1
|
Kemph A, Kharel K, Tindell SJ, Arkov AL, Lynch JA. Novel structure and composition of the unusually large germline determinant of the wasp Nasonia vitripennis. Mol Biol Cell 2025; 36:ar55. [PMID: 40072502 DOI: 10.1091/mbc.e24-11-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Specialized, maternally derived ribonucleoprotein (RNP) granules play an important role in specifying the primordial germ cells in many animal species. Typically, these germ granules are small (∼100 nm to a few microns in diameter) and numerous; in contrast, a single, extremely large granule called the oosome plays the role of germline determinant in the wasp Nasonia vitripennis. The organizational basis underlying the form and function of this unusually large membraneless RNP granule remains an open question. Here we use a combination of super-resolution and transmission electron microscopy (TEM) to investigate the composition and morphology of the oosome. We show evidence which suggests the oosome has properties of a viscous liquid or elastic solid. The most prominent feature of the oosome is a branching mesh-like network of high abundance mRNAs that pervades the entire structure. Homologues of the core germ granule proteins Vasa and Oskar do not appear to nucleate this network but rather are distributed adjacently as separate puncta. Low abundance RNAs appear to cluster in puncta that similarly do not overlap with the protein puncta. Several membrane-bound organelles, including lipid droplets and rough endoplasmic reticulum (ER)-like vesicles, are incorporated within the oosome, whereas mitochondria are nearly entirely excluded. Our findings show that the remarkably large size of the oosome is reflected in a complex subgranular organization and suggest that the oosome is a powerful model for probing interactions between membraneless and membrane-bound organelles, structural features that contribute to granule size, and the evolution of germ plasm in insects.
Collapse
Affiliation(s)
- Allie Kemph
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Kabita Kharel
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Samuel J Tindell
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
2
|
Kharel K, Tindell SJ, Kemph A, Schmidtke R, Alexander E, Lynch JA, Arkov AL. Dynamic protein assembly and architecture of the large solitary membraneless organelle during germline development in the wasp Nasonia vitripennis. Development 2024; 151:dev202877. [PMID: 39465418 DOI: 10.1242/dev.202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Throughout metazoa, germ cells assemble RNA-protein organelles (germ granules). In Drosophila ovaries, perinuclear nuage forms in the nurse cells, while compositionally similar polar granules form in the oocyte. A similar system appears to exist in the distantly related (∼350 million years) wasp Nasonia, with some surprising divergences. Nuage is similarly formed in Nasonia, except that anterior nurse cells accumulate significantly more nuage, in association with high levels of DNA double-strand breaks, suggesting that increased transposon activity anteriorly is silenced by high nuage levels. In the oocyte, the germ plasm forms a single granule that is 40 times larger than a homologous Drosophila polar granule. While conserved germ granule proteins are recruited to the oosome, they show unusual localization: Tudor protein forms a shell encapsulating the embryonic oosome, while small Oskar/Vasa/Aubergine granules coalesce interiorly. Wasp Vasa itself is unusual since it has an alternative splice form that includes a previously unreported nucleoporin-like phenylalanine-glycine repeat domain. Our work is consistent with the high degree of evolutionary plasticity of membraneless organelles, and describes a new experimental model and resources for studying biomolecular condensates.
Collapse
Affiliation(s)
- Kabita Kharel
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Samuel J Tindell
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Allie Kemph
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ryan Schmidtke
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Emma Alexander
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| |
Collapse
|
3
|
Kemph A, Kharel K, Tindell SJ, Arkov AL, Lynch JA. Novel structure and composition of the unusually large germline determinant of the wasp Nasonia vitripennis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621563. [PMID: 39554026 PMCID: PMC11566029 DOI: 10.1101/2024.11.01.621563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Specialized, maternally derived ribonucleoprotein (RNP) granules play an important role in specifying the primordial germ cells in many animal species. Typically, these germ granules are small (~100 nm to a few microns in diameter) and numerous; in contrast, a single, extremely large granule called the oosome plays the role of germline determinant in the wasp Nasonia vitripennis. The organizational basis underlying the form and function of this unusually large membraneless RNP granule remains an open question. Here we use a combination of super-resolution and transmission electron microscopy to investigate the composition and morphology of the oosome. We show that the oosome has properties of a viscous liquid or elastic solid. The most prominent feature of the oosome is a branching mesh-like network of high abundance mRNAs that pervades the entire structure. Homologs of the core polar granule proteins Vasa and Oskar do not appear to nucleate this network, but rather are distributed adjacently as separate puncta. Low abundance RNAs appear to cluster in puncta that similarly do not overlap with the protein puncta. Several membrane-bound organelles, including lipid droplets and rough ER-like vesicles, are incorporated within the oosome, whereas mitochondria are nearly entirely excluded. Our findings show that the remarkably large size of the oosome is reflected in a complex sub-granular organization and suggest that the oosome is a powerful model for probing interactions between membraneless and membrane-bound organelles, structural features that contribute to granule size, and the evolution of germ plasm in insects.
Collapse
Affiliation(s)
- Allie Kemph
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Kabita Kharel
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Samuel J. Tindell
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
4
|
Scholl A, Liu Y, Seydoux G. Caenorhabditis elegans germ granules accumulate hundreds of low translation mRNAs with no systematic preference for germ cell fate regulators. Development 2024; 151:dev202575. [PMID: 38984542 PMCID: PMC11266749 DOI: 10.1242/dev.202575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
In animals with germ plasm, embryonic germline precursors inherit germ granules, condensates proposed to regulate mRNAs coding for germ cell fate determinants. In Caenorhabditis elegans, mRNAs are recruited to germ granules by MEG-3, a sequence non-specific RNA-binding protein that forms stabilizing interfacial clusters on germ granules. Using fluorescence in situ hybridization, we confirmed that 441 MEG-3-bound transcripts are distributed in a pattern consistent with enrichment in germ granules. Thirteen are related to transcripts reported in germ granules in Drosophila or Nasonia. The majority, however, are low-translation maternal transcripts required for embryogenesis that are not maintained preferentially in the nascent germline. Granule enrichment raises the concentration of certain transcripts in germ plasm but is not essential to regulate mRNA translation or stability. Our findings suggest that only a minority of germ granule-associated transcripts contribute to germ cell fate in C. elegans and that the vast majority function as non-specific scaffolds for MEG-3.
Collapse
Affiliation(s)
- Alyshia Scholl
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yihong Liu
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Cullen G, Gilligan JB, Guhlin JG, Dearden PK. Germline progenitors and oocyte production in the honeybee queen ovary. Genetics 2023; 225:iyad138. [PMID: 37487025 PMCID: PMC10471204 DOI: 10.1093/genetics/iyad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
Understanding the reproduction of honeybee queens is crucial to support populations of this economically important insect. Here we examine the structure of the honeybee ovary to determine the nature of the germline progenitors in the ovary. Using a panel of marker genes that mark somatic or germline tissue in other insects we determine which cells in the honeybee ovary are somatic and which germline. We examine patterns of cell division and demonstrate that, unlike Drosophila, there is no evidence of single germline stem cells that provide the germline in honeybees. Germline progenitors are clustered in groups of 8 cells, joined by a polyfusome, and collections of these, in each ovariole, appear to maintain the germline during reproduction. We also show that these 8-cell clusters can divide and that their division occurs such that the numbers of germline progenitors are relatively constant over the reproductive life of queen honeybees. This information helps us to understand the diversity of structures in insect reproduction, and provide information to better support honeybee reproduction.
Collapse
Affiliation(s)
- Georgia Cullen
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Joshua B Gilligan
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Biological Heritage National Science Challenge, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Joseph G Guhlin
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Peter K Dearden
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Biological Heritage National Science Challenge, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| |
Collapse
|
6
|
Crane YM, Crane CF, Cambron SE, Springmeyer LJ, Schemerhorn BJ. Molecular characterization of eliminated chromosomes in Hessian fly (Mayetiola destructor (Say)). Chromosome Res 2023; 31:3. [PMID: 36692656 PMCID: PMC9873768 DOI: 10.1007/s10577-023-09718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Like other cecidomyiid Diptera, Hessian fly has stable S chromosomes and dispensable E chromosomes that are retained only in the germ line. Amplified fragment length polymorphisms (AFLP), suppressive subtractive hybridization (SSH), fluorescent in-situ hybridization (FISH), and sequencing were used to investigate similarities and differences between S and E chromosomes. More than 99.9% of AFLP bands were identical between separated ovary and somatic tissue, but one band was unique to ovary and resembled Worf, a non-LTR retrotransposon. Arrayed clones, derived by SSH of somatic from ovarian DNA, showed no clones that were unique to ovary. FISH with BAC clones revealed a diagnostic banding pattern of BAC positions on both autosomes and both sex chromosomes, and each E chromosome shared a pattern with one of the S chromosomes. Sequencing analysis showed that E chromosomes are nearly identical to S chromosomes, since no sequence could be confirmed to belong only to E chromosomes. There were a few questionably E-specific sequences that are candidates for further investigation. Thus, the E chromosomes appear to be derived from S chromosomes by the acquisition or conversion of sequences that produce the negatively heteropycnotic region around the centromere.
Collapse
Affiliation(s)
- Yan M Crane
- USDA Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Charles F Crane
- USDA Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sue E Cambron
- USDA Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Lucy J Springmeyer
- USDA Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| | - Brandon J Schemerhorn
- USDA Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Kemph A, Lynch JA. Evolution of germ plasm assembly and function among the insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100883. [PMID: 35123121 PMCID: PMC9133133 DOI: 10.1016/j.cois.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 05/04/2023]
Abstract
Germ plasm is a substance capable of driving naive cells toward the germ cell fate. Germ plasm has had multiple independent origins, and takes on diverse forms and functions throughout animals, including in insects. We describe here recent advances in the understanding of the evolution of germ plasm in insects. A major theme that has emerged is the complex and convoluted interactions of germ plasm with symbiotic bacteria within the germline, including at the very origin of oskar, the gene required for assembling germ plasm in insects. Major advancements have also been made in understanding the basic molecular arrangement of germ plasm in insects. These advances demonstrate that further analysis of insect germ plasm will be fruitful in illuminating diverse aspects of evolutionary and developmental biology.
Collapse
|
8
|
Blondel L, Besse S, Rivard EL, Ylla G, Extavour CG. Evolution of a cytoplasmic determinant: evidence for the biochemical basis of functional evolution of the novel germ line regulator oskar. Mol Biol Evol 2021; 38:5491-5513. [PMID: 34550378 PMCID: PMC8662646 DOI: 10.1093/molbev/msab284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Germ line specification is essential in sexually reproducing organisms. Despite their critical role, the evolutionary history of the genes that specify animal germ cells is heterogeneous and dynamic. In many insects, the gene oskar is required for the specification of the germ line. However, the germ line role of oskar is thought to be a derived role resulting from co-option from an ancestral somatic role. To address how evolutionary changes in protein sequence could have led to changes in the function of Oskar protein that enabled it to regulate germ line specification, we searched for oskar orthologs in 1,565 publicly available insect genomic and transcriptomic data sets. The earliest-diverging lineage in which we identified an oskar ortholog was the order Zygentoma (silverfish and firebrats), suggesting that oskar originated before the origin of winged insects. We noted some order-specific trends in oskar sequence evolution, including whole gene duplications, clade-specific losses, and rapid divergence. An alignment of all known 379 Oskar sequences revealed new highly conserved residues as candidates that promote dimerization of the LOTUS domain. Moreover, we identified regions of the OSK domain with conserved predicted RNA binding potential. Furthermore, we show that despite a low overall amino acid conservation, the LOTUS domain shows higher conservation of predicted secondary structure than the OSK domain. Finally, we suggest new key amino acids in the LOTUS domain that may be involved in the previously reported Oskar−Vasa physical interaction that is required for its germ line role.
Collapse
Affiliation(s)
- Leo Blondel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Savandara Besse
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Emily L Rivard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cassandra G Extavour
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
9
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|