here we test the hypothesis that Synapsin 1 (Syn1) may acts as a modulator of the Aβ production. Using biochemical and Förster resonance energy transfer (FRET)-based imaging approaches we have found that Syn1 knock down decreases, whereas (over)expression of Syn1 in cells increases the Aβ levels. Mechanistically, Syn1 does not seem to affect the activity of Presenilin 1 (PS1)/γ-secretase, PS1 conformation, or the proximity between PS1 and amyloid precursor protein (APP). However, we found that Syn1 is involved in up-regulation of the β-site APP cleaving enzyme 1 (BACE1)/β-secretase activity and increases the APP/BACE1 interaction. Therefore, we conclude that Syn1 may promote Aβ production via the modulation of BACE1.
Collapse
Affiliation(s)
- Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Katarzyna M. Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Presenilin 1 increases association with synaptotagmin 1 during normal aging. Neurobiol Aging 2019; 86:156-161. [PMID: 31864759 PMCID: PMC7325863 DOI: 10.1016/j.neurobiolaging.2019.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/05/2022]
Abstract
Presenilin 1 (PS1), the catalytic component of gamma secretase, associates with synaptotagmin 1 (Syt-1). This interaction is decreased in the brains of patients with sporadic Alzheimer’s disease. However, it remains unclear how this interaction changes during normal aging. Because aging is a risk factor for Alzheimer’s disease, we sought to identify changes in PS1 and Syt-1 association during aging in primary neurons in vitro and mouse brain sections ex vivo. We also tested the effect of aging on the calcium dependence of the interaction by treating neurons aged in vitro with KCl. We found that PS1 and Syt-1 increase their association with age, an effect that is more robust in neuronal processes than cell bodies. Treatment with KCl triggered the interaction in both young and old neurons. Baseline calcium levels and calcium in ux in response to KCl treatment were significantly higher in older neurons, which can partially explain the increase in PS1/Syt-1 binding with age. These results suggest a compensatory mechanism during normal aging to offset detrimental age-associated effects.
Collapse
|
19
|
Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity. Nat Commun 2018; 9:4780. [PMID: 30429473 PMCID: PMC6235831 DOI: 10.1038/s41467-018-06813-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
Mutations of the intramembrane protease presenilin (PS) or of its main substrate, the amyloid precursor protein (APP), cause early-onset form of Alzheimer disease. PS and APP interact with proteins of the neurotransmitter release machinery without identified functional consequences. Here we report that genetic deletion of PS markedly decreases the presynaptic levels of the Ca2+ sensor synaptotagmin-7 (Syt7) leading to impaired synaptic facilitation and replenishment of synaptic vesicles. The regulation of Syt7 expression by PS occurs post-transcriptionally and depends on γ-secretase proteolytic activity. It requires the substrate APP as revealed by the combined genetic invalidation of APP and PS1, and in particular the APP-Cterminal fragments which interact with Syt7 and accumulate in synaptic terminals under pharmacological or genetic inhibition of γ-secretase. Thus, we uncover a role of PS in presynaptic mechanisms, through APP cleavage and regulation of Syt7, that highlights aberrant synaptic vesicle processing as a possible new pathway in AD. Mutations in presenilin, which cleaves amyloid precursor protein, cause familial Alzheimer’s Disease. Here, the authors show that loss of presenilin leads to loss of synaptotagmin 7, leading to impaired presynaptic release.
Collapse
|
20
|
Novel interaction between Alzheimer's disease-related protein presenilin 1 and glutamate transporter 1. Sci Rep 2018; 8:8718. [PMID: 29880815 PMCID: PMC5992168 DOI: 10.1038/s41598-018-26888-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuronal hyperactivity is one of the earliest events observed in Alzheimer’s disease (AD). Moreover, alterations in the expression of glutamate transporters have been reported to exacerbate amyloid pathology and cognitive deficits in transgenic AD mouse models. However, the molecular links between these pathophysiological changes remain largely unknown. Here, we report novel interaction between presenilin 1 (PS1), the catalytic component of the amyloid precursor protein-processing enzyme, γ-secretase, and a major glutamate transporter-1 (GLT-1). Our data demonstrate that the interaction occurs between PS1 and GLT-1 expressed at their endogenous levels in vivo and in vitro, takes place in both neurons and astrocytes, and is independent of the PS1 autoproteolysis and γ-secretase activity. This intriguing discovery may shed light on the molecular crosstalk between the proteins linked to the maintenance of glutamate homeostasis and Aβ pathology.
Collapse
|
21
|
Sakai M, Ueda S, Daito T, Asada-Utsugi M, Komatsu Y, Kinoshita A, Maki T, Kuzuya A, Takahashi R, Makino A, Tomonaga K. Degradation of amyloid β peptide by neprilysin expressed from Borna disease virus vector. Microbiol Immunol 2018; 62:467-472. [PMID: 29771464 DOI: 10.1111/1348-0421.12602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/24/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
Abstract
Accumulation of amyloid β (Aβ40 and Aβ42) in the brain is a characteristic of Alzheimer's disease (AD). Because neprilysin (NEP) is a major Aβ-degrading enzyme, NEP delivery in the brain is a promising gene therapy for AD. Borna disease virus (BoDV) vector enables long-term transduction of foreign genes in the central nerve system. Here, we evaluated the proteolytic ability of NEP transduced by the BoDV vector and found that the amounts of Aβ40 and Aβ42 significantly decreased, which suggests that NEP expressed from the BoDV vector is functional to degrade Aβ.
Collapse
Affiliation(s)
- Madoka Sakai
- Laboratory of RNA viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Sakiho Ueda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takuji Daito
- Research Center for Zoonosis Control, Biologics Development, Hokkaido University, Sapporo 001-0020, Japan
| | - Megumi Asada-Utsugi
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yumiko Komatsu
- Laboratory of RNA viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- K-CONNEX, Kyoto University, Kyoto 606-8507, Japan
| | - Ayae Kinoshita
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akiko Makino
- Laboratory of RNA viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
22
|
Balietti M, Fattorini G, Pugliese A, Marcotulli D, Bragina L, Conti F. Two Behavioral Tests Allow a Better Correlation Between Cognitive Function and Expression of Synaptic Proteins. Front Aging Neurosci 2018; 10:91. [PMID: 29670520 PMCID: PMC5893842 DOI: 10.3389/fnagi.2018.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular substrate of age-associated cognitive decline (AACD) is still elusive. Evidence indicates that AACD is related to synaptic impairment in hippocampus, but different hippocampal regions play different roles, with the dorsal hippocampus (DH) associated to spatial learning, and the ventral hippocampus (VH) crucial for emotionality. If changes in hippocampal function contributes to AACD, this contribution may be reflected in alterations of synaptic protein levels. A commonly used approach to investigate this issue is western blotting. When this technique is applied to the entire hippocampus and the cognitive impairment is evaluated by a single task, changes in expression of a protein might undergo a "dilution effect", as they may occur only in a given hippocampal region. We show that two behavioral tests yield more accurate results than one test in evaluating the function of the whole rat hippocampus by studying the expression of synaptotagmin 1 (SYT1), a vesicular protein whose expression in aged hippocampus is reportedly inconsistent. Analysis of SYT1 levels in the whole hippocampus of rats selected by the Morris water maze (MWM) test only failed to highlight a difference, whereas analysis of SYT1 levels in the whole hippocampus of rats categorized by both the MWM and the step-through passive avoidance (STPA) tests demonstrated a significant increase of SYT1 level in impaired rats. These findings, besides showing that SYT1 increases in impaired aged rats, suggest that using the whole hippocampus in blotting studies may prevent false negative results only if animals are categorized with tests exploring both DH and VH.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, INRCA, IRCCS, Ancona, Italy
| | - Giorgia Fattorini
- Center for Neurobiology of Aging, INRCA, IRCCS, Ancona, Italy.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Arianna Pugliese
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Daniele Marcotulli
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Bragina
- Center for Neurobiology of Aging, INRCA, IRCCS, Ancona, Italy.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA, IRCCS, Ancona, Italy.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy.,Fondazione di Medicina Molecolare, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
23
|
Dai MH, Zheng H, Zeng LD, Zhang Y. The genes associated with early-onset Alzheimer's disease. Oncotarget 2018; 9:15132-15143. [PMID: 29599933 PMCID: PMC5871104 DOI: 10.18632/oncotarget.23738] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/14/2017] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the most cases of dementia, which is characterized by the deposition of dense plaques of amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. The two main types of AD can be classified as early-onset AD (EOAD, onset < 65 years) and late-onset AD (LOAD, onset ≥ 65 years). Evidence from family and twin studies indicate that genetic factors are estimated to play a role in at least 80% of AD cases. The first milestone with linkage analysis revealed the mutations in APP, PSEN1, and PSEN2 genes that cause EOAD. But pathogenic mutations in these three genes can only explain a small fraction of EOAD families. The additional disease-causing genes have not yet been identified. This review provides an overview of the genetic basis of EOAD and the relationship between the functions of these risk genes and the neuropathologic features of AD. A better understanding of genetic mechanisms underlying EOAD pathogenesis and the potentially molecular mechanisms of neurodegeneration will lead to the development of effective diagnosis and treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Meng-Hui Dai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling-Dan Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
24
|
Dursun E, Gezen-Ak D. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS One 2017; 12:e0188605. [PMID: 29176823 PMCID: PMC5703467 DOI: 10.1371/journal.pone.0188605] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Our recent study indicated that vitamin D and its receptors are important parts of the amyloid processing pathway in neurons. Yet the role of vitamin D receptor (VDR) in amyloid pathogenesis is complex and all regulations over the production of amyloid beta cannot be explained solely with the transcriptional regulatory properties of VDR. Given that we hypothesized that VDR might exist on the neuronal plasma membrane in close proximity with amyloid precursor protein (APP) and secretase complexes. The present study primarily focused on the localization of VDR in neurons and its interaction with amyloid pathology-related proteins. The localization of VDR on neuronal membranes and its co-localization with target proteins were investigated with cell surface staining followed by immunofluorescence labelling. The FpClass was used for protein-protein interaction prediction. Our results demonstrated the localization of VDR on the neuronal plasma membrane and the co-localization of VDR and APP or ADAM10 or Nicastrin and limited co-localization of VDR and PS1. E-cadherin interaction with APP or the γ-secretase complex may involve NOTCH1, NUMB, or FHL2, according to FpClass. This suggested complex might also include VDR, which greatly contributes to Ca+2 hemostasis with its ligand vitamin D. Consequently, we suggested that VDR might be a member of this complex also with its own non-genomic action and that it can regulate the APP processing pathway in this way in neurons.
Collapse
Affiliation(s)
- Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
25
|
Raven F, Ward JF, Zoltowska KM, Wan Y, Bylykbashi E, Miller SJ, Shen X, Choi SH, Rynearson KD, Berezovska O, Wagner SL, Tanzi RE, Zhang C. Soluble Gamma-secretase Modulators Attenuate Alzheimer's β-amyloid Pathology and Induce Conformational Changes in Presenilin 1. EBioMedicine 2017; 24:93-101. [PMID: 28919280 PMCID: PMC5652037 DOI: 10.1016/j.ebiom.2017.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022] Open
Abstract
A central pathogenic event of Alzheimer's disease (AD) is the accumulation of the Aβ42 peptide, which is generated from amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. We have developed a class of soluble 2-aminothiazole γ-secretase modulators (SGSMs) that preferentially decreases Aβ42 levels. However, the effects of SGSMs in AD animals and cells expressing familial AD mutations, as well as the mechanism of γ-secretase modulation remain largely unknown. Here, a representative of this SGSM scaffold, SGSM-36, was investigated using animals and cells expressing FAD mutations. SGSM-36 preferentially reduced Aβ42 levels without affecting either α- and β-secretase processing of APP nor Notch processing. Furthermore, an allosteric site was identified within the γ-secretase complex that allowed access of SGSM-36 using cell-based, fluorescence lifetime imaging microscopy analysis. Collectively, these studies provide mechanistic insights regarding SGSMs of this class and reinforce their therapeutic potential in AD. A novel class soluble 2-aminothiazole γ-secretase modulators (SGSMs) are characterized as potential therapeutics for AD. A representative compound, SGSM-36, preferentially decreases Aβ42 levels using animal and cell models of AD. An allosteric site was identified within γ-secretase to be accessible by SGSM-36.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and there is currently no treatment to slow or halt disease progression. Considerable evidence shows that the primary pathological event leading to AD is the production and accumulation of Aβ42 peptide. We have developed a class of soluble 2-aminothiazole γ-secretase modulators (SGSMs) that preferentially decreases Aβ42 levels. The presented studies have primarily elucidated the mechanisms by which our SGSMs decrease Aβ42 levels and attenuate β-amyloid pathology. The results of these experiments will be useful toward the ongoing efforts toward the development of an effective therapy for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Frank Raven
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Joseph F Ward
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Katarzyna M Zoltowska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Yu Wan
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, PR China
| | - Enjana Bylykbashi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Xunuo Shen
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093-0624, USA
| | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093-0624, USA; Research Biologist, VA San Diego Healthcare System, La Jolla, CA, 92161, United States.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA.
| | - Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129-2060, USA.
| |
Collapse
|
26
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
27
|
Tang X, Xie C, Wang Y, Wang X. Localization of Rab3A-binding site on C2A domain of synaptotagmin I to reveal its regulatory mechanism. Int J Biol Macromol 2017; 96:736-742. [DOI: 10.1016/j.ijbiomac.2016.12.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
28
|
Zoltowska KM, Maesako M, Lushnikova I, Takeda S, Keller LJ, Skibo G, Hyman BT, Berezovska O. Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production. Mol Neurodegener 2017; 12:15. [PMID: 28193235 PMCID: PMC5307796 DOI: 10.1186/s13024-017-0159-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD)-linked protein, presenilin 1 (PS1), is present at the synapse, and the knock-out of presenilin in mice leads to synaptic dysfunction. On the other hand, synaptic activity was shown to influence PS1-dependent generation of distinct amyloid β (Aβ) species. However, the precise nature of these regulations remains unclear. The current study reveals novel role of PS1 at the synapse, and deciphers how PS1 and synaptic vesicle-associated protein, synaptotagmin 1 (Syt1) modulate each other functions in neurons via direct activity-triggered interaction. Additionally, the therapeutic potential of fostering PS1-Syt1 binding is investigated as a synapse-specific strategy for AD prevention. Methods PS1-based cell-permeable peptide targeting PS1-Syt1 binding site was designed to inhibit PS1-Syt1 interaction in neurons. PS1 conformation, synaptic vesicle exocytosis and trafficking were assayed by fluorescence lifetime imaging microscopy (FLIM), glutamate release/synaptopHluorin assay, and fluorescence recovery after photobleaching, respectively. Syt1 level and interaction with PS1 in control and sporadic AD brains were determined by immunohistochemistry and FLIM. AAV-mediated delivery of Syt1 into mouse hippocampi was used to investigate the therapeutic potential of strengthening PS1-Syt1 binding in vivo. Statistical significance was determined using two-tailed unpaired Student’s t-test, Mann-Whitney’s U-test or two-way ANOVA followed by a Bonferroni’s post-test. Results We demonstrate that targeted inhibition of the PS1-Syt1 binding in neurons, without changing the proteins’ expression level, triggers “pathogenic” conformational shift of PS1, and consequent increase in the Aβ42/40 ratio. Moreover, our data indicate that PS1, by binding directly to Syt1, regulates synaptic vesicle trafficking and facilitates exocytosis and neurotransmitter release. Analysis of human brain tissue revealed that not only Syt1 levels but also interactions between remaining Syt1 and PS1 are diminished in sporadic AD. On the other hand, overexpression of Syt1 in mouse hippocampi was found to potentiate PS1-Syt1 binding and promote “protective” PS1 conformation. Conclusions The study reports novel functions of PS1 and Syt1 at the synapse, and demonstrates the importance of PS1-Syt1 binding for exocytosis and safeguarding PS1 conformation. It suggests that reduction in the Syt1 level and PS1-Syt1 interactions in AD brain may present molecular underpinning of the pathogenic PS1 conformation, increased Aβ42/40 ratio, and impaired exocytosis. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0159-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Marta Zoltowska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Iryna Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024, Kyiv, Ukraine
| | - Shuko Takeda
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Laura J Keller
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Galina Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024, Kyiv, Ukraine
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA.
| |
Collapse
|
29
|
Guo T, Duan Z, Chen J, Xie C, Wang Y, Chen P, Wang X. Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I. PeerJ 2017; 5:e2973. [PMID: 28194317 PMCID: PMC5301975 DOI: 10.7717/peerj.2973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/05/2022] Open
Abstract
Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and 64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to both of them. Compared with C2A, C2B could bind to many more proteins particularly those involved in synaptic transmission and metabolic regulation. Functional analysis indicated that Syt I may exert impacts by interacting with other proteins on multiple cellular processes, including vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis, transmembrane transport and structure formation, etc. These results demonstrate that the functional diversity of Syt I is higher than previously expected, that its two domains may mediate the same and different cellular processes cooperatively or independently, and that C2B domain may play even more important roles than C2A in the functioning of Syt I. This work not only further deepened our understanding of the functional diversity of Syt I and the functional differences between its two C2 domains, but also provided important clues for the further related researches.
Collapse
Affiliation(s)
- Tianyao Guo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| |
Collapse
|
30
|
Maesako M, Horlacher J, Zoltowska KM, Kastanenka KV, Kara E, Svirsky S, Keller LJ, Li X, Hyman BT, Bacskai BJ, Berezovska O. Pathogenic PS1 phosphorylation at Ser367. eLife 2017; 6. [PMID: 28132667 PMCID: PMC5279945 DOI: 10.7554/elife.19720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its ‘phosphorylated’ and ‘dephosphorylated’ states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer’s disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic ‘closed’ conformation, and resulting increase in the Aβ42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment. DOI:http://dx.doi.org/10.7554/eLife.19720.001 Alzheimer’s disease is a widely recognised disorder caused by the progressive deterioration and death of brain cells. A key feature of the disease is the formation of structures called plaques in the brain. Plaques occur when many copies of a molecule known as amyloid beta stick together outside of the brain cells. Healthy brains also produce amyloid beta but it is in a different form, which cannot form plaques. One in twenty people with Alzheimer’s disease have a family history of the disease. Of these, many are linked to changes in a gene that produces a protein called Presenilin 1 (or PS1 for short). Cells need PS1 to make amyloid beta and the altered versions of PS1 produce the type of amyloid beta that causes Alzheimer’s disease. Yet, in cases that do not run in families, the gene for PS1 is unchanged but the PS1 protein still produces the form of amyloid beta that is linked to Alzheimer’s disease. Maesako, Horlacher et al. wanted to find out how seemingly healthy PS1 proteins can be made to produce plaque-forming amyloid betas. Studies of PS1 from mice revealed that small chemical modifications, called phosphate groups, could be attached to PS1 in a process called phosphorylation. Modified PS1 proteins produce harmful amyloid betas and removing the modifications was enough to make PS1 behave normally again. Maesako, Horlacher et al. found three points in the PS1 protein where phosphorylation could change the behaviour of the protein, the most important one is a site called Ser367. Further investigation showed that an enzyme called Protein Kinase A (PKA) phosphorylates PS1; this enzyme is also able to attach phosphate groups to many different proteins. Maesako, Horlacher et al. went on to show that PS1 is phosphorylated in samples from people with Alzheimer’s disease, suggesting that this is a plausible cause for some cases of the disease. Finding a way to prevent phosphorylation or remove phosphate groups from PS1 could be the first step towards treating these cases of Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.19720.002
Collapse
Affiliation(s)
- Masato Maesako
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Jana Horlacher
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Neurology, University of Ulm, Ulm, Germany
| | - Katarzyna M Zoltowska
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Ksenia V Kastanenka
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Eleanna Kara
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Sarah Svirsky
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Laura J Keller
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Xuejing Li
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Bradley T Hyman
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Brian J Bacskai
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Oksana Berezovska
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|
31
|
Bhattacharyya R, Fenn RH, Barren C, Tanzi RE, Kovacs DM. Palmitoylated APP Forms Dimers, Cleaved by BACE1. PLoS One 2016; 11:e0166400. [PMID: 27875558 PMCID: PMC5119739 DOI: 10.1371/journal.pone.0166400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/30/2016] [Indexed: 11/26/2022] Open
Abstract
A major rate-limiting step for Aβ generation and deposition in Alzheimer's disease brains is BACE1-mediated cleavage (β-cleavage) of the amyloid precursor protein (APP). We previously reported that APP undergoes palmitoylation at two cysteine residues (Cys186 and Cys187) in the E1-ectodomain. 8-10% of total APP is palmitoylated in vitro and in vivo. Palmitoylated APP (palAPP) shows greater preference for β-cleavage than total APP in detergent resistant lipid rafts. Protein palmitoylation is known to promote protein dimerization. Since dimerization of APP at its E1-ectodomain results in elevated BACE1-mediated cleavage of APP, we have now investigated whether palmitoylation of APP affects its dimerization and whether this leads to elevated β-cleavage of the protein. Here we report that over 90% of palAPP is dimerized while only ~20% of total APP forms dimers. PalAPP-dimers are predominantly cis-oriented while total APP dimerizes in both cis- and trans-orientation. PalAPP forms dimers 4.5-times more efficiently than total APP. Overexpression of the palmitoylating enzymes DHHC7 and DHHC21 that increase palAPP levels and Aβ release, also increased APP dimerization in cells. Conversely, inhibition of APP palmitoylation by pharmacological inhibitors reduced APP-dimerization in coimmunoprecipitation and FLIM/FRET assays. Finally, in vitro BACE1-activity assays demonstrate that palmitoylation-dependent dimerization of APP promotes β-cleavage of APP in lipid-rich detergent resistant cell membranes (DRMs), when compared to total APP. Most importantly, generation of sAPPβ-sAPPβ dimers is dependent on APP-palmitoylation while total sAPPβ generation is not. Since BACE1 shows preference for palAPP dimers over total APP, palAPP dimers may serve as novel targets for effective β-cleavage inhibitors of APP as opposed to BACE1 inhibitors.
Collapse
Affiliation(s)
- Raja Bhattacharyya
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Rebecca H. Fenn
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Cory Barren
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Dora M. Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| |
Collapse
|
32
|
Zoltowska KM, Maesako M, Berezovska O. Interrelationship between Changes in the Amyloid β 42/40 Ratio and Presenilin 1 Conformation. Mol Med 2016; 22:329-337. [PMID: 27391800 DOI: 10.2119/molmed.2016.00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
The ratio of the longer (i.e., Aβ42/Aβ43) to shorter (i.e. Aβ40) species is a critical factor determining amyloid fibril formation, neurotoxicity and progression of the amyloid pathology in Alzheimer's disease. The relative levels of the different Aβ species are affected by activity and conformation of the γ-secretase complex catalytic component - presenilin 1 (PS1). The enzyme exists in a dynamic equilibrium of the conformational states, with so-called "close" conformation associated with the shift of the γ-secretase cleavage towards the production of longer, neurotoxic Aβ species. In the current study, fluorescence lifetime imaging microscopy, spectral Förster resonance energy transfer, calcium imaging and cytotoxicity assays were utilized to explore reciprocal link between the Aβ42 and Aβ40 peptides present at various ratios and PS1 conformation in primary neurons. We report that exposure to Aβ peptides at a relatively high ratio of Aβ42/40 causes conformational change within the PS1 subdomain architecture towards the pathogenic "closed" state. Mechanistically, the Aβ42/40 peptides present at the relatively high ratio increase intracellular calcium levels, which were shown to trigger pathogenic PS1 conformation. This indicates that there is a reciprocal crosstalk between the extracellular Aβ peptides and PS1 conformation within a neuron, with Aβ40 showing some protective effect. The pathogenic shift within the PS1 domain architecture may further shift the production of Aβ peptides towards the longer, neurotoxic Aβ species. These findings link elevated calcium, Aβ42 and PS1/γ-secretase conformation, and offer possible mechanistic explanation of the impending exacerbation of the amyloid pathology.
Collapse
Affiliation(s)
- Katarzyna Marta Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| |
Collapse
|