1
|
Mishra S, Gudkov D, Lakhneko O, Baráth P, Španiel S, Danchenko M. Chronic ionizing radiation might suppress resistance to pathogens in aquatic plants without substantial oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179614. [PMID: 40373680 DOI: 10.1016/j.scitotenv.2025.179614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
Chronic ionizing radiation causes elevated levels of DNA damage and reactive oxygen species in plants. Aquatic ecosystems in Chornobyl zone, a major radiological disaster site, are contaminated by harmful radionuclides. We focused on explaining the biochemical mechanisms responsible for the susceptibility of a wild aquatic plant (common reed, Phragmites australis) grown in Chornobyl zone to biotic stress. The fungal infection assay indicated that life in a radionuclide-contaminated environment might compromise plant immunity. Proteome profiling identified 1,867 proteins and we selected several dozen proteins with consistently higher and lower abundance in the samples from the littoral of contaminated lakes by hierarchical clustering. Discordant expression of coding genes pointed to posttranscriptional regulation. Proteins that accumulated in reed upon chronic irradiation suggested a biochemically stable phenotype with effective protection against reactive carbonyls. Simultaneously, proteins that depleted in plants collected from the littoral of radiologically contaminated lakes indicated worse stress resilience and enhanced susceptibility to biotic agents. Furthermore, the quantification of antioxidant enzyme activities and carbonylated proteins rebutted the idea about substantial oxidative stress in chronically irradiated plants. We advocate the necessity to consider increased pathogen sensitivity while developing policies for the management of radionuclide-contaminated areas.
Collapse
Affiliation(s)
- Shubhi Mishra
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Akademická 2, 950 07 Nitra, Slovakia.
| | - Dmitri Gudkov
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, Volodymyra Ivasiuka 12, 04210 Kyiv, Ukraine.
| | - Olha Lakhneko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Akademická 2, 950 07 Nitra, Slovakia.
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Stanislav Španiel
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia.
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Akademická 2, 950 07 Nitra, Slovakia.
| |
Collapse
|
2
|
Záhonová K, Lukeš J, Dacks JB. Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes. Curr Biol 2025; 35:1508-1520.e2. [PMID: 40088893 DOI: 10.1016/j.cub.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/03/2024] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
Diplonemids are among the most abundant and species-rich protists in the oceans. Marine heterotrophic flagellates, including diplonemids, have been suggested to play important roles in global biogeochemical cycles. Diplonemids are also the sister taxon of kinetoplastids, home to trypanosomatid parasites of global health importance, and thus are informative about the evolution of kinetoplastid biology. However, the genomic and cellular complement that underpins diplonemids' highly successful lifestyle is underexplored. At the same time, our framework describing cellular processes may not be as broadly applicable as presumed, as it is largely derived from animal and fungal model organisms, a small subset of extant eukaryotic diversity. In addition to uniquely evolved machinery in animals and fungi, there exist components with sporadic (i.e., "patchy") distributions across other eukaryotes. A most intriguing subset are components ("jötnarlogs") stochastically present in a wide range of eukaryotes but lost in animal and/or fungal models. Such components are considered exotic curiosities but may be relevant to inferences about the complexity of the last eukaryotic common ancestor (LECA) and frameworks of modern cell biology. Here, we use comparative genomics and phylogenetics to comprehensively assess the membrane-trafficking system of diplonemids. They possess several proteins thought of as kinetoplastid specific, as well as an extensive set of patchy proteins, including jötnarlogs. Diplonemids apparently function with endomembrane machinery distinct from existing cell biological models but comparable with other free-living heterotrophic protists, highlighting the importance of including such exotic components when considering different models of ancient eukaryotic genomic complexity and the cell biology of non-opisthokont organisms.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, AB T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava 710 00, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1645/31a, České Budějovice 370 05, Czech Republic
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, AB T6G 2G3, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, České Budějovice (Budweis) 370 05, Czech Republic; Centre for Life's Origin and Evolution, Division of Biosciences (Darwin Building), University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Rozsypal J, Moos M, Vodrážka P, Nedvěd O, Košťál V. Physiology of Overwintering in a Microhabitat Fully Exposed to Adverse Weather Conditions: Lime Seed Bugs on Tree Trunks and Branches. Zoolog Sci 2025; 42. [PMID: 39932750 DOI: 10.2108/zs240064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/06/2024] [Indexed: 05/08/2025]
Abstract
The present study investigates the physiological aspects of overwintering in an exposed microhabitat in the lime seed bug, Oxycarenus lavaterae. We found that the overwintering lime seed bugs do not survive freezing of their body fluids, but instead rely on supercooling (freeze avoidance). The seasonal modulation of the supercooling capacity was very limited, with the midwinter mean supercooling point reaching -15.5°C, but the individual variability was very high (- 6°C to - 22°C). Most of the other physiological parameters of overwintering lime seed bugs (utilization of energy substrates, changes in hydration, and metabolite composition [although metabolite levels were low]) were consistent with the general knowledge gathered for other freeze-avoiding insects. A significant exception was found in the amount of osmotically active water ("freezable" water), which constituted up to 95% of the lime seed bug body water. Such a proportion is unusually high, as it typically ranges from 59% to 86% in other insects and invertebrates. At present, we have no plausible explanation for this anomaly or its possible relationship to the lime seed bug's overwintering microhabitat.
Collapse
Affiliation(s)
- Jan Rozsypal
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czechia,
| | - Martin Moos
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czechia
| | - Petr Vodrážka
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czechia
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, Prague, Czechia
| | - Oldřich Nedvěd
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czechia
- University of South Bohemia, Faculty of Science, České Budějovice, Czechia
| | - Vladimír Košťál
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czechia
| |
Collapse
|
4
|
Salomon S, Oliva O, Amato A, Bastien O, Michaud M, Jouhet J. Betaine lipids: Biosynthesis, functional diversity and evolutionary perspectives. Prog Lipid Res 2025; 97:101320. [PMID: 39793901 DOI: 10.1016/j.plipres.2025.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Betaine lipids (BL) are relatively understudied non‑phosphorus glycerolipids. They are predominantly found in algae but have also been detected in other unicellular eukaryotes, fungi, bacteria, and some bryophytes and pteridophytes. These extraplastidial lipids are considered as substitute for phospholipids in organisms, particularly under phosphate (Pi) deficiency. This review provides a broader perspective on the roles and functions of BL, revealing their functional diversity across species and environments. It also discuss the biosynthetic pathways of BL. Indeed, the pathway for DGTS (1(3),2-diacylglyceryl-3(1)-O-4'-(N,N,N-trimethyl)-homoserine), the most widespread and studied BL form, is completely known, whereas the pathway for DGTA (1(3),2-diacylglyceryl-3(1)-O-2'-(N,N,N-trimethyl)-β-alanine) is only partially understood. In this review, the role of the BTA1 gene, responsible for the synthesis of DGTS, is discussed. It is revealed to be essential in DGTA synthesis as it enables the production of its intermediate, DGTS. A phylogenetic analysis, conducted on BTA1 gene, does not seem to link the phylogenetic position of BTA1 with the BL species produced but confirms the distribution trends, with a BL diversification in marine environments and the gradual disappearance of DGTS in the evolution of the green lineage. Further research is needed to elucidate the specific roles and biosynthetic pathways of BL across different species.
Collapse
Affiliation(s)
- Sarah Salomon
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Océane Oliva
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Alberto Amato
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Olivier Bastien
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Morgane Michaud
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Juliette Jouhet
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France.
| |
Collapse
|
5
|
Benz C, Raas MWD, Tripathi P, Faktorová D, Tromer EC, Akiyoshi B, Lukeš J. On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa. mBio 2024; 15:e0293624. [PMID: 39475241 PMCID: PMC11633173 DOI: 10.1128/mbio.02936-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists. Within the supergroup Discoba, Euglenozoa forms a speciose group of unicellular flagellates-kinetoplastids, euglenids, and diplonemids. Kinetoplastids have an unconventional kinetochore system, while euglenids have subunits that are conserved among most eukaryotes. For diplonemids, a group of extremely diverse and abundant marine flagellates, it remains unclear what kind of kinetochores are present. Here, we employed deep homology detection protocols using profile-versus-profile Hidden Markov Model searches and AlphaFold-based structural comparisons to detect homologies that might have been previously missed. Interestingly, we still could not detect orthologs for most of the kinetoplastid or canonical kinetochore subunits with few exceptions including a putative centromere-specific histone H3 variant (cenH3/CENP-A), the spindle checkpoint protein Mad2, the chromosomal passenger complex members Aurora and INCENP, and broadly conserved proteins like CLK kinase and the meiotic synaptonemal complex proteins SYCP2/3 that also function at kinetoplastid kinetochores. We examined the localization of five candidate kinetochore-associated proteins in the model diplonemid, Paradiplonema papillatum. PpCENP-A shows discrete dots in the nucleus, implying that it is likely a kinetochore component. PpMad2, PpCLKKKT10/19, PpSYCP2L1KKT17/18, and PpINCENP reside in the nucleus, but no clear kinetochore localization was observed. Altogether, these results point to the possibility that diplonemids evolved a hitherto unknown type of kinetochore system. IMPORTANCE A macromolecular assembly called the kinetochore is essential for the segregation of genetic material during eukaryotic cell division. Therefore, characterization of kinetochores across species is essential for understanding the mechanisms involved in this key process across the eukaryotic tree of life. In particular, little is known about kinetochores in divergent protists such as Euglenozoa, a group of unicellular flagellates that includes kinetoplastids, euglenids, and diplonemids, the latter being a highly diverse and abundant component of marine plankton. While kinetoplastids have an unconventional kinetochore system and euglenids have a canonical one similar to traditional model eukaryotes, preliminary searches detected neither unconventional nor canonical kinetochore components in diplonemids. Here, we employed state-of-the-art deep homology detection protocols but still could not detect orthologs for the bulk of kinetoplastid-specific nor canonical kinetochore proteins in diplonemids except for a putative centromere-specific histone H3 variant. Our results suggest that diplonemids evolved kinetochores that do not resemble previously known ones.
Collapse
Affiliation(s)
- Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Maximilian W. D. Raas
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences, Utrecht, the Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Bungo Akiyoshi
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| |
Collapse
|
6
|
Zhang H, Wei T, Li Q, Fu L, Li M, He L, Wang Y. Metagenomic 18S rDNA reads revealed zonation of eukaryotic communities in the Yongle blue hole. Front Microbiol 2024; 15:1420899. [PMID: 39135873 PMCID: PMC11317397 DOI: 10.3389/fmicb.2024.1420899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The Yongle blue hole (YBH), situated in the South China Sea, represents a compelling subject of study in marine microbiology due to its unique redox-layered microbial ecosystems. However, the diversity and ecology of microbial eukaryotes within the YBH remains underexplored. This study endeavors to bridge this gap through the application of the in situ microbial filtration and fixation (ISMIFF) device to collect 0.22-30 μm microbial samples from 21 water layers of YBH. Subsequent extraction of 18S rRNA metagenomic reads of 21 metagenomes and 10 metatranscriptomes facilitated a comprehensive analysis of community structures. Findings revealed a pronounced superiority in the diversity and richness of eukaryotic microorganisms in the oxic zone compared to its suboxic and anoxic counterparts. Notably, Dinophyceae and Maxillopoda emerged as the predominant taxa based on the analysis of the 18S rRNA reads for the V4 and V9 regions, which showed stratification In their relative abundance and suggested their potential role in the thermo-halocline boundaries and oxic-anoxic interface. Specifically, In these eukaryotic microbial communities, Dinophyceae exhibited significant abundance at 20 m (20.01%) and 105 m (26.13%) water depths, while Maxillopoda was prevalent at 40 m (22.84%), 80 m (23.19%), and 100 m (15.42%) depths. A part of these organisms, identified as larvae and protists, were likely attracted by swarming chemosynthetic bacterial prey prevailing at the thermo-halocline boundaries and oxic-anoxic interface. Furthermore, the phylogenetic relationships of the major 18S operational taxonomic units (OTUs) showed a close adjacency to known species, except for three Dinophyceae OTUs. In conclusion, this study provides critical insights into the vertical distribution and transcriptional activity of <30-μm eukaryotic microbes, shedding light on the taxonomic novelty of eukaryotic microorganisms within the semi-enclosed blue holes.
Collapse
Affiliation(s)
- Hongxi Zhang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Taoshu Wei
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Qingmei Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute Co., Ltd., Sansha, China
| | - Manjie Li
- Institute for Ocean Engineering, Shenzhen International Graduate School, Shenzhen, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lisheng He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Shenzhen, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
7
|
Kryvokhyzha M, Litvinov S, Danchenko M, Khudolieieva L, Kutsokon N, Baráth P, Rashydov N. How does ionizing radiation affect amyloidogenesis in plants? Int J Radiat Biol 2024; 100:922-933. [PMID: 38530837 DOI: 10.1080/09553002.2024.2331126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Ionizing radiation is a harsh environmental factor that could induce plant senescence. We hypothesized that radiation-related senescence remodels proteome, particularly by triggering the accumulation of prion-like proteins in plant tissues. The object of this study, pea (Pisum sativum L.), is an agriculturally important legume. Research on the functional importance of amyloidogenic proteins was never performed on this species. MATERIALS AND METHODS Pea seeds were irradiated in the dose range 5-50 Gy of X-rays. Afterward, Fourier-transform infrared spectroscopy (FTIR) was used to investigate changes in the secondary structure of proteins in germinated 3-day-old seedlings. Specifically, we evaluated the ratio between the amide I and II peaks. Next, we performed protein staining with Congo red to compare the presence of amyloids in the samples. In parallel, we profiled the detergent-resistant proteome fraction by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS). Differentially accumulated proteins were functionally analyzed in MapMan software, and the PLAAC tool was used to predict putative prion-like proteins. RESULTS We showed a reduced germination rate but higher plant height and faster appearance of reproductive organs in the irradiated at dose of 50 Gy group compared with the control; furthermore, we demonstrated more β-sheets and amyloid aggregates in the roots of stressed plants. We detected 531 proteins in detergent-resistant fraction extracted from roots, and 45 were annotated as putative prion-like proteins. Notably, 29 proteins were significantly differentially abundant between the irradiated and the control groups. These proteins belong to several functional categories: amino acid metabolism, carbohydrate metabolism, cytoskeleton organization, regulatory processes, protein biosynthesis, and RNA processing. Thus, the discovery proteomics provided deep data on novel aspects of plant stress biology. CONCLUSION Our data hinted that protein accumulation stimulated seedlings' growth as well as accelerated ontogenesis and, eventually, senescence, primarily through translation and RNA processing. The increased abundance of primary metabolism-related proteins indicates more intensive metabolic processes triggered in germinating pea seeds upon X-ray exposure. The functional role of detected putative amyloidogenic proteins should be validated in overexpression or knockout follow-up studies.
Collapse
Affiliation(s)
- Maryna Kryvokhyzha
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Sergii Litvinov
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Lidiia Khudolieieva
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nataliia Kutsokon
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Peter Baráth
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Namik Rashydov
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Savková K, Danchenko M, Fabianová V, Bellová J, Bencúrová M, Huszár S, Korduláková J, Siváková B, Baráth P, Mikušová K. Compartmentalization of galactan biosynthesis in mycobacteria. J Biol Chem 2024; 300:105768. [PMID: 38367664 PMCID: PMC10951656 DOI: 10.1016/j.jbc.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.
Collapse
Affiliation(s)
- Karin Savková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktória Fabianová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jana Bellová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Bencúrová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Huszár
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Barbara Siváková
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
9
|
Lukeš J, Speijer D, Zíková A, Alfonzo JD, Hashimi H, Field MC. Trypanosomes as a magnifying glass for cell and molecular biology. Trends Parasitol 2023; 39:902-912. [PMID: 37679284 DOI: 10.1016/j.pt.2023.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
The African trypanosome, Trypanosoma brucei, has developed into a flexible and robust experimental model for molecular and cellular parasitology, allowing us to better combat these and related parasites that cause worldwide suffering. Diminishing case numbers, due to efficient public health efforts, and recent development of new drug treatments have reduced the need for continued study of T. brucei in a disease context. However, we argue that this pathogen has been instrumental in revolutionary discoveries that have widely informed molecular and cellular biology and justifies continuing research as an experimental model. Ongoing work continues to contribute towards greater understanding of both diversified and conserved biological features. We discuss multiple examples where trypanosomes pushed the boundaries of cell biology and hope to inspire researchers to continue exploring these remarkable protists as tools for magnifying the inner workings of cells.
Collapse
Affiliation(s)
- Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Dave Speijer
- Medical Biochemistry, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Juan D Alfonzo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Mark C Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
10
|
Záhonová K, Füssy Z, Stairs CW, Leger MM, Tachezy J, Čepička I, Roger AJ, Hampl V. Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans. Microb Genom 2023; 9. [PMID: 37994879 DOI: 10.1099/mgen.0.001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.
Collapse
Affiliation(s)
- Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Present address: Microbiology Research Group, Department of Biology, Lund University, Lund, Sweden
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| |
Collapse
|
11
|
Taleva G, Husová M, Panicucci B, Hierro-Yap C, Pineda E, Biran M, Moos M, Šimek P, Butter F, Bringaud F, Zíková A. Mitochondrion of the Trypanosoma brucei long slender bloodstream form is capable of ATP production by substrate-level phosphorylation. PLoS Pathog 2023; 19:e1011699. [PMID: 37819951 PMCID: PMC10593219 DOI: 10.1371/journal.ppat.1011699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The long slender bloodstream form Trypanosoma brucei maintains its essential mitochondrial membrane potential (ΔΨm) through the proton-pumping activity of the FoF1-ATP synthase operating in the reverse mode. The ATP that drives this hydrolytic reaction has long been thought to be generated by glycolysis and imported from the cytosol via an ATP/ADP carrier (AAC). Indeed, we demonstrate that AAC is the only carrier that can import ATP into the mitochondrial matrix to power the hydrolytic activity of the FoF1-ATP synthase. However, contrary to expectations, the deletion of AAC has no effect on parasite growth, virulence or levels of ΔΨm. This suggests that ATP is produced by substrate-level phosphorylation pathways in the mitochondrion. Therefore, we knocked out the succinyl-CoA synthetase (SCS) gene, a key mitochondrial enzyme that produces ATP through substrate-level phosphorylation in this parasite. Its absence resulted in changes to the metabolic landscape of the parasite, lowered virulence, and reduced mitochondrial ATP content. Strikingly, these SCS mutant parasites become more dependent on AAC as demonstrated by a 25-fold increase in their sensitivity to the AAC inhibitor, carboxyatractyloside. Since the parasites were able to adapt to the loss of SCS in culture, we also analyzed the more immediate phenotypes that manifest when SCS expression is rapidly suppressed by RNAi. Importantly, when performed under nutrient-limited conditions mimicking various host environments, SCS depletion strongly affected parasite growth and levels of ΔΨm. In totality, the data establish that the long slender bloodstream form mitochondrion is capable of generating ATP via substrate-level phosphorylation pathways.
Collapse
Affiliation(s)
- Gergana Taleva
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Michaela Husová
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| | - Erika Pineda
- Univ. Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Martin Moos
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
| | - Alena Zíková
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
| |
Collapse
|
12
|
Záhonová K, Valach M, Tripathi P, Benz C, Opperdoes FR, Barath P, Lukáčová V, Danchenko M, Faktorová D, Horváth A, Burger G, Lukeš J, Škodová-Sveráková I. Subunit composition of mitochondrial dehydrogenase complexes in diplonemid flagellates. Biochim Biophys Acta Gen Subj 2023:130419. [PMID: 37451476 DOI: 10.1016/j.bbagen.2023.130419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
In eukaryotes, pyruvate, a key metabolite produced by glycolysis, is converted by a tripartite mitochondrial pyruvate dehydrogenase (PDH) complex to acetyl-coenzyme A, which is fed into the tricarboxylic acid cycle. Two additional enzyme complexes with analogous composition catalyze similar oxidative decarboxylation reactions albeit using different substrates, the branched-chain ketoacid dehydrogenase (BCKDH) complex and the 2-oxoglutarate dehydrogenase (OGDH) complex. Comparative transcriptome analyses of diplonemids, one of the most abundant and diverse groups of oceanic protists, indicate that the conventional E1, E2, and E3 subunits of the PDH complex are lacking. E1 was apparently replaced in the euglenozoan ancestor of diplonemids by an AceE protein of archaeal type, a substitution that we also document in dinoflagellates. Here we demonstrate that the mitochondrion of the model diplonemid Paradiplonema papillatum displays pyruvate and 2-oxoglutarate dehydrogenase activities. Protein mass spectrometry of mitochondria reveal that the AceE protein is as abundant as the E1 subunit of BCKDH. This corroborates the view that the AceE subunit is a functional component of the PDH complex. We hypothesize that by acquiring AceE, the diplonemid ancestor not only lost the eukaryotic-type E1, but also the E2 and E3 subunits of the PDH complex, which are present in other euglenozoans. We posit that the PDH activity in diplonemids seems to be carried out by a complex, in which the AceE protein partners with the E2 and E3 subunits from BCKDH and/or OGDH.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Nitra, Slovakia
| | | | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
13
|
Ribeiro JM, Hartmann D, Bartošová-Sojková P, Debat H, Moos M, Šimek P, Fara J, Palus M, Kučera M, Hajdušek O, Sojka D, Kopáček P, Perner J. Blood-feeding adaptations and virome assessment of the poultry red mite Dermanyssus gallinae guided by RNA-seq. Commun Biol 2023; 6:517. [PMID: 37179447 PMCID: PMC10183022 DOI: 10.1038/s42003-023-04907-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts. We noted that midgut transcripts encoding cysteine proteases were upregulated with a blood meal. Mapping the full proteolytic apparatus, we noted a reduction in the suite of cysteine proteases, missing homologues for Cathepsin B and C. We have further identified and phylogenetically analysed three distinct transcripts encoding vitellogenins that facilitate the reproductive capacity of the mites. We also fully mapped transcripts for haem biosynthesis and the ferritin-based system of iron storage and inter-tissue trafficking. Additionally, we identified transcripts encoding proteins implicated in immune signalling (Toll and IMD pathways) and activity (defensins and thioester-containing proteins), RNAi, and ion channelling (with targets for commercial acaricides such as Fluralaner, Fipronil, and Ivermectin). Viral sequences were filtered from the Illumina reads and we described, in part, the RNA-virome of D. gallinae with identification of a novel virus, Red mite quaranjavirus 1.
Collapse
Affiliation(s)
- José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - David Hartmann
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Jiří Fara
- International Poultry Testing Station Ústrašice, Ústrašice, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Matěj Kučera
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
14
|
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batstone T, Lapébie P, Lemogo L, Sarrasin M, Stretenowich P, Tripathi P, Yazaki E, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukeš J, Burger G. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 2023; 21:99. [PMID: 37143068 PMCID: PMC10161547 DOI: 10.1186/s12915-023-01563-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| | - Sandrine Moreira
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anna Nenarokova
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tom Batstone
- School of Biological Sciences, University of Bristol, Bristol, UK
- Present address: High Performance Computing Centre, Bristol, UK
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Lionnel Lemogo
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Environment Climate Change Canada, Dorval, QC, Canada
| | - Matt Sarrasin
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Paul Stretenowich
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Canadian Centre for Computational Genomics; McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Euki Yazaki
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), Hirosawa, Wako, Saitama, Japan
| | - Takeshi Nara
- Laboratory of Molecular Parasitology, Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki City, Fukushima, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
- Present address: DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - B Franz Lang
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
15
|
Speijer D. How mitochondria showcase evolutionary mechanisms and the importance of oxygen. Bioessays 2023; 45:e2300013. [PMID: 36965057 DOI: 10.1002/bies.202300013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
Darwinian evolution can be simply stated: natural selection of inherited variations increasing differential reproduction. However, formulated thus, links with biochemistry, cell biology, ecology, and population dynamics remain unclear. To understand interactive contributions of chance and selection, higher levels of biological organization (e.g., endosymbiosis), complexities of competing selection forces, and emerging biological novelties (such as eukaryotes or meiotic sex), we must analyze actual examples. Focusing on mitochondria, I will illuminate how biology makes sense of life's evolution, and the concepts involved. First, looking at the bacterium - mitochondrion transition: merging with an archaeon, it lost its independence, but played a decisive role in eukaryogenesis, as an extremely efficient aerobic ATP generator and internal ROS source. Second, surveying later mitochondrion adaptations and diversifications illustrates concepts such as constructive neutral evolution, dynamic interactions between endosymbionts and hosts, the contingency of life histories, and metabolic reprogramming. Without oxygen, mitochondria disappear; with (intermittent) oxygen diversification occurs in highly complex ways, especially upon (temporary) phototrophic substrate supply. These expositions show the Darwinian model to be a highly fruitful paradigm.
Collapse
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
The Porifera microeukaryome: Addressing the neglected associations between sponges and protists. Microbiol Res 2022; 265:127210. [PMID: 36183422 DOI: 10.1016/j.micres.2022.127210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
While bacterial and archaeal communities of sponges are intensively studied, given their importance to the animal's physiology as well as sources of several new bioactive molecules, the potential and roles of associated protists remain poorly known. Historically, culture-dependent approaches dominated the investigations of sponge-protist interactions. With the advances in omics techniques, these associations could be visualized at other equally important scales. Of the few existing studies, there is a strong tendency to focus on interactions with photosynthesizing taxa such as dinoflagellates and diatoms, with fewer works dissecting the interactions with other less common groups. In addition, there are bottlenecks and inherent biases in using primer pairs and bioinformatics approaches in the most commonly used metabarcoding studies. Thus, this review addresses the issues underlying this association, using the term "microeukaryome" to refer exclusively to protists associated with an animal host. We aim to highlight the diversity and community composition of protists associated with sponges and place them on the same level as other microorganisms already well studied in this context. Among other shortcomings, it could be observed that the biotechnological potential of the microeukaryome is still largely unexplored, possibly being a valuable source of new pharmacological compounds, enzymes and metabolic processes.
Collapse
|
17
|
Andrade-Alviárez D, Bonive-Boscan AD, Cáceres AJ, Quiñones W, Gualdrón-López M, Ginger ML, Michels PAM. Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists. Front Cell Dev Biol 2022; 10:979269. [PMID: 36172271 PMCID: PMC9512073 DOI: 10.3389/fcell.2022.979269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the ‘TriTryps’ parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.
Collapse
Affiliation(s)
- Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Alejandro D. Bonive-Boscan
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ana J. Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Paul A. M. Michels,
| |
Collapse
|
18
|
Kučera L, Moos M, Štětina T, Korbelová J, Vodrážka P, Marteaux LD, Grgac R, Hůla P, Rozsypal J, Faltus M, Šimek P, Sedlacek R, Koštál V. A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva. J Exp Biol 2022; 225:275162. [PMID: 35380003 DOI: 10.1242/jeb.243934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
Abstract
Insects that naturally tolerate internal freezing produce complex mixtures of multiple cryoprotectants (CPs). Better knowledge on composition of these mixtures, and on mechanisms of how the individual CPs interact, could inspire development of laboratory CP formulations optimized for cryopreservation of cells and other biological material. Here we identify and quantify (using high resolution mass spectrometry) a range of putative CPs in larval tissues of a subarctic fly, Chymomyza costata that survives long-term cryopreservation in liquid nitrogen. The CPs (proline, trehalose, glutamine, asparagine, glycine betaine, glycerophosphoethanolamine, glycerophosphocholine, and sarcosine) accumulate in hemolymph in a ratio of 313:108:55:26:6:4:2.9:0.5 mmol.L-1. Using calorimetry, we show that the artificial mixtures, mimicking the concentrations of major CPs' in hemolymph of freeze-tolerant larvae, suppress the melting point of water and significantly reduce the ice fraction. We demonstrate in a bioassay that mixtures of CPs administered through the diet act synergistically rather than additively to enable cryopreservation of otherwise freeze-sensitive larvae. Using MALDI-MSI, we show that during slow extracellular freezing trehalose becomes concentrated in partially dehydrated hemolymph where it stimulates transition to the amorphous glass phase. In contrast, proline moves to the boundary between extracellular ice and dehydrated hemolymph and tissues where it likely forms a layer of dense viscoelastic liquid. We propose that amorphous glass and viscoelastic liquids may protect macromolecules and cells from thermomechanical shocks associated with freezing and transfer into and out of liquid nitrogen.
Collapse
Affiliation(s)
- Lukáš Kučera
- Czech Centre of Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tomáš Štětina
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jaroslava Korbelová
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Vodrážka
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Lauren Des Marteaux
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Robert Grgac
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Hůla
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Rozsypal
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
19
|
Zámocký M, Musil M, Danchenko M, Ferianc P, Chovanová K, Baráth P, Poljovka A, Bednář D. Deep Insights into the Specific Evolution of Fungal Hybrid B Heme Peroxidases. BIOLOGY 2022; 11:biology11030459. [PMID: 35336832 PMCID: PMC8945051 DOI: 10.3390/biology11030459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Fungi are well equipped to cope with oxidative stress and the reactive oxygen species that are, in the case of phytopathogens, produced mainly by the plant host for defence purposes. Peroxidases represent the major line of evolution for rapid decomposition of harmful peroxides in all aerobically metabolising organisms. In all the sequenced fungal genomes, many divergent genes coding for various peroxidases have been discovered, and Hybrid B heme peroxidases represent a distinctive mode of fungal-gene evolution within a large peroxidase–catalase superfamily that ranges from bacteria to plants. Abstract In this study, we focus on a detailed bioinformatics analysis of hyBpox genes, mainly within the genomes of Sclerotiniaceae (Ascomycota, Leotiomycetes), which is a specifically evolved fungal family of necrotrophic host generalists and saprophytic or biotrophic host specialists. Members of the genus Sclerotium produce only sclerotia and no fruiting bodies or spores. Thus, their physiological role for peroxidases remains open. A representative species, S. cepivorum, is a dangerous plant pathogen causing white rot in Allium species, particularly in onions, leeks, and garlic. On a worldwide basis, the white rot caused by this soil-borne fungus is apparently the most serious threat to Allium-crop production. We have also found very similar peroxidase sequences in the related fungus S. sclerotiorum, although with minor yet important modifications in the architecture of its active centre. The presence of ScephyBpox1-specific mRNA was confirmed by transcriptomic analysis. The presence of Hybrid B peroxidase at the protein level as the sole extracellular peroxidase of this fungus was confirmed in the secretome of S. cepivorum through detailed proteomic analyses. This prompted us to systematically search for all available genes coding for Hybrid B heme peroxidases in the whole fungal family of Sclerotiniaceae. We present here a reconstruction of their molecular phylogeny and analyse the unique aspects of their conserved-sequence features and structural folds in corresponding ancestral sequences.
Collapse
Affiliation(s)
- Marcel Zámocký
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; (P.F.); (K.C.); (A.P.)
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190 Vienna, Austria
- Correspondence: or ; Tel.: +421-2-5930-7481
| | - Miloš Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic; (M.M.); (D.B.)
- International Clinical Research Centre, St. Anne’s University Hospital Brno, CZ-65691 Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, CZ-61200 Brno, Czech Republic
| | - Maksym Danchenko
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (M.D.); (P.B.)
| | - Peter Ferianc
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; (P.F.); (K.C.); (A.P.)
| | - Katarína Chovanová
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; (P.F.); (K.C.); (A.P.)
| | - Peter Baráth
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (M.D.); (P.B.)
| | - Andrej Poljovka
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; (P.F.); (K.C.); (A.P.)
| | - David Bednář
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic; (M.M.); (D.B.)
- International Clinical Research Centre, St. Anne’s University Hospital Brno, CZ-65691 Brno, Czech Republic
| |
Collapse
|
20
|
Tashyreva D, Simpson A, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, George EE, Flegontova O, Záhonová K, Faktorová D, Yabuki A, Horák A, Keeling PJ, Lukeš J. Diplonemids – A Review on “New“ Flagellates on the Oceanic Block. Protist 2022; 173:125868. [DOI: 10.1016/j.protis.2022.125868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|