1
|
Duan X, Zhang C, Wu Y, Ju J, Xu Z, Li X, Liu Y, Ohdah S, Constantin OM, Pan Y, Lu Z, Wang C, Chen X, Gee CE, Nagel G, Hou ST, Gao S, Song K. Suppression of epileptic seizures by transcranial activation of K +-selective channelrhodopsin. Nat Commun 2025; 16:559. [PMID: 39789018 PMCID: PMC11718177 DOI: 10.1038/s41467-025-55818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive. There is a critical need for effective inhibitory optogenetic tools that are highly light-sensitive and capable of suppressing neuronal activity in deep brain tissue. In this study, we developed a highly sensitive moderately K+-selective channelrhodopsin (HcKCR1-hs) by molecular engineering of the recently discovered Hyphochytrium catenoides kalium (potassium) channelrhodopsin 1. Transcranial activation of HcKCR1-hs significantly prolongs the time to the first seizure, increases survival, and decreases seizure activity in several status epilepticus mouse models. Our approach for transcranial optogenetic inhibition of neural hyperactivity may be adapted for cell type-specific neuromodulation in both basic and preclinical settings.
Collapse
Affiliation(s)
- Xiaodong Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany
| | - Yujie Wu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ju
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhe Xu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuanyi Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yao Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Schugofa Ohdah
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Oana M Constantin
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Yifan Pan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghua Lu
- Research Center for Primate Neuromodulation and Neuroimaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Christine E Gee
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany
| | - Sheng-Tao Hou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany.
| | - Kun Song
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Kleis P, Paschen E, Häussler U, Haas CA. Low frequency stimulation for seizure suppression: Identification of optimal targets in the entorhinal-hippocampal circuit. Brain Stimul 2024; 17:395-404. [PMID: 38531502 DOI: 10.1016/j.brs.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis (HS) is a common form of drug-resistant focal epilepsy in adults. Treatment for pharmacoresistant patients remains a challenge, with deep brain stimulation (DBS) showing promise for alleviating intractable seizures. This study explores the efficacy of low frequency stimulation (LFS) on specific neuronal targets within the entorhinal-hippocampal circuit in a mouse model of MTLE. OBJECTIVE Our previous research demonstrated that LFS of the medial perforant path (MPP) fibers in the sclerotic hippocampus reduced seizures in epileptic mice. Here, we aimed to identify the critical neuronal population responsible for this antiepileptic effect by optogenetically stimulating presynaptic and postsynaptic compartments of the MPP-dentate granule cell (DGC) synapse at 1 Hz. We hypothesize that specific targets for LFS can differentially influence seizure activity depending on the cellular identity and location within or outside the seizure focus. METHODS We utilized the intrahippocampal kainate (ihKA) mouse model of MTLE and targeted specific neural populations using optogenetic stimulation. We recorded intracranial neuronal activity from freely moving chronically epileptic mice with and without optogenetic LFS up to 3 h. RESULTS We found that LFS of MPP fibers in the sclerotic hippocampus effectively suppressed epileptiform activity while stimulating principal cells in the MEC had no impact. Targeting DGCs in the sclerotic septal or non-sclerotic temporal hippocampus with LFS did not reduce seizure numbers but shortened the epileptiform bursts. CONCLUSION Presynaptic stimulation of the MPP-DGC synapse within the sclerotic hippocampus is critical for seizure suppression via LFS.
Collapse
Affiliation(s)
- Piret Kleis
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Enya Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
AlDajani BA, Uzair M, Qaiser H, Mir A, Mohammad Saleh N, Al Baradie R, Tahseen S, Bashir S. Evaluating the Potential of Light Exposure on Reducing the Frequency of Epileptic Seizures. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:463-467. [PMID: 37026496 DOI: 10.2174/1871527322666230407104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 04/08/2023]
Abstract
Epilepsy is one of the most common and devastating neurological disorders that causes unprovoked, recurrent seizures arising from excessive synchronized neuronal discharging. Although antiepileptic drugs (AEDs) reduce the frequency of epilepsy seizures, drug-refractory epileptic patients exert resistance to AEDs, resulting in treatment difficulty. Moreover, pharmacological treatments do not show satisfactory results in response to photosensitive epilepsy. In the recent era, light therapy emerged as a potential non-pharmacological approach for treating various diseases, including depression, seasonal affective disorders, migraine, pain, and others. Several studies have also shown the potential of light therapy in treating epilepsy. In addition, Red light evokes epilepsy seizures. Blue lenses filter the red light and significantly suppress the frequency of epilepsy seizures. However, the effects of green light on the frequency of epileptic seizures are not studied yet. In addition, light-activated gene therapy or optogenetics also emerged as a possible option for epilepsy treatment. Animal models have shown the therapeutic possibilities of optogenetics and light therapy; however, human studies addressing this possibility are still vague. This review provides the beneficial effects of light in reducing seizure frequency in epilepsy patients. A limited number of studies have been reported so far; therefore, light therapy for treating epilepsy requires more studies on animal models to provide precise results of light effects on seizures.
Collapse
Affiliation(s)
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Ali Mir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Nojoud Mohammad Saleh
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Raidah Al Baradie
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Saneela Tahseen
- Department of Family Medicine, District Headquarter Hospital, Mandi Bahauddin, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
4
|
Nakasone Y, Murakami H, Tokonami S, Oda T, Terazima M. Time-resolved study on signaling pathway of photoactivated adenylate cyclase and its nonlinear optical response. J Biol Chem 2023; 299:105285. [PMID: 37742920 PMCID: PMC10634658 DOI: 10.1016/j.jbc.2023.105285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are multidomain BLUF proteins that regulate the cellular levels of cAMP in a light-dependent manner. The signaling route and dynamics of PAC from Oscillatoria acuminata (OaPAC), which consists of a light sensor BLUF domain, an adenylate cyclase domain, and a connector helix (α3-helix), were studied by detecting conformational changes in the protein moiety. Although circular dichroism and small-angle X-ray scattering measurements did not show significant changes upon light illumination, the transient grating method successfully detected light-induced changes in the diffusion coefficient (diffusion-sensitive conformational change (DSCC)) of full-length OaPAC and the BLUF domain with the α3-helix. DSCC of full-length OaPAC was observed only when both protomers in a dimer were photoconverted. This light intensity dependence suggests that OaPAC is a cyclase with a nonlinear light intensity response. The enzymatic activity indeed nonlinearly depends on light intensity, that is, OaPAC is activated under strong light conditions. It was also found that both DSCC and enzymatic activity were suppressed by a mutation in the W90 residue, indicating the importance of the highly conserved Trp in many BLUF domains for the function. Based on these findings, a reaction scheme was proposed together with the reaction dynamics.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroto Murakami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takashi Oda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Rodriguez-Rozada S, Wietek J, Tenedini F, Sauter K, Dhiman N, Hegemann P, Soba P, Wiegert JS. Aion is a bistable anion-conducting channelrhodopsin that provides temporally extended and reversible neuronal silencing. Commun Biol 2022; 5:687. [PMID: 35810216 PMCID: PMC9271052 DOI: 10.1038/s42003-022-03636-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Optogenetic silencing allows to reveal the necessity of selected neuronal populations for various neurophysiological functions. These range from synaptic transmission and coordinated neuronal network activity to control of specific behaviors. An ideal single-component optogenetic silencing tool should be switchable between active and inactive states with precise timing while preserving its activity in the absence of light until switched to an inactive state. Although bistable anion-conducting channelrhodopsins (ACRs) were previously engineered to reach this goal, their conducting state lifetime was limited to only a few minutes and some ACRs were not fully switchable. Here we report Aion, a bistable ACR displaying a long-lasting open state with a spontaneous closing time constant close to 15 min. Moreover, Aion can be switched between the open and closed state with millisecond precision using blue and orange light, respectively. The long conducting state enables overnight silencing of neurons with minimal light exposure. We further generated trafficking-optimized versions of Aion, which show enhanced membrane localization and allow precisely timed, long-lasting all-optical control of nociceptive responses in larvae of Drosophila melanogaster. Thus, Aion is an optogenetic silencing tool for inhibition of neuronal activity over many hours which can be switched between an active and inactive state with millisecond precision. Aion is an anion-conducting, bistable channelrhodopsin that enables long-term silencing of neuronal networks, as demonstrated in organotypic hippocampal cultures and Drosophila melanogaster larvae.
Collapse
Affiliation(s)
- Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany.,Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Federico Tenedini
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kathrin Sauter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Neena Dhiman
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
6
|
Li M, Liu F, Hao X, Fan Y, Li J, Hu Z, Shi J, Fan L, Zhang S, Ma D, Guo M, Xu Y, Shi C. Rare KCND3 Loss-of-Function Mutation Associated With the SCA19/22. Front Mol Neurosci 2022; 15:919199. [PMID: 35813061 PMCID: PMC9261871 DOI: 10.3389/fnmol.2022.919199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar ataxia 19/22 (SCA19/22) is a rare neurodegenerative disorder caused by mutations of the KCND3 gene, which encodes the Kv4. 3 protein. Currently, only 22 KCND3 single-nucleotide mutation sites of SCA19/22 have been reported worldwide, and detailed pathogenesis remains unclear. In this study, Sanger sequencing was used to screen 115 probands of cerebellar ataxia families in 67 patients with sporadic cerebellar ataxia and 200 healthy people to identify KCND3 mutations. Mutant gene products showed pathogenicity damage, and the polarity was changed. Next, we established induced pluripotent stem cells (iPSCs) derived from SCA19/22 patients. Using a transcriptome sequencing technique, we found that protein processing in the endoplasmic reticulum was significantly enriched in SCA19/22-iPS-derived neurons and was closely related to endoplasmic reticulum stress (ERS) and apoptosis. In addition, Western blotting of the SCA19/22-iPS-derived neurons showed a reduction in Kv4.3; but, activation of transcription factor 4 (ATF4) and C/EBP homologous protein was increased. Therefore, the c.1130 C>T (p.T377M) mutation of the KCND3 gene may mediate misfold and aggregation of Kv4.3, which activates the ERS and further induces neuron apoptosis involved in SCA19/22.
Collapse
Affiliation(s)
- Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jiadi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cell Biology and Medical Genetics, Basic Medical College of Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cell Biology and Medical Genetics, Basic Medical College of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Changhe Shi
| |
Collapse
|