1
|
Liu G, Gao T, Yao H, Liu Y, Lu C. Transcriptional regulator XtgS is involved in iron transition and attenuates the virulence of Streptococcus agalactiae. Res Vet Sci 2021; 138:109-115. [PMID: 34126449 DOI: 10.1016/j.rvsc.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Streptococcus agalactiae (GBS) is an important pathogen that has increasingly received attention for its role in invasive infections and its broad host range. Research on the regulation of gene expression could illuminate GBS pathogenesis. We previously identified a novel transcriptional regulator XtgS, which is a negative regulator of GBS pathogenicity. Here, we demonstrate that XtgS overexpression significantly attenuated GBS virulence in zebrafish infection tests, and XtgS indirectly downregulated the transcription of two iron transport systems based on the results of transcriptomic analysis, electrophoretic mobility shift assays (EMSAs) and lacZ fusion assays. Subsequent studies verified that the inactivation of iron transport system 1 resulted in GBS excessive iron accumulation and attenuated virulence. Thus, we infer that the downregulation of iron transport system 1 caused by XtgS overexpression probably attenuates bacterial virulence, which partially clarifies the mechanism by which XtgS alleviates the pathogenesis. These findings provide new insights into the relationship between exogenous transcriptional regulation and bacterial virulence.
Collapse
Affiliation(s)
- Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| | - Tingting Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
2
|
Guo G, Qin S, Kong X, Wang Z, Shen Y, Huo X, Zhang W. Identification of novel fibronectin-binding proteins by 2D-far Western blot in atypical enteropathogenic Escherichia coli serotype O55:H7. Microb Pathog 2020; 150:104682. [PMID: 33296715 DOI: 10.1016/j.micpath.2020.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is a subgroup of EPEC, which is one of the major pathogens responsible for fatal diarrhoea in children. Compared with typical EPEC (tEPEC), aEPEC lack an EAF (EPEC adherence factor) plasmid (pEAF), which encodes a series of virulence-associated genes. The extracellular matrix (ECM) component of human cells has been reported to be an important element in the interaction between host and bacterial pathogens. In this research, a 2D-Far Western blot method was performed to identifiy the bacterial proteins that could bind to fibronectin, one of the most common constituents of ECM. A total of 17 protein spots were identified, including 4 outer membrane proteins (OMPs), namely, OmpC, OmpD, OmpX and LamB. In vitro studies were used to determine whether these OMPs were involved in the adherence process. Through indirect immunofluorescence assays, four OMPs could be observed on the surfaces of host cells. After incubating the cells with the recombinant proteins, the adhesion rate of the O55:H7 isolate was decreased. Furthermore, the deletion of OmpX and LamB can also decrease the adhesion rate of WT. Taken together, a high-throughput screening method for host ECM-binding proteins based on 2D Far-Western blot was established, and four outer membrane proteins identified by this method were found to be involved in the adherence process.
Collapse
Affiliation(s)
- Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Si Qin
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Xuewei Kong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Zhuohao Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Yun Shen
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Xiang Huo
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
3
|
The Novel Streptococcal Transcriptional Regulator XtgS Negatively Regulates Bacterial Virulence and Directly Represses PseP Transcription. Infect Immun 2020; 88:IAI.00035-20. [PMID: 32690636 DOI: 10.1128/iai.00035-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/04/2020] [Indexed: 01/14/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) has received continuous attention for its involvement in invasive infections and its broad host range. Transcriptional regulators have an important impact on bacterial adaptation to various environments. Research on transcriptional regulators will shed new light on GBS pathogenesis. In this study, we identified a novel XRE-family transcriptional regulator encoded on the GBS genome, designated XtgS. Our data demonstrate that XtgS inactivation significantly increases bacterial survival in host blood and animal challenge test, suggesting that it is a negative regulator of GBS pathogenicity. Further transcriptomic analysis and quantitative reverse transcription-PCR (qRT-PCR) mainly indicated that XtgS significantly repressed transcription of its upstream gene pseP Based on electrophoretic mobility shift and lacZ fusion assays, we found that an XtgS homodimer directly binds a palindromic sequence in the pseP promoter region. Meanwhile, the PseP and XtgS combination naturally coexists in diverse Streptococcus genomes and has a strong association with sequence type, serotype diversification and host adaptation of GBS. Therefore, this study reveals that XtgS functions as a transcriptional regulator that negatively affects GBS virulence and directly represses PseP expression, and it provides new insights into the relationships between transcriptional regulator and genome evolution.
Collapse
|
4
|
Saralahti A, Rämet M. Zebrafish and Streptococcal Infections. Scand J Immunol 2015; 82:174-83. [PMID: 26095827 DOI: 10.1111/sji.12320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
Streptococcal bacteria are a versatile group of gram-positive bacteria capable of infecting several host organisms, including humans and fish. Streptococcal species are common colonizers of the human respiratory and gastrointestinal tract, but they also cause some of the most common life-threatening, invasive infections in humans and aquaculture. With its unique characteristics and efficient tools for genetic and imaging applications, the zebrafish (Danio rerio) has emerged as a powerful vertebrate model for infectious diseases. Several zebrafish models introduced so far have shown that zebrafish are suitable models for both zoonotic and human-specific infections. Recently, several zebrafish models mimicking human streptococcal infections have also been developed. These models show great potential in providing novel information about the pathogenic mechanisms and host responses associated with human streptococcal infections. Here, we review the zebrafish infection models for the most relevant streptococcal species: the human-specific Streptococcus pneumoniae and Streptococcus pyogenes, and the zoonotic Streptococcus iniae and Streptococcus agalactiae. The recent success and the future potential of these models for the study of host-pathogen interactions in streptococcal infections are also discussed.
Collapse
Affiliation(s)
- A Saralahti
- BioMediTech, University of Tampere, Tampere, Finland
| | - M Rämet
- BioMediTech, University of Tampere, Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Center, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|