1
|
Bai L, Ding X, Sun C, Zhou J, Lu J. Effects of gallus epidermal growth factor(gEGF)from chicken embryos on growth performance, serum biochemical indices, immune function and intestinal morphology of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1976684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luhong Bai
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| | - Xiaoqing Ding
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| | - Chuansong Sun
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| | - Jianyong Zhou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| | - Jianjun Lu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| |
Collapse
|
2
|
Ma M, Zhao Z, Liang Q, Shen H, Zhao Z, Chen Z, He R, Feng S, Cao D, Gan G, Ye H, Qiu W, Deng J, Ming F, Jia J, Sun C, Li J, Zhang L. Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway. Appl Microbiol Biotechnol 2021; 105:5973-5991. [PMID: 34396488 DOI: 10.1007/s00253-021-11472-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Clostridium butyricum (C. butyricum) is a probiotic that could promote animal growth and protect gut health. So far, current studies mainly keep up with the basic biological functions of C. butyricum, missing the effective strategy to further improve its protective efficiency. A recent report about C. butyricum alleviating intestinal injury through epidermal growth factor receptor (EGFR) inspired us to bridge this gap by porcine epidermal growth factor (EGF) overexpression. Lacking a secretory overexpression system, we constructed the recombinant strains overexpressing pEGF in C. butyricum for the first time and obtained 4 recombinant strains for highly efficient secretion of pEGF (BC/pPD1, BC/pSPP, BC/pGHF, and BC/pDBD). Compared to the wild-type strain, we confirmed that the expression level ranges of the intestinal development-related genes (Claudin-1, GLUT-2, SUC, GLP2R, and EGFR) and anti-inflammation-related gene (IL-10) in IPECs were upregulated under recombinant strain stimulation, and the growth of Staphylococcus aureus and Salmonella typhimurium was significantly inhibited as well. Furthermore, a particular inhibitor (stattic) was used to block STAT3 tyrosine phosphorylation, resulting in the downregulation on antibacterial effect of recombinant strains. This study demonstrated that the secretory overexpression of pEGF in C. butyricum could upregulate the expression level of EGFR, consequently improving the intestinal protective functions of C. butyricum partly following STAT3 signal activation in IPECs and making it a positive loop. These findings on the overexpression strains pointed out a new direction for further development and utilization of C. butyricum. KEY POINTS: • By 12 signal peptide screening in silico, 4 pEGF overexpression strains of C. butyricum/pMTL82151-pEGF for highly efficient secretion of pEGF were generated for the first time. • The secretory overexpression of pEGF promoted the intestinal development, antimicrobial action, and anti-inflammatory function of C. butyricum. • The overexpressed pEGF upregulated the expression level of EGFR and further magnified the gut protective function of recombinant strains which in turn partly depended on STAT3 signal pathway in IPECs.
Collapse
Affiliation(s)
- Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zitong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zhiyang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Rongxiao He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Saixiang Feng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Ding Cao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Guanhua Gan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Hejia Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Weihong Qiu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Chongjun Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
3
|
Gao R, Tian S, Wang J, Zhu W. Galacto-oligosaccharides improve barrier function and relieve colonic inflammation via modulating mucosa-associated microbiota composition in lipopolysaccharides-challenged piglets. J Anim Sci Biotechnol 2021; 12:92. [PMID: 34376253 PMCID: PMC8356462 DOI: 10.1186/s40104-021-00612-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) have been shown to modulate the intestinal microbiota of suckling piglets to exert beneficial effects on intestinal function. However, the modulation of intestinal microbiota and intestinal function by GOS in intestinal inflammation injury models has rarely been reported. In this study, we investigated the effects of GOS on the colonic mucosal microbiota composition, barrier function and inflammatory response of lipopolysaccharides (LPS)-challenged suckling piglets. METHODS A total of 18 newborn suckling piglets were divided into three groups, the CON group, the LPS-CON group and the LPS-GOS group. Piglets in the LPS-GOS group were orally fed with 1 g/kg body weight of GOS solution every day. On the d 14, piglets in the LPS-CON and LPS-GOS group were challenged intraperitoneally with LPS solution. All piglets were slaughtered 2 h after intraperitoneal injection and sampled. RESULTS We found that the colonic mucosa of LPS-challenged piglets was significantly injured and shedding, while the colonic mucosa of the LPS-GOS group piglets maintained its structure. Moreover, GOS significantly reduced the concentration of malondialdehyde (MDA) and the activity of reactive oxygen species (ROS) in the LPS-challenged suckling piglets, and significantly increased the activity of total antioxidant capacity (T-AOC). GOS significantly increased the relative abundance of norank_f__Muribaculaceae and Romboutsia, and significantly decreased the relative abundance of Alloprevotella, Campylobacter and Helicobacter in the colonic mucosa of LPS-challenged suckling piglets. In addition, GOS increased the concentrations of acetate, butyrate and total short chain fatty acids (SCFAs) in the colonic digesta of LPS-challenged suckling piglets. GOS significantly reduced the concentrations of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and cluster of differentiation 14 (CD14), and the relative mRNA expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) in the LPS-challenged suckling piglets. In addition, GOS significantly reduced the relative mRNA expression of mucin2 (MUC2), and significantly increased the protein expression of Claudin-1 and zonula occluden-1 (ZO-1) in LPS-challenged suckling piglets. CONCLUSIONS These results suggested that GOS can modulate the colonic mucosa-associated microbiota composition and improve the intestinal function of LPS-challenged suckling piglets.
Collapse
Affiliation(s)
- Ren Gao
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shiyi Tian
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
4
|
Ren K, Wang B, Qi Q. Development of a new EGFR antibody antagonist which exhibits potential biological effects against laryngeal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:964. [PMID: 34277764 PMCID: PMC8267258 DOI: 10.21037/atm-21-1839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022]
Abstract
Background Laryngeal cancer is a common malignant tumor of the head and neck. Clinical treatment methods mainly include radiotherapy and chemotherapy, but the toxicity and side effects of these treatments seriously affect the quality of life of patients. Currently, there are no specific anti-laryngeal cancer drugs available. Therefore, it is necessary to develop new targeted drugs for laryngeal cancer. Methods We established a cell model of laryngeal cancer in vitro and a TU686 xenograft model in vivo. We then carried out the related research through a series of experiments [including laser confocal microscopy, enzyme linked immune sorbent assay (ELISA) and Western blot]. Results The results showed that the epidermal growth factor receptor (EGFR) antibody antagonist 6E-C could not only specifically bind to EGFR, but also specifically inhibit the binding of EGF to EGFR. Further analysis indicated that 6E-C could inhibit the EGFR-mediated intracellular signaling pathway. Furthermore, 6E-C inhibited xenograft tumor growth in vivo. Conclusions In summary, we have successfully prepared a new anti-EGFR antibody antagonist, which exhibited anti-laryngeal cancer effects in vitro and in vivo. The current research demonstrates that the EGFR antibody antagonist 6E-C shows potential as an effective anti-laryngeal cancer agent, with potential clinical application value. This study therefore provides a solid foundation for related research in the future.
Collapse
Affiliation(s)
- Kai Ren
- Otolaryngology & Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Binquan Wang
- Otolaryngology & Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qingyan Qi
- Medical Imaging Department, Shanxi Eye Hospital, Taiyuan, China
| |
Collapse
|
5
|
Zhou J, Yao J, Bai L, Sun C, Lu J. Effects of Dietary Supplementation of gEGF on the Growth Performance and Immunity of Broilers. Animals (Basel) 2021; 11:ani11051394. [PMID: 34068418 PMCID: PMC8153569 DOI: 10.3390/ani11051394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
EGF has been shown to stimulate the growth of animals. In this study, the content of EGF in chicken embryos (gallus EGF, gEGF) aged from 1 to 20 days of incubation were determined by ELISA kit, and the 5-day-old chicken embryos with the highest content of 5593 pg/g were selected to make gEGF crude extracts. A total of 1500 1-day-old Xianju chickens were randomly divided into five groups with six replicates of 50 chickens each. The control group was fed a basal diet, and other treatment diets were supplemented with 4, 8, 16 and 32 ng/kg gEGF crude extract, respectively. The experiment lasted for 30 days. Chicks were harvested at the end of the experiment, and liver, spleen, thymus, bursa and serum samples were collected. Results showed that average daily gain (ADG) and average daily feed intake (ADFI) of 16 ng/kg group were higher than those in the control group (p < 0.05). The serum uric acid (UA) of the 16 ng/kg group was reduced (p < 0.01), and the serum alkaline phosphatase (AKP) of the 16 ng/kg group increased (p < 0.01). The gEGF extract also increased chick's antioxidant capacity, decreased malondialdehyde (MDA) and increased catalase (CAT) in the liver and serum of 16 ng/kg groups in compared to the control group (p < 0.01). Furthermore, immunity was improved by the addition of gEGF to broiler diets. The serum immunoglobin A (IgA) content of 8 and 16 ng/kg groups and the serum immunoglobin M (IgM) content of 4 and 8 ng/kg groups were increased (p < 0.05) compared to the control group. The bursa index of each experimental group was higher than the control group (p < 0.01). These findings demonstrate that the crude extract of gEGF prepared in this experiment could improve the growth performance, antioxidant capacity and immunity of broilers.
Collapse
Affiliation(s)
- Jianyong Zhou
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China;
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
| | - Jingyi Yao
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
| | - Luhong Bai
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
| | - Chuansong Sun
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
| | - Jianjun Lu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (J.Y.); (L.B.); (C.S.)
- Correspondence: ; Tel.: +86-571-88982511
| |
Collapse
|
6
|
Expression of Gallus Epidermal Growth Factor (gEGF) with Food-Grade Lactococcus lactis Expression System and Its Biological Effects on Broiler Chickens. Biomolecules 2021; 11:biom11010103. [PMID: 33466817 PMCID: PMC7829775 DOI: 10.3390/biom11010103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
As a multifunctional polypeptide, epidermal growth factor (EGF) increases growth performance or enhances resistance to diseases in commercial broilers under adverse conditions. In this study, a recombinant Lactococcus lactis was established to produce the secretory form of bioactive gEGF. The results of in vitro testing showed that gEGF promoted the proliferation of chicken embryo fibroblast cells. A total of 63 5-day-old broiler chickens were evenly divided into three groups and treated with either M17 medium (the control group), supernatant of LL-pNZ8149 fermentation product (the P-LL group), or supernatant of LL-pNZ8149-gEGF fermentation product (the gEGF group). In two weeks, many measurements of growth, immunity and the intestines were significantly higher in the gEGF group than those in the control and the P-LL groups. Our study showed that the bioactive gEGF could be expressed with Lactococcus lactis expression system with the potential to enhance growth performance, immune function, and intestinal development in broiler chickens.
Collapse
|
7
|
Microbial Mechanistic Insights into the Role of Sweet Potato Vine on Improving Health in Chinese Meishan Gilt Model. Animals (Basel) 2019; 9:ani9090632. [PMID: 31480207 PMCID: PMC6770065 DOI: 10.3390/ani9090632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Sweet potato vine as a source of fiber had been used in China for many years. We investigated the effects of fresh sweet potato vine on intestinal and plasma metabolites as well as colon microbial composition in Chinese Meishan gilts. Results suggest that sweet potato vine promoted intestinal muscle development, decreased gut permeability, endotoxin and pro-inflammatory cytokines concentrations, and increased butyrate production as well as beneficial flora, thus improving gut health. Abstract This study explored the impact of fresh sweet potato vine on the growth as well as the metabolites and colon microbial composition in Chinese Meishan gilt. Twenty Meishan gilts (body weight 30 ± 0.18 kg, n = 10 per treatment) were randomly assigned to a control (CON) or sweet potato vine (SPV) supplementation diet treatment. Gilts were housed in individual stalls. In the SPV treatment, 2 kg fresh sweet potato vine was used instead of 0.18 kg basal diet which provided the same amount of digestive energy and crude protein with the exception of crude fiber (CON, 51.00 g/d vs. SPV, 73.94 g/d) in terms of dry matter intake. Gilts were slaughtered and samples were collected on day 19 after the third estrus cycle. The SPV treatment tended to increase slaughter weight of gilts (p = 0.07); it also increased (p < 0.05) gastrointestinal tract weight and intestinal muscle layer thickness. SPV treatment also decreased (p < 0.05) carcass yield and subcutaneous adipose tissue. The concentration of zonulin and endotoxin in plasma was decreased (p < 0.05) as the gilt consumed the SPV diet. Colonic fecal concentrations of endotoxin, lipocalin-2, and tumor necrosis factor-α (TNF-α) were decreased (p < 0.05), and interleukin-10 (IL-10) was increased (p < 0.05) in the SPV treatment. Butyric acid and acetate concentration in colonic content as well as acetate concentration in caecal content were increased (p < 0.05) in the SPV treatment. Furthermore, the expression of carnitine palmityl transferase (CPT-1) and peroxisome proliferator-activated receptor-α (PPAR-α) in gilt liver in SPV treatment was increased (p < 0.05) in comparison with CON treatment. Meanwhile, the composition of the colon microbes was also altered by SPV; representative changes included an increase in Lactobacillus, Bacteroides, Roseburia, and Lachnospira. These results indicate that gilt fed with sweet potato vine had decreased gut permeability, endotoxin and pro-inflammatory cytokines concentrations; colonic fecal microbiota was also changed, which may be further beneficial to the intestinal health of Chinese Meishan gilt.
Collapse
|
8
|
Wang L, Zhu F, Yang H, Li J, Li Y, Ding X, Xiong X, Yin Y. Effects of dietary supplementation with epidermal growth factor on nutrient digestibility, intestinal development and expression of nutrient transporters in early-weaned piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:618-625. [PMID: 30659707 DOI: 10.1111/jpn.13059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
The abnormalities in intestinal morphology and digestive function during weaning are associated with the loss of milk-borne growth factors. Epidermal growth factor (EGF) has been shown to stimulate the growth of animals. This study was to determine the effect of dietary EGF on nutrient digestibility, intestinal development and the expression of genes encoding nutrient transporters in weaned piglets. Forty-two piglets were weaned at 21 days and assigned to one of three treatment groups: (1) basal diet (control), (2) basal diet + 200 µg/kg EGF or (3) basal diet + 400 µg/kg EGF. Each treatment consisted of 14 replicates, and seven piglets from each treatment were sampled on day 7 and 14. The EGF supplementation significantly elevated (p < 0.05) the coefficients of total tract apparent digestibility of crude protein, calcium and phosphorus, but tended to decrease sucrase activity (p < 0.10) than the control group. At day 7 post-weaning, animals receiving EGF diets showed a tendency (p < 0.10) towards greater ileal villus height (VH), jejunal crypt depth (CD) and duodenal VH:CD when compared with the control group. Moreover, the mRNA levels of glucose transporter 2 (Slc2a2), neutral amino acid transporter (Slc6a19) and calbindin D9k (S100G) tended to be higher (p < 0.10) for EGF groups than the control group. By day 14, EGF supplementation markedly enhanced (p < 0.05) the VH, CD and VH:CD in the jejunum compared to the control group. This addition also up-regulated (p < 0.05) the mRNA level and the protein abundance of peptide transporter 1 than the control group. These findings demonstrated that dietary EGF beneficially enhanced nutrient digestibility, improved intestinal development and increased the mRNA expression of nutrient transporters in weaned piglets.
Collapse
Affiliation(s)
- Lixia Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Fan Zhu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xia Xiong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
9
|
Tian S, Wang J, Yu H, Wang J, Zhu W. Effects of galacto-oligosaccharides on growth and gut function of newborn suckling piglets. J Anim Sci Biotechnol 2018; 9:75. [PMID: 30349690 PMCID: PMC6193306 DOI: 10.1186/s40104-018-0290-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background Most research on galacto-oligosaccharides (GOS) has mainly focused on their prebiotic effects on the hindgut, but their beneficial effects on the small intestine (SI) have received little attention. Since jejunum is the important place to digest and absorb nutrients efficiently, optimal maturation of the jejunum is necessary for maintaining the high growth rate in the neonate. Therefore, this study investigates the effect of the early intervention with GOS on the intestinal development of the jejunum. Methods A total of 6 litters of neonatal piglets (10 piglets per litter; Duroc × Landrace × Large White) with an average birth weight of 1.55 ± 0.05 kg received 1 of 2 treatments based on their assignment to either the control (CON) group or the GOS (GOS) group in each litter. Piglets in the GOS group were orally administrated 10 mL of a GOS solution (reaching 1 g GOS/kg body weight) per day from the age of 1 to 7 d; the piglets in the CON group were treated with the same dose of physiological saline. All piglets were weaned on d 21. On d 8 and 21 of the experimental trial, 1 pig per group from each of the 6 litters was euthanized. Results The early intervention with GOS increased the average daily gains in the third week (P < 0.05). Decreased crypt depth was also observed in the jejunum of the piglets on d 21 (P < 0.05). The early intervention with GOS increased the jejunal lactase activity on d 8, maltase activity and sucrase activity on d 21 (P < 0.05). In addition, the early intervention with GOS also facilitated the mRNA expression of Sodium glucose co-transporter 1 (SGLT1) on d 8 and the mRNA expression of Glucose transporter type 2 (GLUT2) on d 21 (P < 0.05). It was further determined that GOS up-regulated the mRNA expression of preproglucagon (GCG), insulin-like growth factor 1 (IGF-1), insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor (EGF). GOS also up-regulated the protein expression of glucagon-like peptide-2 (GLP-2) and EGF in the jejunum of the piglets. Furthermore, it was also found that GOS enhanced the protein expression of ZO-1 and occludin on d 8 (P < 0.05), as well as increased the mRNA expression of TGF-β and decrease the mRNA expression of IL-12 (P < 0.05). Conclusions These results indicate that GOS have a positive effect on piglet growth performance in addition to decreasing the crypt depth and enhancing functional development in jejunum of suckling piglets. Electronic supplementary material The online version of this article (10.1186/s40104-018-0290-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiyi Tian
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jue Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hu Yu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Holtan SG, DeFor TE, Panoskaltsis-Mortari A, Khera N, Levine JE, Flowers MED, Lee SJ, Inamoto Y, Chen GL, Mayer S, Arora M, Palmer J, Cutler CS, Arai S, Lazaryan A, Newell LF, Jagasia MH, Pusic I, Wood WA, Renteria AS, Yanik G, Hogan WJ, Hexner E, Ayuk F, Holler E, Bunworasate U, Efebera YA, Ferrara JLM, Pidala J, Howard A, Wu J, Bolaños-Meade J, Ho V, Alousi A, Blazar BR, Weisdorf DJ, MacMillan ML. Amphiregulin modifies the Minnesota Acute Graft-versus-Host Disease Risk Score: results from BMT CTN 0302/0802. Blood Adv 2018; 2:1882-1888. [PMID: 30087106 PMCID: PMC6093743 DOI: 10.1182/bloodadvances.2018017343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/26/2018] [Indexed: 01/07/2023] Open
Abstract
Amphiregulin (AREG) is an epidermal growth factor receptor ligand that can restore integrity to damaged intestinal mucosa in murine models of acute graft-versus-host disease (aGVHD). We previously reported that circulating AREG is elevated in late-onset aGVHD (occurring after 100 days posttransplant), but its clinical relevance in the context of aGVHD risk is unknown. We measured AREG in 251 aGVHD onset blood samples from Blood and Marrow Clinical Trials Network (BMT CTN) primary treatment trials and determined their association with GVHD severity, day 28 complete or partial response (CR/PR) to first-line therapy, overall survival (OS), and nonrelapse mortality (NRM). Every doubling of plasma AREG was associated with a 33% decrease in the odds of day 28 CR/PR (odds ratio [OR], 0.67; P < .01). An AREG threshold of 33 pg/mL or greater divided patients with Minnesota standard-risk (SR) aGVHD into a distinct group with a significantly lower likelihood of: day 28 CR/PR (72% vs 85%; P = .02); greater 2-year NRM (42% vs 15%; P < .01); and inferior OS (40% vs 66%; P < .01). High AREG ≥ 33 pg/mL also stratified patients with Minnesota high-risk (HR) aGVHD: day 28 CR/PR (54% vs 83%; P = .03) and 2-year NRM (53% vs 11%; P < .01), with a trend toward inferior 2-year OS (37% vs 60%; P = .09). High-circulating AREG (≥33 pg/mL) reclassifies patients into HR subgroups and thereby further refines the Minnesota aGVHD clinical risk score.
Collapse
Affiliation(s)
- Shernan G Holtan
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | - Todd E DeFor
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | | | | | - John E Levine
- Blood and Marrow Transplantation Program, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mary E D Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Sebastian Mayer
- Department of Medicine, Weill Cornell Medical Center, New York, NY
| | - Mukta Arora
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | | | - Corey S Cutler
- Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sally Arai
- Division of Blood and Marrow Transplantation, Stanford University Medical Center, Stanford, CA
| | - Aleksandr Lazaryan
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | - Laura F Newell
- Center for Hematologic Malignancies, Oregon Health and Science University, Portland, OR
| | - Madan H Jagasia
- Division of Hematology/Oncology, Stem Cell Transplantation, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Iskra Pusic
- Medical Oncology, Washington University Medical Center, St. Louis, MO
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Anne S Renteria
- Blood and Marrow Transplantation Program, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gregory Yanik
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI
| | - William J Hogan
- Blood and Marrow Transplantation Program, Mayo Clinic, Rochester, MN
| | - Elizabeth Hexner
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center, Hamburg-Eppendorf, Germany
| | - Ernst Holler
- Blood and Marrow Transplantation Program, University of Regensburg, Regensburg, Germany
| | - Udomsak Bunworasate
- Blood and Marrow Transplantation Program, Chulalongkorn University, Bangkok, Thailand
| | - Yvonne A Efebera
- Blood and Marrow Transplantation Program, The Ohio State University, Columbus, OH
| | - James L M Ferrara
- Blood and Marrow Transplantation Program, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joseph Pidala
- Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Alan Howard
- National Marrow Donor Program, Minneapolis, MN
| | - Juan Wu
- The EMMES Corporation, Rockville, MD
| | - Javier Bolaños-Meade
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD; and
| | - Vincent Ho
- Division of Blood and Marrow Transplantation, Stanford University Medical Center, Stanford, CA
| | | | - Bruce R Blazar
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | - Daniel J Weisdorf
- Hematology, Oncology and Transplant, University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
11
|
Low EGF in myeloablative allotransplantation: association with severe acute GvHD in BMT CTN 0402. Bone Marrow Transplant 2017; 52:1300-1303. [PMID: 28581470 DOI: 10.1038/bmt.2017.89] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor (EGF) is a recently described biomarker of acute GvHD (aGvHD). Whether low plasma EGF prior to hematopoietic cell transplantation (HCT) predisposes to the development of aGvHD, or whether EGF levels fall because of severe aGvHD, is unknown. To evaluate this, we tested plasma samples collected at pre-HCT baseline, day +28 and day +100 during the course of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) 0402. We found that baseline EGF plasma concentrations were three-fold lower in HCT recipients compared to donors (24.3 vs 76.0 pg/mL, P<0.01). Ninety-one patients (43%) had a markedly low plasma EGF at pre-HCT baseline, defined as <2.7 pg/mL-an optimal cutpoint associated with development of grade III-IV aGvHD. Patients with these low EGF levels at pre-HCT baseline had a 2.9-fold increased risk of grade III-IV aGvHD by day +100. Patients with low EGF at day +28 after HCT had an increased risk of death (relative risk 2.3, P=0.02) by 1 year due to transplant-related toxicities, especially aGvHD. Our results suggest that very low plasma EGF early in the HCT process may predispose patients to an increased risk of death, potentially due to epithelial damage and limited repair capacity.
Collapse
|
12
|
Epidermal Growth Factor and Intestinal Barrier Function. Mediators Inflamm 2016; 2016:1927348. [PMID: 27524860 PMCID: PMC4976184 DOI: 10.1155/2016/1927348] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/26/2016] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.
Collapse
|
13
|
Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl Microbiol Biotechnol 2016; 100:5691-701. [DOI: 10.1007/s00253-016-7557-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
|
14
|
Zhou H, Gao Y, Gao G, Lou Y. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese. Curr Microbiol 2015; 71:693-8. [DOI: 10.1007/s00284-015-0904-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/25/2015] [Indexed: 12/11/2022]
|
15
|
Xu S, Wang D, Zhang P, Lin Y, Fang Z, Che L, Wu D. Oral administration of Lactococcus lactis-expressed recombinant porcine epidermal growth factor stimulates the development and promotes the health of small intestines in early-weaned piglets. J Appl Microbiol 2015; 119:225-35. [PMID: 25898849 DOI: 10.1111/jam.12833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/29/2022]
Abstract
AIMS We previously generated Lactococcus lactis-expressed recombinant porcine epidermal growth factor (LL-pEGF), and demonstrated improved growth performance in early-weaned piglets. This study investigates the effect of LL-pEGF on the development and expression of genes that maintain the structural integrity and function of the small intestine in early-weaned piglets. METHODS AND RESULTS The mitogenic effect of porcine epidermal growth factor (pEGF) was tested in vitro with the 5-Bromodeoxyuridine (BrdU) incorporation assay in fibroblast cells. In the in vivo study, 40 weaned piglets were randomly allocated to control, antibiotic control, Lc. lactis-expressing empty vector (LL-EV) and LL-pEGF treatment groups. Cells treated with LL-pEGF had higher BrdU-positive stained cells than those in the control and the LL-EV treatments (P < 0·05). Scanning electron microscope and histological examination demonstrated that the small intestinal villi treated with LL-pEGF were higher (P < 0·05) than in the other treatments. LL-pEGF increased the messenger RNA (mRNA) expression levels of the intestinal structural integrity proteins trefoil factor 3, claudin 1 (CLDN1), occludin and zonula occludens 1 (ZO-1), the digestive enzymes sucrose, aminopeptidase A, and aminopeptidase N, and the nutrient transporters sodium/glucose cotransporter 1 (SGLT1), glucose transporter 2, and peptide transporter 1 (PEPT1) as compared with the control (P < 0·05) in the small intestine. Meanwhile, the mRNA levels of CLDN1 in the jejunum and ZO-1 in the ileum were higher in the LL-EV group than in the control group (P < 0·05). LL-EV and the antibiotic control increased SGLT1 mRNA in the jejunum and PEPT1 mRNA in the ileum compared with the control (P < 0·05). CONCLUSIONS Recombinant pEGF promotes cell mitosis. Oral administration of Lc. lactis-expressing pEGF stimulated intestinal development by upregulating the gene expression of the intestinal structural integrity proteins, the digestive enzymes and the nutrient transporters. SIGNIFICANCE AND IMPACT OF THE STUDY The combination of epidermal growth factor and genetically modified micro-organisms may be used as dietary supplements to reduce intestinal stress in animals and even humans.
Collapse
Affiliation(s)
- S Xu
- Animal Nutrition Institute, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - D Wang
- Animal Nutrition Institute, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - P Zhang
- Animal Nutrition Institute, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Y Lin
- Animal Nutrition Institute, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Z Fang
- Animal Nutrition Institute, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - L Che
- Animal Nutrition Institute, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - D Wu
- Animal Nutrition Institute, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|