1
|
Chaudhary S, Das U, Jabbar S, Gangisetty O, Rousseau B, Hanft S, Sarkar DK. Developmental pluripotency-associated 4 increases aggressiveness of pituitary neuroendocrine tumors by enhancing cell stemness. Neuro Oncol 2025; 27:123-139. [PMID: 39093695 PMCID: PMC11726338 DOI: 10.1093/neuonc/noae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Pituitary neuroendocrine tumors, PitNETs, are often aggressive and precipitate in distant metastases that are refractory to current therapies. However, the molecular mechanism in PitNETs' aggressiveness is not well understood. Developmental pluripotency-associated 4 (DPPA4) is known as a stem cell regulatory gene and overexpressed in certain cancers, but its function in the context of PitNETs' aggressiveness is not known. METHODS We employed both rat and human models of PitNETs. In the rat pituitary tumor model, we used prenatal-alcohol-exposed (PAE) female Fischer rats which developed aggressive PitNETs following estrogen treatment, while in the human pituitary tumor model, we used aggressively proliferative cells from pituitary tumors of patients undergone surgery. Various molecular, cellular, and epigenetic techniques were used to determine the role of DPPA4 in PitNETs' aggressiveness. RESULTS We show that DPPA4 is overexpressed in association with increased cell stemness factors in aggressive PitNETs of PAE rats and of human patients. Gene-editing experiments demonstrate that DPPA4 increases the expression of cell stemness and tumor aggressiveness genes and promotes proliferation, colonization, migration, and tumorigenic potential of PitNET cells. ChIP assays and receptor antagonism studies reveal that DPPA4 binds to canonical WINTs promoters and increases directly or indirectly the WNT/β-CATENIN control of cell stemness, tumor growth, and aggressiveness of PitNETs. Epigenetic studies show the involvement of histone methyltransferase in alcohol activation of DPPA4. CONCLUSIONS These findings support a role of DPPA4 in tumor stemness and aggressiveness and provide a preclinical rationale for modulating this stemness regulator for the treatment of PitNETs.
Collapse
Affiliation(s)
- Shaista Chaudhary
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ujjal Das
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shaima Jabbar
- Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Omkaram Gangisetty
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Bénédicte Rousseau
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Simon Hanft
- Pituitary Tumor Program, Rutgers Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Dipak K Sarkar
- Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Auvinen P, Vehviläinen J, Rämö K, Laukkanen I, Marjonen-Lindblad H, Wallén E, Söderström-Anttila V, Kahila H, Hydén-Granskog C, Tuuri T, Tiitinen A, Kaminen-Ahola N. Genome-wide DNA methylation and gene expression in human placentas derived from assisted reproductive technology. COMMUNICATIONS MEDICINE 2024; 4:267. [PMID: 39702541 DOI: 10.1038/s43856-024-00694-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Assisted reproductive technology (ART) has been associated with increased risks for growth disturbance, disrupted imprinting as well as cardiovascular and metabolic disorders. However, the molecular mechanisms and whether they are a result of the ART procedures or the underlying subfertility are unknown. METHODS We performed genome-wide DNA methylation (EPIC Illumina microarrays) and gene expression (mRNA sequencing) analyses for a total of 80 ART and 77 control placentas. The separate analyses for placentas from different ART procedures and sexes were performed. To separate the effects of ART procedures and subfertility, 11 placentas from natural conception of subfertile couples and 12 from intrauterine insemination treatments were included. RESULTS Here we show that ART-associated changes in the placenta enriche in the pathways of hormonal regulation, insulin secretion, neuronal development, and vascularization. Observed decreased number of stromal cells as well as downregulated TRIM28 and NOTCH3 expressions in ART placentas indicate impaired angiogenesis and growth. DNA methylation changes in the imprinted regions and downregulation of TRIM28 suggest defective stabilization of the imprinting. Furthermore, downregulated expression of imprinted endocrine signaling molecule DLK1 associates with both ART and subfertility. CONCLUSIONS Decreased expressions of TRIM28, NOTCH3, and DLK1 bring forth potential mechanisms for several phenotypic features associated with ART. Our results support previous procedure specific findings: the changes associated with growth and metabolism link more prominently to the fresh embryo transfer with smaller placentas and newborns, than to the frozen embryo transfer with larger placentas and newborns. Furthermore, since the observed changes associate also with subfertility, they offer a precious insight to the molecular background of infertility.
Collapse
Affiliation(s)
- Pauliina Auvinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jussi Vehviläinen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Karita Rämö
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ida Laukkanen
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Heidi Marjonen-Lindblad
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Essi Wallén
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | | | - Hanna Kahila
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Christel Hydén-Granskog
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Aila Tiitinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Liu S, Gao M, Zhang X, Wei J, Cui H. FOXP2 overexpression upregulates LAMA4 expression and thereby alleviates preeclampsia by regulating trophoblast behavior. Commun Biol 2024; 7:1427. [PMID: 39487340 PMCID: PMC11530449 DOI: 10.1038/s42003-024-07149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Preeclampsia (PE) is a common pregnancy disorder characterized by hypertension and proteinuria. Trophoblast behavior severely affect PE progression. Transcription factor Forkhead box protein P2 (FOXP2) was involved in cell migration and invasion, but its role in PE progression remains unknown. Laminin subunit alpha 4 (LAMA4) was predicted as a downstream gene of FOXP2 and related to PE. Thus, we supposed that FOXP2 might regulate PE by regulating LAMA4. We found the decreased FOXP2 expression in patients with PE compared with healthy pregnant women. The rat model of PE was induced by L-NAME oral gavage. FOXP2 overexpression lowered systolic and diastolic blood pressure and restored pathological changes of rats with PE. Trophoblasts under the hypoxia/reoxygenation (H/R) treatment were used to mimic PE in vitro. The results revealed that FOXP2 overexpression inhibited apoptosis but promoted migration, invasion, and angiogenesis of H/R-treated trophoblasts. Dual luciferase and chromatin immunoprecipitation-polymerase chain reaction assays confirmed that FOXP2 transcriptionally upregulated the LAMA4 expression in trophoblasts. LAMA4 knockdown reversed the migration and invasion-promoting role of FOXP2 overexpression in trophoblasts with H/R treatment. Collectively, our findings suggest that the FOXP2/LAMA4 axis regulates PE by suppressing trophoblast apoptosis and promoting its migration, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Sishi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Man Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Xue Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Hong Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
4
|
Hu Z, Ye J, Shi S, Luo C, Wang T, Liu Y, Ye J, Sun X, Ke Y, Hou C. Maternal smoking, consumption of alcohol, and caffeinated beverages during pregnancy and the risk of childhood brain tumors: a meta-analysis of observational studies. BMC Public Health 2024; 24:1238. [PMID: 38711042 PMCID: PMC11071245 DOI: 10.1186/s12889-024-18569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND We conducted this meta-analysis to investigate the potential association between maternal smoking, alcohol and caffeinated beverages consumption during pregnancy and the risk of childhood brain tumors (CBTs). METHODS A thorough search was carried out on PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Internet to identify pertinent articles. Fixed or random effects model was applied to meta-analyze the data. RESULTS The results suggested a borderline statistically significant increased risk of CBTs associated with maternal smoking during pregnancy (OR 1.04, 95% CI 0.99-1.09). We found that passive smoking (OR 1.12, 95% CI 1.03-1.20), rather than active smoking (OR 1.00, 95% CI 0.93-1.07), led to an increased risk of CBTs. The results suggested a higher risk in 0-1 year old children (OR 1.21, 95% CI 0.94-1.56), followed by 0-4 years old children (OR 1.12, 95% CI 0.97-1.28) and 5-9 years old children (OR 1.11, 95% CI 0.95-1.29). This meta-analysis found no significant association between maternal alcohol consumption during pregnancy and CBTs risk (OR 1.00, 95% CI 0.80-1.24). An increased risk of CBTs was found to be associated with maternal consumption of caffeinated beverages (OR 1.16, 95% CI 1.07-1.26) during pregnancy, especially coffee (OR 1.18, 95% CI 1.00-1.38). CONCLUSIONS Maternal passive smoking, consumption of caffeinated beverages during pregnancy should be considered as risk factors for CBTs, especially glioma. More prospective cohort studies are warranted to provide a higher level of evidence.
Collapse
Affiliation(s)
- Zihao Hu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China
| | - Jianbo Ye
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China
| | - Shenbao Shi
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China
| | - Chuangcai Luo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China
| | - Tianwei Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China
| | - Yang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China
| | - Jing'an Ye
- Department of Neurosurgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, People's Republic of China
| | - Xinlin Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China.
| | - Chongxian Hou
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282, Guangzhou, People's Republic of China.
- Department of Neurosurgery, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), 518020, Shenzhen, People's Republic of China.
| |
Collapse
|
5
|
Terracina S, Tarani L, Ceccanti M, Vitali M, Francati S, Lucarelli M, Venditti S, Verdone L, Ferraguti G, Fiore M. The Impact of Oxidative Stress on the Epigenetics of Fetal Alcohol Spectrum Disorders. Antioxidants (Basel) 2024; 13:410. [PMID: 38671857 PMCID: PMC11047541 DOI: 10.3390/antiox13040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASD) represent a continuum of lifelong impairments resulting from prenatal exposure to alcohol, with significant global impact. The "spectrum" of disorders includes a continuum of physical, cognitive, behavioral, and developmental impairments which can have profound and lasting effects on individuals throughout their lives, impacting their health, social interactions, psychological well-being, and every aspect of their lives. This narrative paper explores the intricate relationship between oxidative stress and epigenetics in FASD pathogenesis and its therapeutic implications. Oxidative stress, induced by alcohol metabolism, disrupts cellular components, particularly in the vulnerable fetal brain, leading to aberrant development. Furthermore, oxidative stress is implicated in epigenetic changes, including alterations in DNA methylation, histone modifications, and microRNA expression, which influence gene regulation in FASD patients. Moreover, mitochondrial dysfunction and neuroinflammation contribute to epigenetic changes associated with FASD. Understanding these mechanisms holds promise for targeted therapeutic interventions. This includes antioxidant supplementation and lifestyle modifications to mitigate FASD-related impairments. While preclinical studies show promise, further clinical trials are needed to validate these interventions' efficacy in improving clinical outcomes for individuals affected by FASD. This comprehensive understanding of the role of oxidative stress in epigenetics in FASD underscores the importance of multidisciplinary approaches for diagnosis, management, and prevention strategies. Continued research in this field is crucial for advancing our knowledge and developing effective interventions to address this significant public health concern.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, 00185 Rome, Italy;
| | | | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
- Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Sabrina Venditti
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185 Rome, Italy
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
6
|
Miralles F, Vaiman D. Abnormal placental DNA methylation following environmental stress: a mere biomarker in a highly sensitive target organ? Epigenomics 2023; 15:719-721. [PMID: 37485923 DOI: 10.2217/epi-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Affiliation(s)
- Francisco Miralles
- Institut Cochin, U1016 INSERM, CNRS UMR8104, Faculté de Paris, 24 Rue du Faubourg St Jacques, Paris, 75014, France
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, CNRS UMR8104, Faculté de Paris, 24 Rue du Faubourg St Jacques, Paris, 75014, France
| |
Collapse
|