1
|
Hu X, Zhu X, Chen Y, Zhang W, Li L, Liang H, Usmanov BB, Donadon M, Yusupbekov AA, Zheng Y. Senescence-related signatures predict prognosis and response to immunotherapy in colon cancer. J Gastrointest Oncol 2024; 15:1020-1034. [PMID: 38989417 PMCID: PMC11231866 DOI: 10.21037/jgo-24-339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers. Cellular senescence plays a vital role in carcinogenesis by activating many pathways. In this study, we aimed to identify biomarkers for predicting the survival and recurrence of CRC through cellular senescence-related genes. Methods Utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, RNA-sequencing data and clinical information for CRC were collected. A risk model for predicting overall survival was established based on five differentially expressed genes using least absolute shrinkage and selection operator-Cox regression (LASSO-Cox regression), receiver operating characteristic (ROC), and Kaplan-Meier analyses. The study also delved into both the tumor microenvironment and the response to immunotherapy. Moreover, we gathered clinical sample data from our center in order to confirm the findings of public database analysis. Results Through ROC and Kaplan-Meier analyses, a risk model was developed using five cellular senescence-related genes [i.e., CDKN2A, SERPINE1, SNAI1, CXCL1, and ETS2] to categorize patients into high- and low-risk groups. In the TCGA-colon adenocarcinoma (COAD) and GEO-COAD cohorts, the high-risk group was associated with a bleaker forecast (P<0.05), immune cell inactivation, and insensitivity to immunotherapy in IMvigor210 database (http://research-pub.gene.com/IMvigor210CoreBiologies/). Clinical samples were then used to confirm that ETS2 and CDKN2A could serve as independent prognostic biomarkers in CRC. Conclusions Gene signatures related to cellular senescence, specifically involving CDKN2A and ETS2, are emerging as promising biomarkers for predicting CRC prognosis and guiding immunotherapy.
Collapse
Affiliation(s)
- Xiaoshan Hu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiongjie Zhu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yifan Chen
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wenkai Zhang
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Laiqing Li
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, China
| | - Huankun Liang
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, China
| | - Bekzod B Usmanov
- Department of Oncology and Hematology, Tashkent State Pediatric Institute, Tashkent, Uzbekistan
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Abrorjon A Yusupbekov
- Republican Specialized Scientific and Practical Medical Center of Oncology and Radiology (National Cancer Center of Uzbekistan), Tashkent, Uzbekistan
| | - Yanfang Zheng
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Ngo K, Gittens TH, Gonzalez DI, Hatmaker EA, Plotkin S, Engle M, Friedman GA, Goldin M, Hoerr RE, Eichman BF, Rokas A, Benton ML, Friedman KL. A comprehensive map of hotspots of de novo telomere addition in Saccharomyces cerevisiae. Genetics 2023; 224:iyad076. [PMID: 37119805 PMCID: PMC10474931 DOI: 10.1093/genetics/iyad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Telomere healing occurs when telomerase, normally restricted to chromosome ends, acts upon a double-strand break to create a new, functional telomere. De novo telomere addition (dnTA) on the centromere-proximal side of a break truncates the chromosome but, by blocking resection, may allow the cell to survive an otherwise lethal event. We previously identified several sequences in the baker's yeast, Saccharomyces cerevisiae, that act as hotspots of dnTA [termed Sites of Repair-associated Telomere Addition (SiRTAs)], but the distribution and functional relevance of SiRTAs is unclear. Here, we describe a high-throughput sequencing method to measure the frequency and location of telomere addition within sequences of interest. Combining this methodology with a computational algorithm that identifies SiRTA sequence motifs, we generate the first comprehensive map of telomere-addition hotspots in yeast. Putative SiRTAs are strongly enriched in subtelomeric regions where they may facilitate formation of a new telomere following catastrophic telomere loss. In contrast, outside of subtelomeres, the distribution and orientation of SiRTAs appears random. Since truncating the chromosome at most SiRTAs would be lethal, this observation argues against selection for these sequences as sites of telomere addition per se. We find, however, that sequences predicted to function as SiRTAs are significantly more prevalent across the genome than expected by chance. Sequences identified by the algorithm bind the telomeric protein Cdc13, raising the possibility that association of Cdc13 with single-stranded regions generated during the response to DNA damage may facilitate DNA repair more generally.
Collapse
Affiliation(s)
- Katrina Ngo
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| | - Tristen H Gittens
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| | - David I Gonzalez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| | - E Anne Hatmaker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37232 USA
| | - Simcha Plotkin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| | - Mason Engle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| | - Geofrey A Friedman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| | - Melissa Goldin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| | - Remington E Hoerr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232 USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37232 USA
| | | | - Katherine L Friedman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
3
|
Ngo K, Gittens TH, Gonzalez DI, Hatmaker EA, Plotkin S, Engle M, Friedman GA, Goldin M, Hoerr RE, Eichman BF, Rokas A, Benton ML, Friedman KL. A comprehensive map of hotspots of de novo telomere addition in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533556. [PMID: 36993206 PMCID: PMC10055226 DOI: 10.1101/2023.03.20.533556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Telomere healing occurs when telomerase, normally restricted to chromosome ends, acts upon a double-strand break to create a new, functional telomere. De novo telomere addition on the centromere-proximal side of a break truncates the chromosome but, by blocking resection, may allow the cell to survive an otherwise lethal event. We previously identified several sequences in the baker’s yeast, Saccharomyces cerevisiae , that act as hotspots of de novo telomere addition (termed Sites of Repair-associated Telomere Addition or SiRTAs), but the distribution and functional relevance of SiRTAs is unclear. Here, we describe a high-throughput sequencing method to measure the frequency and location of telomere addition within sequences of interest. Combining this methodology with a computational algorithm that identifies SiRTA sequence motifs, we generate the first comprehensive map of telomere-addition hotspots in yeast. Putative SiRTAs are strongly enriched in subtelomeric regions where they may facilitate formation of a new telomere following catastrophic telomere loss. In contrast, outside of subtelomeres, the distribution and orientation of SiRTAs appears random. Since truncating the chromosome at most SiRTAs would be lethal, this observation argues against selection for these sequences as sites of telomere addition per se. We find, however, that sequences predicted to function as SiRTAs are significantly more prevalent across the genome than expected by chance. Sequences identified by the algorithm bind the telomeric protein Cdc13, raising the possibility that association of Cdc13 with single-stranded regions generated during the response to DNA damage may facilitate DNA repair more generally.
Collapse
Affiliation(s)
- Katrina Ngo
- Department of Biological Sciences, Vanderbilt University
| | | | | | - E. Anne Hatmaker
- Department of Biological Sciences, Vanderbilt University
- Evolutionary Studies Initiative, Vanderbilt University
| | - Simcha Plotkin
- Department of Biological Sciences, Vanderbilt University
| | - Mason Engle
- Department of Biological Sciences, Vanderbilt University
| | | | - Melissa Goldin
- Department of Biological Sciences, Vanderbilt University
| | | | - Brandt F. Eichman
- Department of Biological Sciences, Vanderbilt University
- Department of Biochemistry, Vanderbilt University
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
- Evolutionary Studies Initiative, Vanderbilt University
| | | | | |
Collapse
|
4
|
Pandey S, Hajikazemi M, Zacheja T, Schalbetter S, Neale MJ, Baxter J, Guryev V, Hofmann A, Heermann DW, Juranek SA, Paeschke K. Author Correction to: Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. BMC Biol 2022; 20:29. [PMID: 35101021 PMCID: PMC8805271 DOI: 10.1186/s12915-022-01237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- Satyaprakash Pandey
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Theresa Zacheja
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | | | - Matthew J Neale
- Department of Life Science, University of Sussex, Brighton, UK
| | - Jonathan Baxter
- Department of Life Science, University of Sussex, Brighton, UK
| | - Victor Guryev
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Andreas Hofmann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Stefan A Juranek
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany. .,University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands.
| |
Collapse
|
5
|
Pandey S, Hajikazemi M, Zacheja T, Schalbetter S, Baxter J, Guryev V, Hofmann A, Heermann DW, Juranek SA, Paeschke K. Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. BMC Biol 2021; 19:247. [PMID: 34801008 PMCID: PMC8605574 DOI: 10.1186/s12915-021-01167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells. Results By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed “non-telomeric binding sites” (NTBS). We characterize Est2 binding to NTBS. Contrary to telomeres, Est2 binds to NTBS in G1 and G2 phase independently of Est1 and Est3. The absence of Est1 and Est3 renders telomerase inactive at NTBS. However, upon global DNA damage, Est1 and Est3 join Est2 at NTBS and telomere addition can be observed indicating that Est2 occupancy marks NTBS regions as particular risks for genome stability. Conclusions Our results provide a novel model of telomerase regulation in the cell cycle using internal regions as “parking spots” of Est2 but marking them as hotspots for telomere addition. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01167-1.
Collapse
Affiliation(s)
- Satyaprakash Pandey
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Theresa Zacheja
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | | | - Jonathan Baxter
- Department of Life Science, University of Sussex, Brighton, UK
| | - Victor Guryev
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands
| | - Andreas Hofmann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 12, 69120, Heidelberg, Germany
| | - Stefan A Juranek
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| | - Katrin Paeschke
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, 9713 AV, Groningen, Netherlands. .,Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|