1
|
Ohlopkova OV, Kononova YV, Tyumentseva MA, Tyumentsev AI, Shestopalov AM, Akimkin VG. Plain-nosed bats (family Vespertilionidae) as a possible reservoir of lyssaviruses and coronaviruses in Western Siberia and the south of European Russia. Vopr Virusol 2024; 69:415-428. [PMID: 39527764 DOI: 10.36233/0507-4088-267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The review presents current data on the chiropterofauna inhabiting Western Siberia and the south of the European part of Russia. A general description of the genus of lyssaviruses and the family of coronaviruses is given. The potential for virus carriage in relation to lyssaviruses and coronaviruses in bat populations of two geographically distant regions is considered.
Collapse
Affiliation(s)
- O V Ohlopkova
- Central Research Institute of Epidemiology, Rospotrebnadzor
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | - Y V Kononova
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | | | - A I Tyumentsev
- Central Research Institute of Epidemiology, Rospotrebnadzor
| | - A M Shestopalov
- Virology Research Institute of the Federal Research Center for Fundamental and Translational Medicine
| | - V G Akimkin
- Central Research Institute of Epidemiology, Rospotrebnadzor
| |
Collapse
|
2
|
Nauwelaers I, Van den Eynde C, Terryn S, Vandendriessche B, Willems W, Dekeukeleire D, Van Gucht S. Detection and Serological Evidence of European Bat Lyssavirus 1 in Belgian Bats between 2016 and 2018. Trop Med Infect Dis 2024; 9:151. [PMID: 39058193 PMCID: PMC11281572 DOI: 10.3390/tropicalmed9070151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Lyssaviruses are neurotropic viruses capable of inducing fatal encephalitis. While rabies virus has been successfully eradicated in Belgium, the prevalence of other lyssaviruses remains uncertain. In this study, we conducted a survey on live animals and passive surveillance to investigate the presence of lyssaviruses in Belgium. In 2018, a total of 113 saliva samples and 87 blood samples were collected from bats. Saliva was subjected to RT-qPCR to identify lyssavirus infections. Additionally, an adapted lyssavirus neutralisation assay was set up for the detection of antibodies neutralising EBLV-1 in blood samples. Furthermore, we examined 124 brain tissue samples obtained from deceased bats during passive surveillance between 2016 and 2018. All saliva samples tested negative for lyssaviruses. Analysis of the blood samples uncovered the presence of lyssavirus-neutralising antibodies in five bat species and 32% of samples with a wide range depending on bat species, suggesting past exposure to a lyssavirus. Notably, EBLV-1 was detected in brain tissue samples from two Eptesicus serotinus specimens collected in 2016 near Bertrix and 2017 near Étalle, confirming for the first time the presence of EBLV-1 in Belgium and raising awareness of the potential risks associated with this species of bats as reservoirs of the virus.
Collapse
Affiliation(s)
- Inne Nauwelaers
- Viral Diseases Unit, Sciensano, 1000 Brussels, Belgium; (I.N.); (S.T.)
| | | | - Sanne Terryn
- Viral Diseases Unit, Sciensano, 1000 Brussels, Belgium; (I.N.); (S.T.)
| | | | - Wout Willems
- Natuurpunt Studie, Vleermuizenwerkgroep, 2800 Mechelen, Belgium (W.W.)
| | - Daan Dekeukeleire
- Natuurpunt Studie, Vleermuizenwerkgroep, 2800 Mechelen, Belgium (W.W.)
- Research Institute for Nature and Forest, 1000 Brussels, Belgium
| | - Steven Van Gucht
- Viral Diseases Unit, Sciensano, 1000 Brussels, Belgium; (I.N.); (S.T.)
| |
Collapse
|
3
|
Kim Y, Leopardi S, Scaravelli D, Zecchin B, Priori P, Festa F, Drzewnioková P, De Benedictis P, Nouvellet P. Transmission dynamics of lyssavirus in Myotis myotis: mechanistic modelling study based on longitudinal seroprevalence data. Proc Biol Sci 2023; 290:20230183. [PMID: 37072038 PMCID: PMC10113028 DOI: 10.1098/rspb.2023.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
We investigated the transmission dynamics of lyssavirus in Myotis myotis and Myotis blythii, using serological, virological, demographic and ecological data collected between 2015 and 2022 from two maternity colonies in northern Italian churches. Despite no lyssavirus detection in 556 bats sampled over 11 events by reverse transcription-polymerase chain reaction (RT-PCR), 36.3% of 837 bats sampled over 27 events showed neutralizing antibodies to European bat lyssavirus 1, with a significant increase in summers. By fitting sets of mechanistic models to seroprevalence data, we investigated factors that influenced lyssavirus transmission within and between years. Five models were selected as a group of final models: in one model, a proportion of exposed bats (median model estimate: 5.8%) became infectious and died while the other exposed bats recovered with immunity without becoming infectious; in the other four models, all exposed bats became infectious and recovered with immunity. The final models supported that the two colonies experienced seasonal outbreaks driven by: (i) immunity loss particularly during hibernation, (ii) density-dependent transmission, and (iii) a high transmission rate after synchronous birthing. These findings highlight the importance of understanding ecological factors, including colony size and synchronous birthing timing, and potential infection heterogeneities to enable more robust assessments of lyssavirus spillover risk.
Collapse
Affiliation(s)
- Younjung Kim
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
| | - Stefania Leopardi
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Dino Scaravelli
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Barbara Zecchin
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pamela Priori
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
| | - Francesca Festa
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Petra Drzewnioková
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Paola De Benedictis
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pierre Nouvellet
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
4
|
Brnić D, Lojkić I, Krešić N, Zrnčić V, Ružanović L, Mikuletič T, Bosilj M, Steyer A, Keros T, Habrun B, Jemeršić L. Circulation of SARS-CoV-Related Coronaviruses and Alphacoronaviruses in Bats from Croatia. Microorganisms 2023; 11:microorganisms11040959. [PMID: 37110383 PMCID: PMC10143505 DOI: 10.3390/microorganisms11040959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Bats are natural hosts of various coronaviruses (CoVs), including human CoVs, via an assumed direct zoonotic spillover or intermediate animal host. The present study aimed to investigate the circulation of CoVs in a bat colony in the Mediterranean region of Croatia. Guano and individual droppings from four bat species were sampled and tested with the E-gene sarbecovirus RT-qPCR, the pan-CoV semi-nested RT-PCR targeting the RdRp gene and NGS. Furthermore, bat blood samples were investigated for the presence of sarbecovirus-specific antibodies with the surrogate virus neutralization test (sVNT). The initial testing showed E-gene Sarebeco RT-qPCR reactivity in 26% of guano samples while the bat droppings tested negative. The application of RdRp semi-nested RT-PCR and NGS revealed the circulation of bat alpha- and betaCoVs. Phylogenetic analysis confirmed the clustering of betaCoV sequence with SARS-CoV-related bat sarbecoviruses and alpha-CoV sequences with representatives of the Minunacovirus subgenus. The results of sVNT show that 29% of bat sera originated from all four species that tested positive. Our results are the first evidence of the circulation of SARS-CoV-related coronaviruses in bats from Croatia.
Collapse
Affiliation(s)
- Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Nina Krešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Vida Zrnčić
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Lea Ružanović
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Tina Mikuletič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Martin Bosilj
- National Laboratory of Health, Environment and Food, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Tomislav Keros
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Boris Habrun
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Lorena Jemeršić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Folly AJ, Marston DA, Golding M, Shukla S, Wilkie R, Lean FZX, Núñez A, Worledge L, Aegerter J, Banyard AC, Fooks AR, Johnson N, McElhinney LM. Incursion of European Bat Lyssavirus 1 (EBLV-1) in Serotine Bats in the United Kingdom. Viruses 2021; 13:v13101979. [PMID: 34696409 PMCID: PMC8536961 DOI: 10.3390/v13101979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Lyssaviruses are an important genus of zoonotic viruses which cause the disease rabies. The United Kingdom is free of classical rabies (RABV). However, bat rabies due to European bat lyssavirus 2 (EBLV-2), has been detected in Daubenton’s bats (Myotis daubentonii) in Great Britain since 1996, including a fatal human case in Scotland in 2002. Across Europe, European bat lyssavirus 1 (EBLV-1) is commonly associated with serotine bats (Eptesicus serotinus). Despite the presence of serotine bats across large parts of southern England, EBLV-1 had not previously been detected in this population. However, in 2018, EBLV-1 was detected through passive surveillance in a serotine bat from Dorset, England, using a combination of fluorescent antibody test, reverse transcription-PCR, Sanger sequencing and immunohistochemical analysis. Subsequent EBLV-1 positive serotine bats have been identified in South West England, again through passive surveillance, during 2018, 2019 and 2020. Here, we confirm details of seven cases of EBLV-1 and present similarities in genetic sequence indicating that emergence of EBLV-1 is likely to be recent, potentially associated with the natural movement of bats from the near continent
Collapse
Affiliation(s)
- Arran J. Folly
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
- Correspondence:
| | - Denise A. Marston
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Megan Golding
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Shweta Shukla
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Rebekah Wilkie
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Fabian Z. X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone KT15 3NB, UK; (F.Z.X.L.); (A.N.)
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone KT15 3NB, UK; (F.Z.X.L.); (A.N.)
| | - Lisa Worledge
- Bat Conservation Trust, Studio 15 Cloisters House, Cloisters Business Centre, 8 Battersea Park Road, London SW8 4BG, UK;
| | - James Aegerter
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York YO41 1LZ, UK;
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Anthony R. Fooks
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| | - Lorraine M. McElhinney
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone KT15 3NB, UK; (D.A.M.); (M.G.); (S.S.); (R.W.); (A.C.B.); (A.R.F.); (N.J.); (L.M.M.)
| |
Collapse
|
6
|
Regnault B, Evrard B, Plu I, Dacheux L, Troadec E, Cozette P, Chrétien D, Duchesne M, Jean-Michel V, Jamet A, Leruez M, Pérot P, Bourhy H, Eloit M, Seilhean D. First case of lethal encephalitis in Western Europe due to European bat lyssavirus type 1. Clin Infect Dis 2021; 74:461-466. [PMID: 33991184 DOI: 10.1093/cid/ciab443] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Inaccurate diagnosis of encephalitis is a major issue as immunosuppressive treatments can be deleterious in case of viral infection. The European bat lyssavirus type 1, a virus related to rabies virus, is endemic in European bats. No human case has yet been reported in Western Europe. A 59 year-old patient without specific past medical history died from encephalitis. A colony of bats lived in an outbuilding of his house. No diagnosis was made using standard procedures. METHODS We used a Next Generation Sequencing (NGS) based transcriptomic protocol to search for pathogens in autopsy samples (meninges and brain frontal lobe). Results were confirmed by PCR and by antibody testing in serum. Immunochemistry was used to characterize inflammatory cells and viral antigens in brain lesions. Cells and mice were inoculated with brain extracts for virus isolation. RESULTS The patient's brain lesions were severe and diffuse in white and gray matter. Perivascular inflammatory infiltrates were abundant and rich in plasma cells. NGS identified European bat lyssavirus type 1a in brain, which was confirmed by PCR. A high titer of neutralizing antibodies was found in serum. No viral antigen was detected and the virus could not be isolated by cell culture or by mouse inoculation. CONCLUSIONS The patient died from European bat lyssavirus type 1a infection. NGS was key to identifying this unexpected viral etiology in an epidemiological context that did not suggest rabies. People exposed to bats should be strongly advised to be vaccinated with rabies vaccines, which are effective against EBLV-1.
Collapse
Affiliation(s)
- Béatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France)
| | - Bruno Evrard
- Medical-Surgical Intensive Care Unit, Dupuytren University Hospital, Limoges, France.,Inserm CIC 1435 and UMR 1092, Dupuytren Teaching Hospital, Limoges, France
| | - Isabelle Plu
- Sorbonne Université, Brain Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Département de Neuropathologie Raymond Escourolle, AP-HP-Sorbonne, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Laurent Dacheux
- Lyssavirus Epidemiology and Neuropathology Unit, National Reference Centre for Rabies, WHO Collaborative Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Eric Troadec
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France)
| | - Pascal Cozette
- Lyssavirus Epidemiology and Neuropathology Unit, National Reference Centre for Rabies, WHO Collaborative Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France)
| | - Mathilde Duchesne
- Pathology Department, Dupuytren University Hospital, Limoges, France
| | | | - Anne Jamet
- Department of Clinical Microbiology, Necker Enfants-Malades Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Marianne Leruez
- Department of Clinical Microbiology, Necker Enfants-Malades Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France)
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, National Reference Centre for Rabies, WHO Collaborative Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Center for the detection and identification in humans of emerging animal pathogens, Institut Pasteur, Paris, France).,Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Danielle Seilhean
- Sorbonne Université, Brain Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Lyssavirus Epidemiology and Neuropathology Unit, National Reference Centre for Rabies, WHO Collaborative Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Soentjens P, Croughs M, Burm C, Declerq S, Clerinx J, Maniewski U, Van Den Broucke S, Theunissen C, Huits R, Brosius I, Florence E, Kenyon C, Van Griensven J, Van Ierssel S, Lynen L, Balliauw K, Van Gucht S, Van Esbroeck M, Vlieghe E, Bottieau E, Van Herrewege Y. Time of administration of rabies immunoglobulins and adequacy of antibody response upon post-exposure prophylaxis: a descriptive retrospective study in Belgium. Acta Clin Belg 2021; 76:91-97. [PMID: 31483218 DOI: 10.1080/17843286.2019.1662993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Data on rabies post-exposure prophylaxis (PEP) and the use of human rabies immunoglobulins (HRIG) in Belgium are scarce. The main objective of this study was to evaluate the timely administration of HRIG after rabies exposure. The secondary objective was to evaluate the adequate antibody response following PEP.Methods: We reviewed all medical records from July 2017 to June 2018 of patients seeking care at, or referred to, the Institute of Tropical Medicine and the University Hospital, Antwerp for the administration of human rabies immunoglobulins following potential rabies exposure abroad or in Belgium.A timely response was defined as starting HRIG with a delay of ≤48 h and rabies vaccination in the first 7 days after exposure.Adequate antibody response was defined as a titer of >5.0 IU/mL in case of bat-related exposure and >3.0 IU/mL in case of exposure to other animals. Titers were measured 10 days after the last PEP vaccine dose, using the rapid fluorescent focus inhibition test (RFFIT).Results: Of the 92 cases treated with HRIG, 75 were evaluated.The majority of injuries were acquired in Asia (n = 26,34%) and in Western Europe (n = 18, 24%), of which 17 in Belgium. The five most frequently recorded countries overseas were Indonesia (n = 13), Thailand (n = 7), Morocco (n = 4), Peru (n = 3) and Costa Rica (n = 3). Administration of immunoglobulins was related to injuries by dogs (36%), monkeys (25%) or bats (22%).A timely response was observed in 16 (21,33%) and in 55 (73,33%) of subjects receiving HRIG (≤48 h) or rabies vaccine (<7days) respectively. The mean time between exposure and the first administered dose of rabies vaccine and HRIG was 7.7 and 8.7 days, respectively. The mean delay for HRIG administration was 9.6 days and 6 days for abroad and inland risks, respectively.In 15 of 16 (94%) bat-related cases the antibody titer after full PEP was >5.0 IU/ml. In 38 of 47 (81%) cases related to other animals the RFFIT titer was >3.0 IU/ml. All low-responders received additional rabies injections.Conclusion: This study showed a substantial time delay between the animal-related risk and the administration of HRIG, in particular when the injury occurred abroad. More targeted communication about the risks of rabies and preventable measures may reduce this delay.Furthermore, the antibody response was inadequate in some cases following full PEP administration according to the Belgian recommendation.
Collapse
Affiliation(s)
- Patrick Soentjens
- Centre for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mieke Croughs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christoph Burm
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Steven Declerq
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Clerinx
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ula Maniewski
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Caroline Theunissen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ralph Huits
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eric Florence
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Johan Van Griensven
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sabrina Van Ierssel
- Department of Infectious Diseases and Tropical Diseases, University Hospital Antwerp, Antwerp, Belgium
| | - Lut Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Katleen Balliauw
- Hospital Pharmacy, University Hospital Antwerp, Antwerp, Belgium
| | - Steven Van Gucht
- Department of Infectious Diseases and Tropical Diseases, University Hospital Antwerp, Antwerp, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Erika Vlieghe
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Infectious Diseases and Tropical Diseases, University Hospital Antwerp, Antwerp, Belgium
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yven Van Herrewege
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- National Reference Centre for Rabies, Sciensano, Brussels, Belgium
| |
Collapse
|
8
|
Skirmuntt EC, Escalera-Zamudio M, Teeling EC, Smith A, Katzourakis A. The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annu Rev Virol 2020; 7:103-119. [PMID: 32432980 DOI: 10.1146/annurev-virology-092818-015613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite a small genome size, bats have comparable diversity of retroviral and non-retroviral endogenous sequences to other mammals. These include Class I and Class II retroviral sequences, foamy viruses, and deltaretroviruses, as well as filovirus, bornavirus, and parvovirus endogenous viral elements. Some of these endogenous viruses are sufficiently preserved in bat genomes to be expressed, with potential effects for host biology. It is clear that the bat immune system differs when compared with other mammals, yet the role that virus-derived endogenous elements may have played in the evolution of bat immunity is poorly understood. In this review, we discuss some of the bat-specific immune mechanisms that may have resulted in a virus-tolerant phenotype and link these to the long-standing virus-host coevolution that may have allowed a large diversity of endogenous retroviruses and other endogenous viral elements to colonize bat genomes. We also consider the possible effects of endogenization in the evolution of the bat immune system.
Collapse
Affiliation(s)
- Emilia C Skirmuntt
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| | | | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Adrian Smith
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| |
Collapse
|
9
|
Phelps KL, Hamel L, Alhmoud N, Ali S, Bilgin R, Sidamonidze K, Urushadze L, Karesh W, Olival KJ. Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia. Viruses 2019; 11:v11030240. [PMID: 30857374 PMCID: PMC6466127 DOI: 10.3390/v11030240] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Bat research networks and viral surveillance are assumed to be at odds due to seemingly conflicting research priorities. Yet human threats that contribute to declines in bat populations globally also lead to increased transmission and spread of bat-associated viruses, which may pose a threat to global health and food security. In this review, we discuss the importance of and opportunities for multidisciplinary collaborations between bat research networks and infectious disease experts to tackle shared threats that jeopardize bat conservation as well as human and animal health. Moreover, we assess research effort on bats and bat-associated viruses globally, and demonstrate that Western Asia has limited published research and represents a gap for coordinated bat research. The lack of bat research in Western Asia severely limits our capacity to identify and mitigate region-specific threats to bat populations and detect interactions between bats and incidental hosts that promote virus spillover. We detail a regional initiative to establish the first bat research network in Western Asia (i.e., the Western Asia Bat Research Network, WAB-Net), with the aim of integrating ecological research on bats with virus surveillance to find “win-win” solutions that promote bat conservation and safeguard public and animal health across the region.
Collapse
Affiliation(s)
| | - Luke Hamel
- EcoHealth Alliance, New York, NY 10001, USA.
| | - Nisreen Alhmoud
- Biosafety and Biosecurity Center, Royal Scientific Society, 11941 Amman, Jordan.
| | - Shahzad Ali
- Department of Wildlife & Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Rasit Bilgin
- Institute of Environmental Sciences, Boğaziçi University, 34342 Istanbul, Turkey.
| | | | - Lela Urushadze
- National Center for Disease Control & Public Health, 0198 Tbilisi, Georgia.
| | | | | |
Collapse
|