1
|
Paddock KJ, Corcoran JA. Life-stage dependent behavior mimics chemosensory repertoire diversity in a belowground, specialist herbivore. G3 (BETHESDA, MD.) 2025; 15:jkaf041. [PMID: 39999386 PMCID: PMC12060231 DOI: 10.1093/g3journal/jkaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Insects rely on the translation of environmental chemical cues into behaviors necessary for survival and reproduction. Specific chemosensory receptors belonging to the odorant and gustatory receptor groups detect odorant and gustatory cues, respectively, making them crucial to these processes. How odorant (OR) and gustatory (GR) receptor expression profiles change in combination with changing life strategies is not well understood. Using genomic and transcriptomic resources, we annotated the OR and GR expression profiles across all life stages of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, a major pest of corn in the United States and Europe. Genomic analyses identified 193 ORs and 189 GRs, of which 125 and 116 were found to be expressed, respectively, in one or more WCR life stages. WCR larvae are subterranean and feed on roots before emerging as adults aboveground. Expression profile analyses revealed first instar larvae possess a unique OR and GR repertoire distinct from other instars and adults, suggesting a role in host plant finding. Similarly, a subset of ORs and GRs differed in their expression levels between adult male and female antennae. By comparing the phylogenetic relationship of ORs and GRs, we identified several receptors with potentially important roles in WCR foraging and reproductive behavior. Together, this study provides support for future investigations into the ecology and evolution of chemoreception in insects.
Collapse
Affiliation(s)
- Kyle J Paddock
- United States Department of Agriculture, Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| | - Jacob A Corcoran
- United States Department of Agriculture, Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| |
Collapse
|
2
|
Wang H, Han T, Bai Y, Yuan S, Xu H, Bai A, Rather BA, Liu T, Hou X, Li Y. The regulatory landscape of β-caryophyllene biosynthesis in pak choi. PLANT PHYSIOLOGY 2025; 198:kiaf123. [PMID: 40329874 DOI: 10.1093/plphys/kiaf123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/25/2024] [Indexed: 05/07/2025]
Abstract
β-Caryophyllene is a key volatile sesquiterpene involved in plant defense and contributes to the characteristic aroma of pak choi (Brassica campestris). This study aimed to elucidate the regulatory landscape of β-caryophyllene biosynthesis in pak choi to understand the genetic and molecular mechanisms controlling the production of this volatile sesquiterpene. Among 61 germplasm accessions of pak choi, β-caryophyllene was detected in only 11 accessions. Genetic analysis revealed that β-caryophyllene production is controlled by a single dominant gene. Fine mapping and gene sequencing identified the candidate gene B. campestris terpene synthases 21 (BcTPSa21), which encodes a β-caryophyllene synthase. Functional validation of BcTPSa21 through transient expression of BcTPSa21 in Nicotiana benthamiana leaves and enzyme activity assays in vitro confirmed its role in β-caryophyllene biosynthesis. A single nucleotide polymorphism (SNP) (C-T) in the promoter region of BcTPSa21 was found to affect the binding of the transcription factor BcMYC2, thereby influencing gene expression. Additionally, BcDIVARICATA (an R-R-type MYB TF BcDIV) was identified as a negative regulator of β-caryophyllene synthesis. The molecular experiments showed that abscisic acid participates in the biosynthesis of β-caryophyllene via the B. campestris pyrabactin resistance 1-like (BcPYL6)-BcDIVARICATA-BcMYC2 module. RNA-seq analysis suggested that under temperature stress, the transcription of BcTPSa21 and the biosynthesis of β-caryophyllene were the collective result of multilevel regulation. These findings provide comprehensive insights into the regulatory mechanisms governing β-caryophyllene biosynthesis in pak choi, identifying key factors and regulatory modules involved and offering a foundation for enhancing the flavor quality of pak choi through targeted genetic interventions.
Collapse
Affiliation(s)
- Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Tiantian Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yibo Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572024, China
| | - Shuilin Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Huanhuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Aimei Bai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Bilal A Rather
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572024, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
3
|
Feng X, Ullah F, Liu J, Ji Y, Abbas S, Liao S, Ali J, Desneux N, Chen R. Instar identification and weight prediction of Ostrinia furnacalis (Guenée) larvae using machine learning. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:93-104. [PMID: 39865975 DOI: 10.1017/s0007485324000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Asian corn borer, Ostrinia furnacalis (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required. Currently, the absence of techniques capable of addressing this urgent need poses a formidable challenge to agricultural practitioners. To mitigate this issue, the current study aims to establish models conducive to the identification of larval stages. Furthermore, this study aims to devise predictive models for estimating larval weights, thereby enhancing the precision and efficacy of pest management strategies. For this, 9 classification and 11 regression models were established using four feature datasets based on the following features geometry, colour, and texture. Effectiveness of the models was determined by comparing metrics such as accuracy, precision, recall, F1-score, coefficient of determination, root mean squared error, mean absolute error, and mean absolute percentage error. Furthermore, Shapley Additive exPlanations analysis was employed to analyse the importance of features. Our results revealed that for instar identification, the DecisionTreeClassifier model exhibited the best performance with an accuracy of 84%. For larval weight, the SupportVectorRegressor model performed best with R2 of 0.9742. Overall, these findings present a novel and accurate approach to identify instar and predict the weight of O. furnacalis larvae, offering valuable insights for the implementation of management strategies against this key pest.
Collapse
Affiliation(s)
- Xiao Feng
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiali Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yunliang Ji
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Siqi Liao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000Nice, France
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| |
Collapse
|
4
|
Cicconardi F, Morris BJ, Martelossi J, Ray DA, Montgomery SH. Novel Sex-Specific Genes and Diverse Interspecific Expression in the Antennal Transcriptomes of Ithomiine Butterflies. Genome Biol Evol 2024; 16:evae218. [PMID: 39373182 PMCID: PMC11500719 DOI: 10.1093/gbe/evae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones. In this study, we investigate chemosensory evolution across six Ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses, we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesize may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behavior. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. In this study, we investigate the antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behavior, adaptation, and speciation.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Billy J Morris
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
5
|
Li ZX, Wang DX, Shi WX, Weng BY, Zhang Z, Su SH, Sun YF, Tan JF, Xiao S, Xie RH. Nitrogen-mediated volatilisation of defensive metabolites in tomato confers resistance to herbivores. PLANT, CELL & ENVIRONMENT 2024; 47:3227-3240. [PMID: 38738504 DOI: 10.1111/pce.14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.
Collapse
Affiliation(s)
- Zhi-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dan-Xia Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wen-Xuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bo-Yang Weng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhi Zhang
- General Management Office, Shennong Technology Group Co., Ltd, Jinzhong, China
| | - Shi-Hao Su
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yu-Fei Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ruo-Han Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Wang Z, Wang X, Liu W, Chen R, Liu Y. Functional Characterization of an Odorant Receptor Expressed in Newly Hatched Larvae of Fall Armyworm Spodoptera frugiperda. INSECTS 2024; 15:564. [PMID: 39194769 DOI: 10.3390/insects15080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In the past decade, Spodoptera frugiperda has emerged as a significant invasive pest globally, posing a serious threat to agriculture due to its broad diet, migratory behavior, and ability to cause extensive plant damage. While extensive research has focused on the olfactory capabilities of adult S. frugiperda, understanding of the olfactory process in larvae remains limited, despite larvae playing a crucial role in crop damage. To address this gap, we identified an odorant receptor (OR), SfruOR40, expressed in the first-instar larvae through phylogenetic analysis. Using quantitative real-time PCR, we compared SfruOR40 expression levels in larvae and adults. We then characterized the function of SfruOR40 against 67 compounds using the Xenopus oocyte expression system and found that SfruOR40 responded to three plant volatiles. Further, behavioral experiments revealed a larval attraction to (-)-trans-Caryophyllene oxide. This study elucidates SfruOR40's role in the olfactory recognition of newly hatched S. frugiperda larvae, expanding our knowledge of such mechanisms in Noctuid moths. Furthermore, it highlights the potential of plant-derived natural products for biological pest control from a behavioral ecology perspective.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Run Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Wang Q, Smid HM, Dicke M, Haverkamp A. The olfactory system of Pieris brassicae caterpillars: from receptors to glomeruli. INSECT SCIENCE 2024; 31:469-488. [PMID: 38105530 DOI: 10.1111/1744-7917.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
The olfactory system of adult lepidopterans is among the best described neuronal circuits. However, comparatively little is known about the organization of the olfactory system in the larval stage of these insects. Here, we explore the expression of olfactory receptors and the organization of olfactory sensory neurons in caterpillars of Pieris brassicae, a significant pest species in Europe and a well-studied species for its chemical ecology. To describe the larval olfactory system in this species, we first analyzed the head transcriptome of third-instar larvae (L3) and identified 16 odorant receptors (ORs) including the OR coreceptor (Orco), 13 ionotropic receptors (IRs), and 8 gustatory receptors (GRs). We then quantified the expression of these 16 ORs in different life stages, using qPCR, and found that the majority of ORs had significantly higher expression in the L4 stage than in the L3 and L5 stages, indicating that the larval olfactory system is not static throughout caterpillar development. Using an Orco-specific antibody, we identified all olfactory receptor neurons (ORNs) expressing the Orco protein in L3, L4, and L5 caterpillars and found a total of 34 Orco-positive ORNs, distributed among three sensilla on the antenna. The number of Orco-positive ORNs did not differ among the three larval instars. Finally, we used retrograde axon tracing of the antennal nerve and identified a mean of 15 glomeruli in the larval antennal center (LAC), suggesting that the caterpillar olfactory system follows a similar design as the adult olfactory system, although with a lower numerical redundancy. Taken together, our results provide a detailed analysis of the larval olfactory neurons in P. brassicae, highlighting both the differences as well as the commonalities with the adult olfactory system. These findings contribute to a better understanding of the development of the olfactory system in insects and its life-stage-specific adaptations.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
8
|
Liu Y, Zhang S, Cao S, Jacquin-Joly E, Zhou Q, Liu Y, Wang G. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol 2024; 22:61. [PMID: 38475722 DOI: 10.1186/s12915-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, UPEC, UniversitéParis Cité, 78026, Versailles, IRD, France
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
9
|
Jin S, Qian K, He L, Zhang Z. iORandLigandDB: A Website for Three-Dimensional Structure Prediction of Insect Odorant Receptors and Docking with Odorants. INSECTS 2023; 14:560. [PMID: 37367376 DOI: 10.3390/insects14060560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
The use of insect-specific odorants to control the behavior of insects has always been a hot spot in research on "green" control strategies of insects. However, it is generally time-consuming and laborious to explore insect-specific odorants with traditional reverse chemical ecology methods. Here, an insect odorant receptor (OR) and ligand database website (iORandLigandDB) was developed for the specific exploration of insect-specific odorants by using deep learning algorithms. The website provides a range of specific odorants before molecular biology experiments as well as the properties of ORs in closely related insects. At present, the existing three-dimensional structures of ORs in insects and the docking data with related odorants can be retrieved from the database and further analyzed.
Collapse
Affiliation(s)
- Shuo Jin
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Zan Zhang
- College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
10
|
Sun YL, Jiang PS, Dong BX, Tian CH, Dong JF. Candidate chemosensory receptors in the antennae and maxillae of Spodoptera frugiperda (J. E. Smith) larvae. Front Physiol 2022; 13:970915. [PMID: 36187799 PMCID: PMC9520170 DOI: 10.3389/fphys.2022.970915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although most of the damage caused by lepidopteran insects to plants is caused by the larval stage, chemosensory systems have been investigated much more frequently for lepidopteran adults than for larvae. The fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is a polyphagous and worldwide pest. To understand the larval chemosensory system in S. frugiperda, we sequenced and assembled the antennae and maxillae transcriptome of larvae in the sixth instar (larval a-m) using the Illumina platform. A total of 30 putative chemosensory receptor genes were identified, and these receptors included 11 odorant receptors (ORs), 4 gustatory receptors (GRs), and 15 ionotropic receptors/ionotropic glutamate receptors (IRs/iGluRs). Phylogeny tests with the candidate receptors and homologs from other insect species revealed some specific genes, including a fructose receptor, a pheromone receptor, IR co-receptors, CO2 receptors, and the OR co-receptor. Comparison of the expression of annotated genes between S. frugiperda adults and larvae (larval a-m) using RT-qPCR showed that most of the annotated OR and GR genes were predominantly expressed in the adult stage, but that 2 ORs and 1 GR were highly expressed in both the adult antennae and the larval a-m. Although most of the tested IR/iGluR genes were mainly expressed in adult antennae, transcripts of 3 iGluRs were significantly more abundant in the larval a-m than in the adult antennae of both sexes. Comparison of the expression levels of larval a-m expressed chemosensory receptors among the first, fourth, and sixth instars revealed that the expression of some of the genes varied significantly among different larval stages. These results increase our understanding of the chemosensory systems of S. frugiperda larvae and provide a basis for future functional studies aimed at the development of novel strategies to manage this pest.
Collapse
Affiliation(s)
- Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Peng-Shuo Jiang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Bing-Xin Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|