1
|
Rogers SM, Cullen DA, Labonte D, Sutton GP, Vanden Broeck JJM, Burrows M. RNAi of the elastomeric protein resilin reduces jump velocity and resilience to damage in locusts. Proc Natl Acad Sci U S A 2025; 122:e2415625121. [PMID: 39715430 PMCID: PMC11725850 DOI: 10.1073/pnas.2415625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
Resilin, an elastomeric protein with remarkable physical properties that outperforms synthetic rubbers, is a near-ubiquitous feature of the power amplification mechanisms used by jumping insects. Catapult-like mechanisms, which incorporate elastic energy stores formed from a composite of stiff cuticle and resilin, are frequently used by insects to translate slow muscle contractions into rapid-release recoil movements. The precise role of resilin in these jumping mechanisms remains unclear, however. We used RNAi to reduce resilin deposition in the principal energy-storing springs of the desert locust (Schistocerca gregaria) before measuring jumping performance. Knockdown reduced the amount of resilin-associated fluorescence in the semilunar processes (SLPs) by 44% and reduced the cross-sectional area of the tendons of the hind leg extensor-tibiae muscle by 31%. This affected jumping in three ways: First, take-off velocity was reduced by 15% in knockdown animals, which could be explained by a change in the extrinsic stiffness of the extensor-tibiae tendon caused by the decrease in its cross-sectional area. Second, knockdown resulted in permanent breakages in the hind legs of 29% of knockdown locusts as tested by electrical stimulation of the extensor muscle, but none in controls. Third, knockdown locusts exhibited a greater decline in distance jumped when made to jump in rapid succession than did controls. We conclude that stiff cuticle acts as the principal elastic energy store for insect jumping, while resilin protects these more brittle structures against breakage from repeated use.
Collapse
Affiliation(s)
- Stephen M. Rogers
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- School of Natural Sciences, University of Lincoln, LincolnLN6 7TS, United Kingdom
| | - Darron A. Cullen
- Department of Biology, Zoological Institute, KU Leuven, Leuven3000, Belgium
- School of Natural Sciences, University of Hull, HullHU6 7RX, United Kingdom
| | - David Labonte
- Department of Bioengineering, Imperial College London, LondonSW7 2PD, United Kingdom
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Gregory P. Sutton
- School of Natural Sciences, University of Lincoln, LincolnLN6 7TS, United Kingdom
| | | | - Malcolm Burrows
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| |
Collapse
|
2
|
Lehmann FO, Gorb S, Moussian B. Spatio-temporal distribution and genetic background of elastic proteins inside the chitin/chitosan matrix of insects including their functional significance for locomotion. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104089. [PMID: 38485097 DOI: 10.1016/j.ibmb.2024.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
In insects, cuticle proteins interact with chitin and chitosan of the exoskeleton forming crystalline, amorphic or composite material structures. The biochemical and mechanical composition of the structure defines the cuticle's physical properties and thus how the insect cuticle behaves under mechanical stress. The tissue-specific ratio between chitin and chitosan and its pattern of deacetylation are recognized and interpreted by cuticle proteins depending on their local position in the body. Despite previous research, the assembly of the cuticle composites in time and space including its functional impact is widely unexplored. This review is devoted to the genetics underlying the temporal and spatial distribution of elastic proteins and the potential function of elastic proteins in insects with a focus on Resilin in the fruit fly Drosophila. The potential impact and function of localized patches of elastic proteins is discussed for movements in leg joints, locomotion and damage resistance of the cuticle. We conclude that an interdisciplinary research approach serves as an integral example for the molecular mechanisms of generation and interpretation of the chitin/chitosan matrix, not only in Drosophila but also in other arthropod species, and might help to synthesize artificial material composites.
Collapse
Affiliation(s)
- Fritz-Olaf Lehmann
- Fritz-Olaf Lehmann, Department of Animal Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| | - Stanislav Gorb
- Stanislav Gorb, Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Bernard Moussian
- Bernard Moussian, Institute Sophia Agrobiotech, University of Nice Sophia Antipolis, 38 Av. Emile Henriot, 06000, Nice, France.
| |
Collapse
|
3
|
Melis JM, Siwanowicz I, Dickinson MH. Machine learning reveals the control mechanics of an insect wing hinge. Nature 2024; 628:795-803. [PMID: 38632396 DOI: 10.1038/s41586-024-07293-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Insects constitute the most species-rich radiation of metazoa, a success that is due to the evolution of active flight. Unlike pterosaurs, birds and bats, the wings of insects did not evolve from legs1, but are novel structures that are attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings2. The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the three-dimensional motion of the wings with high-speed cameras. Using machine learning, we created a convolutional neural network3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation incorporating our hinge model generates flight manoeuvres that are remarkably similar to those of free-flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.
Collapse
Affiliation(s)
- Johan M Melis
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Farhadi A, Xue L, Zhao Q, Han F, Xu C, Chen H, Li E. Identification of key genes and molecular pathways associated with claw regeneration in mud crab (Scylla paramamosain). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101184. [PMID: 38154166 DOI: 10.1016/j.cbd.2023.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
The mud crab (Scylla paramamosain) possesses extensive regenerative abilities, enabling it to replace missing body parts, including claws, legs, and even eyes. Studying the genetic and molecular mechanisms underlying regenerative ability in diverse animal phyla has the potential to provide new insights into regenerative medicine in humans. In the present study, we performed mRNA sequencing to reveal the genetic mechanisms underlying the claw regeneration in mud crab. Several differentially expressed genes (DEGs) were expressed in biological pathways associated with cuticle synthase, collagen synthase, tissue regeneration, blastema formation, wound healing, cell cycle, cell division, and cell migration. The top GO enrichment terms were microtubule-based process, collagen trimer, cell cycle process, and extracellular matrix structural constituent. The most enriched KEGG pathways were ECM-receptor interaction and focal adhesion. The genes encoding key functional proteins, such as collagen alpha, cuticle protein, early cuticle protein, arthrodial cuticle protein, dentin sialophosphoprotein (DSPP), epidermal growth factor receptor (EGFR), kinesin family member C1 (KIFC1), and DNA replication licensing factor mcm2-like (MCM2) were the most significant and important DEGs suspected to participate in claw regeneration. The findings of this research offer a comprehensive and insightful understanding of the genetic and molecular mechanisms underlying claw regeneration in S. paramamosain. By elucidating the specific genes and molecular pathways implicated in this process, our study contributes significantly to the broader field of regenerative biology and offers potential avenues for further exploration in crustacean limb regeneration.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Laizhong Xue
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Melis JM, Siwanowicz I, Dickinson MH. Machine learning reveals the control mechanics of an insect wing hinge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547116. [PMID: 37425804 PMCID: PMC10327165 DOI: 10.1101/2023.06.29.547116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Insects constitute the most species-rich radiation of metazoa, a success due to the evolution of active flight. Unlike pterosaurs, birds, and bats, the wings of insects did not evolve from legs 1 , but are novel structures attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings 2 . The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here, we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the 3D motion of the wings with high-speed cameras. Using machine learning approaches, we created a convolutional neural network 3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder 4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation that incorporates our model of the hinge generates flight maneuvers that are remarkably similar to those of free flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.
Collapse
|
6
|
Peng Q, Wang Y, Xiao Y, Chang H, Luo S, Wang D, Rong YS. Drosophila Amus and Bin3 methylases functionally replace mammalian MePCE for capping and the stabilization of U6 and 7SK snRNAs. SCIENCE ADVANCES 2023; 9:eadj9359. [PMID: 38100593 PMCID: PMC10848712 DOI: 10.1126/sciadv.adj9359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
U6 and 7SK snRNAs have a 5' cap, believed to be essential for their stability and maintained by mammalian MePCE or Drosophila Bin3 enzymes. Although both proteins are required for 7SK stability, loss of neither destabilizes U6, casting doubts on the function of capping U6. Here, we show that the Drosophila Amus protein, homologous to both proteins, is essential for U6 but not 7SK stability. The loss of U6 is rescued by the expression of an Amus-MePCE hybrid protein harboring the methyltransferase domain from MePCE, highlighting the conserved function of the two proteins as the U6 capping enzyme. Our investigations in human cells establish a dependence of both U6 and 7SK stability on MePCE, resolving a long-standing uncertainty. While uncovering a division of labor of Bin3/MePCE/Amus proteins, we found a "Bin3-Box" domain present only in enzymes associated with 7SK regulation. Targeted mutagenesis confirms its importance for Bin3 function, revealing a possible conserved element in 7SK but not U6 biology.
Collapse
Affiliation(s)
- Qiu Peng
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yiqing Wang
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Ying Xiao
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Hua Chang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shishi Luo
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Danling Wang
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yikang S. Rong
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| |
Collapse
|
7
|
Ohkubo S, Shintaku T, Mine S, Yamamoto DS, Togawa T. Mosquitoes Possess Specialized Cuticular Proteins That Are Evolutionarily Related to the Elastic Protein Resilin. INSECTS 2023; 14:941. [PMID: 38132614 PMCID: PMC10743668 DOI: 10.3390/insects14120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Resilin is an elastic protein that is vital to insects' vigorous movement. Canonical resilin proteins possess the R&R Consensus, a chitin-binding domain conserved in a family of cuticular proteins, and highly repetitive sequences conferring elastic properties. In the malaria vector mosquito, Anopheles gambiae, however, a cuticular protein has been found that has an R&R Consensus resembling that of resilin but lacks the repetitive sequences (here, we call it resilin-related or resilin-r). The relationship between resilin-r and resilin was unclear. It was also unknown whether resilin-r is conserved in mosquitoes. In this paper, phylogenetic and structural analyses were performed to reveal the relationship of resilin homologous proteins from holometabolous insects. Their chitin-binding abilities were also assessed. A resilin-r was found in each mosquito species, and these proteins constitute a clade with resilin from other insects based on the R&R Consensus sequences, indicating an evolutionary relationship between resilin-r and resilin. The resilin-r showed chitin-binding activity as same as resilin, but had distinct structural features from resilin, suggesting that it plays specialized roles in the mosquito cuticle. Another resilin-like protein was found to exist in each holometabolous insect that possesses resilin-like repetitive sequences but lacks the R&R Consensus. These results suggest that similar evolutionary events occurred to create resilin-r and resilin-like proteins.
Collapse
Affiliation(s)
- Sakura Ohkubo
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| | - Tohki Shintaku
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| | - Shotaro Mine
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba 305-8634, Japan
| | - Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji 3311-1, Shimotsuke 329-0498, Japan;
| | - Toru Togawa
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| |
Collapse
|
8
|
Kuyateh O, Obbard DJ. Viruses in Laboratory Drosophila and Their Impact on Host Gene Expression. Viruses 2023; 15:1849. [PMID: 37766256 PMCID: PMC10537266 DOI: 10.3390/v15091849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Drosophila melanogaster has one of the best characterized antiviral immune responses among invertebrates. However, relatively few easily transmitted natural virus isolates are available, and so many Drosophila experiments have been performed using artificial infection routes and artificial host-virus combinations. These may not reflect natural infections, especially for subtle phenotypes such as gene expression. Here, to explore the laboratory virus community and to better understand how natural virus infections induce changes in gene expression, we have analysed seven publicly available D. melanogaster transcriptomic sequencing datasets that were originally sequenced for projects unrelated to virus infection. We have found ten known viruses-including five that have not been experimentally isolated-but no previously unknown viruses. Our analysis of host gene expression revealed that numerous genes were differentially expressed in flies that were naturally infected with a virus. For example, flies infected with nora virus showed patterns of gene expression consistent with intestinal vacuolization and possible host repair via the upd3 JAK/STAT pathway. We also found marked sex differences in virus-induced differential gene expression. Our results show that natural virus infection in laboratory Drosophila does indeed induce detectable changes in gene expression, suggesting that this may form an important background condition for experimental studies in the laboratory.
Collapse
Affiliation(s)
- Oumie Kuyateh
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK;
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Darren J. Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK;
| |
Collapse
|
9
|
Tang X, Zhou J, Koski TM, Liu S, Zhao L, Sun J. Hypoxia-induced tracheal elasticity in vector beetle facilitates the loading of pinewood nematode. eLife 2023; 12:84621. [PMID: 36995744 PMCID: PMC10063229 DOI: 10.7554/elife.84621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 03/31/2023] Open
Abstract
Many pathogens rely on their insect vectors for transmission. Such pathogens are under selection to improve vector competence for their transmission by employing various tissue or cellular responses of vectors. However, whether pathogens can actively cause hypoxia in vectors and exploit hypoxia responses to promote their vector competence is still unknown. Fast dispersal of pinewood nematode (PWN), the causal agent for the destructive pine wilt disease and subsequent infection of pine trees, is characterized by the high vector competence of pine sawyer beetles (Monochamus spp.), and a single beetle can harbor over 200,000 PWNs in its tracheal system. Here, we demonstrate that PWN loading activates hypoxia in tracheal system of the vector beetles. Both PWN loading and hypoxia enhanced tracheal elasticity and thickened the apical extracellular matrix (aECM) of the tracheal tubes while a notable upregulated expression of a resilin-like mucin protein Muc91C was observed at the aECM layer of PWN-loaded and hypoxic tracheal tubes. RNAi knockdown of Muc91C reduced tracheal elasticity and aECM thickness under hypoxia conditions and thus decreasing PWN loading. Our study suggests a crucial role of hypoxia-induced developmental responses in shaping vector tolerance to the pathogen and provides clues for potential molecular targets to control pathogen dissemination.
Collapse
Affiliation(s)
- Xuan Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shiyao Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
10
|
Xie J, Peng G, Wang M, Zhong Q, Song X, Bi J, Tang J, Feng F, Gao H, Li B. RR-1 cuticular protein TcCPR69 is required for growth and metamorphosis in Tribolium castaneum. INSECT SCIENCE 2022; 29:1612-1628. [PMID: 35312233 DOI: 10.1111/1744-7917.13038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Cuticle is not only critical for protecting insects from noxious stimuli but is also involved in a variety of metabolic activities. Cuticular proteins (CPs) affect cuticle structure and mechanical properties during insect growth, reproduction, and environmental adaptation. Here, we describe the identification and characterization of a member of the RR-1 subfamily of CPs with an R&R consensus (CPR) in Tribolium castaneum (TcCPR69). Although it was previously reported to be highly expressed in the wings, we found that knocking down TcCPR69 by RNA interference (RNAi) did not cause obvious wing abnormalities but markedly disrupted the growth and metamorphosis of beetles with 100% cumulative mortality; additionally, the chitin content of the pharate adult was decreased and the new abdominal cuticle was significantly thinner before molting. TcCPR69 showed chitin-binding ability and the expression levels of key genes involved in chitin metabolism (trehalase [TcTRE], chitin synthase [TcCHSA and TcCHSB], and chitinase [TcCHT5 and TcCHT10]) were also decreased by TcCPR69 knockdown. TcCPR69 gene expression peaked shortly after molting and was increased 2.61 fold at 12 h after 20-hydroxyecdysone (20E) injection. This was reversed by RNAi of the ecdysone-related genes ecdysone receptor (TcECR) and fushi tarazu transcription factor 1 (TcFTZ-F1). These results indicate that TcCPR69 is positively regulated by 20E signaling to contribute to cuticle formation and maintain chitin accumulation during the growth and metamorphosis of beetles.
Collapse
Affiliation(s)
- Jia Xie
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Guifang Peng
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Miao Wang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qisheng Zhong
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Feng
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Scolari F, Girella A, Croce AC. Imaging and spectral analysis of autofluorescence patterns in larval head structures of mosquito vectors. Eur J Histochem 2022; 66. [PMID: 36128772 PMCID: PMC9528535 DOI: 10.4081/ejh.2022.3462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Autofluorescence (AF) in mosquitoes is currently poorly explored, despite its great potential as a marker of body structures and biological functions. Here, for the first time AF in larval heads of two mosquitoes of key public health importance, Aedes albopictus and Culex pipiens, is studied using fluorescence imaging and spectrofluorometry, similarly to a label-free histochemical approach. In generally conserved distribution patterns, AF shows differences between mouth brushes and antennae of the two species. The blue AF ascribable to resilin at the antennal bases, more extended in Cx. pipiens, suggests a potential need to support different antennal movements. The AF spectra larger in Cx. pipiens indicate a variability in material composition and properties likely relatable to mosquito biology, including diverse feeding and locomotion behaviours with implications for vector control.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia.
| | - Alessandro Girella
- Department of Chemistry - C.S.G.I., University of Pavia; Centro Interdipartimentale di Studi e Ricerche per la Conservazione del Patrimonio Culturale (CISRiC), University of Pavia.
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia.
| |
Collapse
|
12
|
Lerch S, Yang Y, Flaven‐Pouchon J, Gehring N, Moussian B. Resilin is needed for wing posture in Drosophila suzukii. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21913. [PMID: 35599599 PMCID: PMC9539844 DOI: 10.1002/arch.21913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Resilin is a protein matrix in movable regions of the cuticle conferring resistance to fatigue. The main component of Resilin is Pro-Rresilin that polymerises via covalent di- and tri-tyrosine bounds (DT). Loss of Pro-Resilin is nonlethal and causes a held-down wing phenotype (hdw) in the fruit fly Drosophila melanogaster. To test whether this mild phenotype is recurrent in other insect species, we analysed resilin in the spotted-wing fruit fly Drosophila suzukii. As quantified by DT autofluorescence by microscopy, DT intensities in the trochanter and the wing hinge are higher in D. suzukii than in D. melanogaster, while in the proboscis the DT signal is stronger in D. melanogaster compared to D. suzukii. To study the function of Pro-Resilin in D. suzukii, we generated a mutation in the proresilin gene applying the Crispr/Cas9 technique. D. suzukii pro-resilin mutant flies are flight-less and show a hdw phenotype resembling respective D. melanogaster mutants. DT signal intensity at the wing hinge is reduced but not eliminated in D. suzukii hdw flies. Either residual Pro-Resilin accounts for the remaining DT signal or, as proposed for the hdw phenotype in D. melanogaster, other DT forming proteins might be present in Resilin matrices. Interestingly, DT signal intensity reduction rates in D. suzukii and D. melanogaster are somehow different. Taken together, in general, the function of Pro-Resilin seems to be conserved in the Drosophila genus; small differences in DT quantity, however, allow us to hypothesise that Resilin matrices might be modulated during evolution probably to accommodate the species-specific lifestyle.
Collapse
Affiliation(s)
- Steven Lerch
- Interfaculty Institute for Cell BiologyAnimal Genetics, Universität TübingenTübingenGermany
- Senckenberg Natural History CollectionsDresdenGermany
| | - Yang Yang
- Interfaculty Institute for Cell BiologyAnimal Genetics, Universität TübingenTübingenGermany
| | - Justin Flaven‐Pouchon
- Interfaculty Institute for Cell BiologyAnimal Genetics, Universität TübingenTübingenGermany
| | - Nicole Gehring
- Interfaculty Institute for Cell BiologyAnimal Genetics, Universität TübingenTübingenGermany
| | - Bernard Moussian
- Interfaculty Institute for Cell BiologyAnimal Genetics, Universität TübingenTübingenGermany
- INRAE, CNRS, Institut Sophia Agrobiotech, Université Côte d'AzurNiceFrance
| |
Collapse
|
13
|
Josten B, Gorb SN, Büsse S. The mouthparts of the adult dragonfly Anax imperator (Insecta: Odonata), functional morphology and feeding kinematics. J Morphol 2022; 283:1163-1181. [PMID: 35848446 DOI: 10.1002/jmor.21497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Insects evolved differently specialized mouthparts. We study the mouthparts of adult Anax imperator, one of the largest odonates found in Central Europe. Like all adult dragonflies, A. imperator possesses carnivorous-type of biting-chewing mouthparts. To gain insights into the feeding process, behavior and kinematics, living specimens were filmed during feeding using synchronized high-speed videography. Additionally, the maximum angles of movement were measured using a measuring microscope and combined with data from micro-computed tomography (µCT). The resulting visualizations of the 3D-geometry of each mouthpart were used to study their anatomy and complement the existing descriptive knowledge of muscles in A. imperator to date. Furthermore, CLSM-projections allow for estimation of differences in the material composition of the mouthparts' cuticle. By combining all methods, we analyze possible functions and underlying biomechanics of each mouthpart. We also analyzed the concerted movements of the mouthparts; unique behavior of the mouthparts during feeding is active participation by the labrum and distinct movement by the maxillary laciniae. We aim to elucidate the complex movements of the mouthparts and their functioning by combining detailed information on (1) in vivo movement behavior (supplemented with physiological angle approximations), (2) movement ability provided by morphology (morphological movement angles), (3) 3D-anatomy, and (4) cuticle composition estimates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Benedikt Josten
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Sebastian Büsse
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
14
|
Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior. Molecules 2022; 27:molecules27144458. [PMID: 35889334 PMCID: PMC9318335 DOI: 10.3390/molecules27144458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Light-based phenomena in insects have long attracted researchers’ attention. Surface color distribution patterns are commonly used for taxonomical purposes, while optically-active structures from Coleoptera cuticle or Lepidoptera wings have inspired technological applications, such as biosensors and energy accumulation devices. In Diptera, besides optically-based phenomena, biomolecules able to fluoresce can act as markers of bio-metabolic, structural and behavioral features. Resilin or chitinous compounds, with their respective blue or green-to-red autofluorescence (AF), are commonly related to biomechanical and structural properties, helpful to clarify the mechanisms underlying substrate adhesion of ectoparasites’ leg appendages, or the antennal abilities in tuning sound detection. Metarhodopsin, a red fluorescing photoproduct of rhodopsin, allows to investigate visual mechanisms, whereas NAD(P)H and flavins, commonly relatable to energy metabolism, favor the investigation of sperm vitality. Lipofuscins are AF biomarkers of aging, as well as pteridines, which, similarly to kynurenines, are also exploited in metabolic investigations. Beside the knowledge available in Drosophila melanogaster, a widely used model to study also human disorder and disease mechanisms, here we review optically-based studies in other dipteran species, including mosquitoes and fruit flies, discussing future perspectives for targeted studies with various practical applications, including pest and vector control.
Collapse
|
15
|
Dixon AR, Vondra I. Biting Innovations of Mosquito-Based Biomaterials and Medical Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4587. [PMID: 35806714 PMCID: PMC9267633 DOI: 10.3390/ma15134587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Mosquitoes are commonly viewed as pests and deadly predators by humans. Despite this perception, investigations of their survival-based behaviors, select anatomical features, and biological composition have led to the creation of several beneficial technologies for medical applications. In this review, we briefly explore these mosquito-based innovations by discussing how unique characteristics and behaviors of mosquitoes drive the development of select biomaterials and medical devices. Mosquito-inspired microneedles have been fabricated from a variety of materials, including biocompatible metals and polymers, to mimic of the mouthparts that some mosquitoes use to bite a host with minimal injury during blood collection. The salivary components that these mosquitoes use to reduce the clotting of blood extracted during the biting process provide a rich source of anticoagulants that could potentially be integrated into blood-contacting biomaterials or administered in therapeutics to reduce the risk of thrombosis. Mosquito movement, vision, and olfaction are other behaviors that also have the potential for inspiring the development of medically relevant technologies. For instance, viscoelastic proteins that facilitate mosquito movement are being investigated for use in tissue engineering and drug delivery applications. Even the non-wetting nanostructure of a mosquito eye has inspired the creation of a robust superhydrophobic surface coating that shows promise for biomaterial and drug delivery applications. Additionally, biosensors incorporating mosquito olfactory receptors have been built to detect disease-specific volatile organic compounds. Advanced technologies derived from mosquitoes, and insects in general, form a research area that is ripe for exploration and can uncover potential in further dissecting mosquito features for the continued development of novel medical innovations.
Collapse
Affiliation(s)
- Angela R. Dixon
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabelle Vondra
- Biomedical Engineering Program, Northern Illinois University, DeKalb, IL 60115, USA;
| |
Collapse
|
16
|
Flaven-Pouchon J, Moussian B. Fluorescent Microscopy-Based Detection of Chitin in Intact Drosophila melanogaster. Front Physiol 2022; 13:856369. [PMID: 35557963 PMCID: PMC9086190 DOI: 10.3389/fphys.2022.856369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chitin is the major scaffolding component of the insect cuticle. Ultrastructural analyses revealed that chitin adopts a quasi-crystalline structure building sheets of parallel running microfibrils. These sheets called laminae are stacked either helicoidally or with a preferred orientation of the microfibrils. Precise control of chitin synthesis is mandatory to ensure the correct chitin assembly and in turn proper function of cuticular structures. Thus, evaluation of chitin-metabolism deficient phenotypes is a key to our understanding of the function of the proteins and enzymes involved in cuticle architecture and more generally in cuticle biology in insects. Usually, these phenotypes have been assessed using electron microscopy, which is time-consuming and labor intensive. This stresses the need for rapid and straightforward histological methods to visualize chitin at the whole tissue level. Here, we propose a simple method of chitin staining using the common polysaccharide marker Fluorescent brightener 28 (FB28) in whole-mount Drosophila melanogaster. To overcome the physical barrier of FB28 penetration into the cuticle, staining is performed at 65°C without affecting intactness. We quantify FB28 fluorescence in three functionally different cuticular structures namely wings, dorsal abdomens and forelegs by fluorescence microscopy. We find that, as expected, cuticle pigmentation may interfere with FB28 staining. Down-regulation of critical genes involved in chitin metabolism, including those coding for chitin synthase or chitinases, show that FB28 fluorescence reflects chitin content in these organs. We think that this simple method could be easily applied to a large variety of intact insects.
Collapse
Affiliation(s)
- J Flaven-Pouchon
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaiso, Chile
| | - B Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,INRAE, CNRS, Institut Sophia Agrobiotech, Université Côte d'Azur, Nice, France
| |
Collapse
|
17
|
McKenzie EKG, Kwan GT, Tresguerres M, Matthews PGD. A pH-powered mechanochemical engine regulates the buoyancy of Chaoborus midge larvae. Curr Biol 2022; 32:927-933.e5. [PMID: 35081331 DOI: 10.1016/j.cub.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
The freshwater aquatic larvae of the Chaoborus midge are the world's only truly planktonic insects, regulating their buoyancy using two pairs of internal air-filled sacs, one in the thorax and the other in the seventh abdominal segment. In 1911, August Krogh demonstrated the larvae's ability to control their buoyancy by exposing them to an increase in hydrostatic pressure.1 However, how these insects control the volume of their air-sacs has remained a mystery. Gas is not secreted into the air-sacs, as the luminal gas composition is always the same as that dissolved in the surrounding water.1,2 Instead, the air-sac wall was thought to play some role.3-6 Here we reveal that bands of resilin in the air-sac's wall are responsible for the changes in volume. These bands expand and contract in response to changes in pH generated by an endothelium that envelops the air-sac. Vacuolar type H+ V-ATPase (VHA) in the endothelium acidifies and shrinks the air-sac, while alkalinization and expansion are regulated by the cyclic adenosine monophosphate signal transduction pathway. Thus, Chaoborus air-sacs function as mechanochemical engines, transforming pH changes into mechanical work against hydrostatic pressure. As the resilin bands interlaminate with bands of cuticle, changes in resilin volume are constrained to a single direction along the air-sac's longitudinal axis. This makes the air-sac functionally equivalent to a cross-striated pH muscle and demonstrates a unique biological role for resilin as an active structural element.
Collapse
Affiliation(s)
- Evan K G McKenzie
- Department of Zoology, The University of British Columbia, Vancouver, Canada.
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Philip G D Matthews
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Büsse S, Tröger H, Gorb SN. The toolkit of a hunter – functional morphology of larval mouthparts in a dragonfly. J Zool (1987) 2021. [DOI: 10.1111/jzo.12923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- S. Büsse
- Department of Functional Morphology and Biomechanics Institute of Zoology Kiel University Kiel Germany
| | - H.‐L. Tröger
- Department of Functional Morphology and Biomechanics Institute of Zoology Kiel University Kiel Germany
| | - S. N. Gorb
- Department of Functional Morphology and Biomechanics Institute of Zoology Kiel University Kiel Germany
| |
Collapse
|
19
|
Lerch S, Zuber R, Gehring N, Wang Y, Eckel B, Klass KD, Lehmann FO, Moussian B. Correction to: Resilin matrix distribution, variability and function in Drosophila. BMC Biol 2021; 19:157. [PMID: 34330274 PMCID: PMC8325184 DOI: 10.1186/s12915-021-01090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Steven Lerch
- Applied Zoology, Technical University of Dresden, Dresden, Germany.,Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Senckenberg Natural History Collections, Dresden, Germany
| | - Renata Zuber
- Applied Zoology, Technical University of Dresden, Dresden, Germany
| | - Nicole Gehring
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Yiwen Wang
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Barbara Eckel
- Applied Zoology, Technical University of Dresden, Dresden, Germany
| | | | | | - Bernard Moussian
- Applied Zoology, Technical University of Dresden, Dresden, Germany. .,Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany. .,CNRS, Inserm Institute of Biology Valrose, Université Côte d'Azur, Nice, France.
| |
Collapse
|
20
|
Singh B, Yidris N, Basri AA, Pai R, Ahmad KA. Study of Mosquito Aerodynamics for Imitation as a Small Robot and Flight in a Low-Density Environment. MICROMACHINES 2021; 12:511. [PMID: 34063196 PMCID: PMC8147425 DOI: 10.3390/mi12050511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
In terms of their flight and unusual aerodynamic characteristics, mosquitoes have become a new insect of interest. Despite transmitting the most significant infectious diseases globally, mosquitoes are still among the great flyers. Depending on their size, they typically beat at a high flapping frequency in the range of 600 to 800 Hz. Flapping also lets them conceal their presence, flirt, and help them remain aloft. Their long, slender wings navigate between the most anterior and posterior wing positions through a stroke amplitude about 40 to 45°, way different from their natural counterparts (>120°). Most insects use leading-edge vortex for lift, but mosquitoes have additional aerodynamic characteristics: rotational drag, wake capture reinforcement of the trailing-edge vortex, and added mass effect. A comprehensive look at the use of these three mechanisms needs to be undertaken-the pros and cons of high-frequency, low-stroke angles, operating far beyond the normal kinematic boundary compared to other insects, and the impact on the design improvements of miniature drones and for flight in low-density atmospheres such as Mars. This paper systematically reviews these unique unsteady aerodynamic characteristics of mosquito flight, responding to the potential questions from some of these discoveries as per the existing literature. This paper also reviews state-of-the-art insect-inspired robots that are close in design to mosquitoes. The findings suggest that mosquito-based small robots can be an excellent choice for flight in a low-density environment such as Mars.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.Y.); (A.A.B.)
- Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Noorfaizal Yidris
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.Y.); (A.A.B.)
| | - Adi Azriff Basri
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.Y.); (A.A.B.)
| | - Raghuvir Pai
- Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Kamarul Arifin Ahmad
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.Y.); (A.A.B.)
- Aerospace Malaysia Research Centre, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|