1
|
Kang Y, Choi JC, Lee JB, Park SY, Oh C. Rottlerin inhibits macropinocytosis of Porcine Reproductive and Respiratory Syndrome Virus through the PKCδ-Cofilin signaling pathway. PLoS One 2025; 20:e0324500. [PMID: 40392868 PMCID: PMC12091787 DOI: 10.1371/journal.pone.0324500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/27/2025] [Indexed: 05/22/2025] Open
Abstract
Rottlerin exerts antiviral activity against various enveloped viruses, yet the mechanism by which it inhibits viral replication and the associated signaling pathways remains unclear. Here, we investigated the mechanisms for the antiviral effects of rottlerin against Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in vitro. We demonstrate that PRRSV enters host cells via macropinocytosis. Rottlerin, a PKCδ inhibitor, partially inhibits PRRSV entry by decreasing actin polymerization, as evidenced by alterations in actin dynamics. LIM domain kinase 1 (LIMK1) is essential for PRRSV replication, and PRRSV infection-induced cofilin activation, which was reversed by rottlerin treatment. Our findings suggest that a subset of PRRSV utilizes PKCδ-mediated actin dynamics to enter cells via macropinocytosis, and that rottlerin is a potential antiviral molecule targeting this entry pathway.
Collapse
Affiliation(s)
- Yeonglim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jong-Chul Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Changin Oh
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Wang X, Bi J, Yang Y, Li L, Zhang R, Li Y, Cheng M, Li W, Yang G, Lin Y, Liu J, Yin G. RACK1 promotes porcine reproductive and respiratory syndrome virus infection in Marc-145 cells through ERK1/2 activation. Virology 2023; 588:109886. [PMID: 37806007 DOI: 10.1016/j.virol.2023.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an acute infectious disease that spreads rapidly among pigs and seriously threatens the pig industry. Activation of ERK1/2 is a hallmark of most viral infections. RACK1 interacts with a variety of kinases and membrane receptors that closely associated with viral infections and the development and progression of cancer. However, no studies have clearly defined whether RACK1 can regulate PRRSV infection through ERK1/2 activation. In our study, using RT-qPCR, immunoblotting, indirect fluorescent staining, siRNA knockdown and protein overexpression techniques, we found that downregulation of cellular RACK1 inhibited ERK1/2 activation and subsequently suppressed PRRSV infection, while overexpression of RACK1 enhanced ERK1/2 activation and PRRSV infection. Bioinformatic and Co-immunoprecipitation experimental analysis revealed that cellular RACK1 could interact with viral N protein to exert its function. We elaborated that RACK1 promoted PRRSV replication in Marc-145 cells through ERK1/2 activation. Our study provides new insights into regulating the innate antiviral immune responses during PRRSV infection and contributes to further understanding of the molecular mechanisms underlying PRRSV replication.
Collapse
Affiliation(s)
- Xinxian Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Ying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Lijun Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Runting Zhang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yongneng Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Meiling Cheng
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenying Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Jianping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
3
|
Sha H, Zhang H, Chen Y, Huang L, Zhao M, Wang N. Research Progress on the NSP9 Protein of Porcine Reproductive and Respiratory Syndrome Virus. Front Vet Sci 2022; 9:872205. [PMID: 35898550 PMCID: PMC9309524 DOI: 10.3389/fvets.2022.872205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRS is also called “blue ear disease” because of the characteristic blue ear in infected sows and piglets. Its main clinical features are reproductive disorders of sows, breathing difficulties in piglets, and fattening in pigs, which cause considerable losses to the swine industry. NSP9, a non-structural protein of PRRSV, plays a vital role in PRRSV replication and virulence because of its RNA-dependent RNA polymerase (RdRp) structure. The NSP9 sequence is highly conserved and contains T cell epitopes, which are beneficial for the development of future vaccines. NSP9 acts as the protein interaction hub between virus and host during PRRSV infection, especially in RNA replication and transcription. Herein, we comprehensively review the application of NSP9 in terms of genetic evolution analysis, interaction with host proteins that affect virus replication, interaction with other viral proteins, pathogenicity, regulation of cellular immune response, antiviral drugs, vaccines, and detection methods. This review can therefore provide innovative ideas and strategies for PRRSV prevention and control.
Collapse
Affiliation(s)
- Huiyang Sha
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Hang Zhang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yao Chen
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Liangzong Huang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Liangzong Huang
| | - Mengmeng Zhao
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Mengmeng Zhao
| | - Nina Wang
- Department of Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Nina Wang
| |
Collapse
|
4
|
Gopi C, Dhanaraju MD, Dhanaraju K. Antisense oligonucleotides: recent progress in the treatment of various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Antisense oligonucleotides are a promising novel class of therapeutic agents to treat different diseases in living things. They provide an efficient method for making target-selective agents because they change gene expression sequences. Therefore, the malfunctioning protein could be stopped, and the source of disease would be obliterated. The existing reviews of antisense oligonucleotides are focusing on discovery, development and concept. However, there is no review paper concerning the latest development of antisense oligonucleotides and their different therapeutic uses. Therefore, the present work has been targeting a comprehensive summary of newly synthesized antisense oligonucleotides and their biological activities.
Main body
Antisense oligonucleotides are different from traditional therapeutic agents that are planned to interact with mRNA and modulate protein expression through a unique mechanism of action. In the last three decades, several researchers revealed the newer antisense oligonucleotides found with a high therapeutic profile due to more selective action on the drug target and thus producing a lesser side effect and low toxicity. This review emphasizes the research work on antisense oligonucleotides and their therapeutic activities.
Short conclusion
With the support of the literature review, here we enlisted various antisense oligonucleotides that were prepared by appropriate technique and explored their pharmacological activities. To the best of our knowledge, it is the right time to consider the antisense oligonucleotides as a perfect choice of treatment for different diseases due to conceptual simplicity, more selective action, lesser side effects, low toxicity and permanent cure.
Graphical abstract
Collapse
|
5
|
Inhibition of endocytosis of porcine reproductive and respiratory syndrome virus by rottlerin and its potential prophylactic administration in piglets. Antiviral Res 2021; 195:105191. [PMID: 34678331 DOI: 10.1016/j.antiviral.2021.105191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Owing to several limitations of porcine reproductive and respiratory syndrome virus (PRRSV) control procedures, the importance of antiviral agents is increasing; however, limited studies have been done on the development of anti-PRRSV agents. Herein, we explored the antiviral effect and mechanism of rottlerin against PRRSV. We demonstrated that treatment of rottlerin at an early stage of PRRSV infection significantly inhibited the viral replication. PRRSV infection induced protein kinase C-δ phosphorylation, which was specifically downregulated by rottlerin. The treatment of rottlerin led to disrupting the PRRSV entry pathway by blocking endocytosis of the virions. Further, to evaluate the anti-PRRSV effect of the rottlerin in vivo, we administrated rottlerin loaded liposome to pigs infected with PRRSV LMY or FL12 strain. The treatment of rottlerin-liposome reduced the blood viral load, interstitial pneumonia and clinical scores compared to untreated pigs. These results provide an evidence of anti-PRRSV effect of rottlerin in vitro via inhibiting PRRSV internalization and in vivo, all of which strongly suggest the applicability of rottlerin as a potential PRRSV prophylactic treatment.
Collapse
|
6
|
Small molecule screening identified cepharanthine as an inhibitor of porcine reproductive and respiratory syndrome virus infection in vitro by suppressing integrins/ILK/RACK1/PKCα/NF-κB signalling axis. Vet Microbiol 2021; 255:109016. [PMID: 33677370 DOI: 10.1016/j.vetmic.2021.109016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a devastating disease among the most notorious threats to the swine industry worldwide and is characterized by respiratory distress and reproductive failure. Highly evolving porcine reproductive and respiratory syndrome virus (PRRSV) strains with complicated genetic diversity make the current vaccination strategy far from cost-effective and thus urge identification of potent lead candidates to provide prevention and treatment approaches. From an in vitro small molecule screening with the TargetMol Natural Compound Library comprising 623 small molecules, cytopathic effect (CPE) observations and RT-qPCR analysis of viral ORF7 gene expression identified cepharanthine (CEP) to be one of the most protent inhibitors of PRRSV infection in Marc-145 cells. When compared with tilmicosin, which is one of the most commonly used antibiotics in swine industry to inhibit infections, CEP more prominently inhibited PRRSV infection represented by both RNA and protein levels, further reduced the TCID50 by 5.6 times, and thus more remarkably protected Marc-145 cells against PRRSV infection. Mechanistically, western blot analyses of the Marc-145 cells and the porcine alveolar macrophages (PAMs) with or without CEP treatment and PRRSV infection at various time points revealed that CEP can inhibit the expression of integrins β1 and β3, integrin-linked kinase (ILK), RACK1 and PKCα, leading to NF-κB suppression and consequent alleviation of PRRSV infection. Collectively, our small molecule screening identified cepharanthine as an inhibitor of PRRSV infection in vitro by suppressing Integrins/ILK/RACK1/PKCα/NF-κB signalling axis, which may enlighten the deeper understanding of the molecular pathogenesis of PRRSV infection and more importantly, suggested CEP as a potential promising drug for PRRS control in veterinary clinics.
Collapse
|
7
|
Liu X, Gao L, Zhao Q, Wang X, Yang C, Bi J, Yang R, Jin X, Lan R, Cui R, Wang X, Li W, Wang X, Yang Y, Yu X, Lin Y, Liu J, Yin G. Inhibition of porcine reproductive and respiratory syndrome virus by PKC inhibitor dequalinium chloride in vitro. Vet Microbiol 2020; 251:108913. [PMID: 33166843 DOI: 10.1016/j.vetmic.2020.108913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
As a severe disease characterized by reproductive failure and respiratory distress, porcine reproductive and respiratory syndrome (PRRS) is one of the most leading threats to the swine industry worldwide. Highly evolving porcine reproductive and respiratory syndrome virus (PRRSV) strains with distinct genetic diversity make the current vaccination strategy much less cost-effective and thus urge alternative protective host directed therapeutic approaches. RACK1-PKC-NF-κB signalling axis was suggested as a potential therapeutic target for PRRS control, therefore we tested the inhibitory effect of PKC inhibitor dequalinium chloride (DECA) on the PRRSV infection in vitro. RT-qPCR, western blot, Co-IP and cytopathic effect (CPE) observations revealed that DECA suppressed PRRSV infection and protected Marc-145 cells and porcine alveolar macrophages (PAMs) from severe cytopathic effects, by repressing the PKCα expression, the interaction between RACK1 and PKCα, and subsequently the NF-κB activation. In conclusion, the data presented in this study shed more light on deeper understanding of the molecular pathogenesis upon PRRSV infection and more importantly suggested DECA as a potential promising drug candidate for PRRS control.
Collapse
Affiliation(s)
- Xiao Liu
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Libo Gao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qian Zhao
- Center for Animal Disease Control and Prevention, Chuxiong 675000, Yunnan, China
| | - Xiangmin Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Junlong Bi
- Center for Animal Disease Control and Prevention, Chuxiong 675000, Yunnan, China
| | - Runhuan Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiuli Jin
- First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Rongjun Cui
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wenying Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuesong Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xin Yu
- School of Basic Medicine, Dali University, Dali 671003, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
8
|
Yang C, Lan R, Wang X, Zhao Q, Li X, Bi J, Wang J, Yang G, Lin Y, Liu J, Yin G. Integrin β3, a RACK1 interacting protein, is critical for porcine reproductive and respiratory syndrome virus infection and NF-κB activation in Marc-145 cells. Virus Res 2020; 282:197956. [PMID: 32247758 DOI: 10.1016/j.virusres.2020.197956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/20/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen of porcine reproductive and respiratory syndrome (PRRS), which is one of the most economically harmful diseases in modern pig production worldwide. Receptor of activated protein C kinase 1 (RACK1) was previously shown to be indispensable for the PRRSV replication and NF-κB activation in Marc-145 cells. Here we identified a membrane protein, integrin β3 (ITGB3), as a RACK1-interacting protein. PRRSV infection in Marc-145 cells upregulated the ITGB3 expression. Abrogation of ITGB3 by siRNA knockdown or antibody blocking inhibited PRRSV infection and NF-κB activation, while on the other hand, overexpression of ITGB3 enhanced PRRSV infection and NF-κB activation. Furthermore, inhibition of ITGB3 alleviated the cytopathic effects and reduced the TCID50 titer in Marc-145 cells. We also showed that RACK1 and ITGB3 were NF-κB target genes during PRRSV infection, and that they regulated each other. Our data indicated that ITGB3, presumably as a co-receptor, played an imperative role during PRRSV infection and NF-κB activation in Marc-145 cells. PRRSV infection activates a positive feedback loop involving the activation of NF-κB and upregulation of ITGB3 and RACK1 in Marc-145 cells. The findings would advance our elaborated understanding of the molecular host-pathogen interaction mechanisms underlying PRRSV infection in swine and suggest ITGB3 and NF-κB signaling pathway as potential therapeutic targets for PRRS control.
Collapse
Affiliation(s)
- Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Qian Zhao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Center for Animal Disease Control and Prevention, Chuxiong City, 675000, Yunnan, China
| | - Xidan Li
- Karolinska Institute, Integrated Cardio Metabolic Centre (ICMC), Stockholm, SE-14157, Sweden
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Center for Animal Disease Control and Prevention, Chuxiong City, 675000, Yunnan, China
| | - Jing Wang
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
9
|
Potential and Challenges of Aptamers as Specific Carriers of Therapeutic Oligonucleotides for Precision Medicine in Cancer. Cancers (Basel) 2019; 11:cancers11101521. [PMID: 31636244 PMCID: PMC6826972 DOI: 10.3390/cancers11101521] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022] Open
Abstract
Due to the progress made in the area of precision and personalized medicine in the field of cancer therapy, strategies to selectively and specifically identify target molecules causative of the diseases are urgently needed. Efforts are being made by a number of different laboratories, companies, and researchers to develop therapeutic molecules that selectively recognize the tissues and the cells of interest, exhibit few or no off-target and side effects, are non-immunogenic, and have a strong action. Aptamers, artificially selected single-stranded DNA or RNA oligonucleotides, are promising molecules satisfying many of the requirements needed for diagnosis and precision medicine. Aptamers can also couple to their native mechanism of action the delivery of additional molecules (oligonucleotides, siRNAs, miRNAs) to target cells. In this review, we summarize recent progress in the aptamer-mediated strategy for the specific delivery of therapeutic oligonucleotides.
Collapse
|
10
|
Jing H, Song T, Cao S, Sun Y, Wang J, Dong W, Zhang Y, Ding Z, Wang T, Xing Z, Bao W. Nucleotide-binding oligomerization domain-like receptor X1 restricts porcine reproductive and respiratory syndrome virus-2 replication by interacting with viral Nsp9. Virus Res 2019; 268:18-26. [PMID: 31132368 PMCID: PMC7114581 DOI: 10.1016/j.virusres.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
PRRSV infection up-regulates NLRX1 expression. NLRX1 impairs PRRSV replication. NLRX1 suppresses the synthesis of viral subgenomic RNAs. NLRX1 interacts and colocalizes with the Nsp9 of PRRSV.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes one of the most economically important diseases of swine worldwide. Current antiviral strategies provide only limited protection. Nucleotide-binding oligomerization domain-like receptor (NLR) X1 is unique among NLR proteins in its functions as a pro-viral or antiviral factor to different viral infections. To date, the impact of NLRX1 on PRRSV infection remains unclear. In this study, we found that PRRSV infection promoted the expression of NLRX1 gene. In turn, ectopic expression of NLRX1 inhibited PRRSV replication in Marc-145 cells, whereas knockdown of NLRX1 enhanced PRRSV propagation in porcine alveolar macrophages (PAMs). Mechanistically, NLRX1 was revealed to impair intracellular viral subgenomic RNAs accumulation. Finally, Mutagenic analyses indicated that the LRR (leucine-rich repeats) domain of NLRX1 interacted with PRRSV Nonstructural Protein 9 (Nsp9) RdRp (RNA-dependent RNA Polymerase) domain and was necessary for antiviral activity. Thus, our study establishes the role of NLRX1 as a new host restriction factor in PRRSV infection.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wang Dong
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Ding
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Wang
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhao Xing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wenqi Bao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
11
|
Overexpression of RACK1 enhanced the replication of porcine reproductive and respiratory syndrome virus in Marc-145 cells and promoted the NF-κB activation via upregulating the expression and phosphorylation of TRAF2. Gene 2019; 709:75-83. [PMID: 31129249 DOI: 10.1016/j.gene.2019.05.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/07/2019] [Accepted: 05/22/2019] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative pathogen for porcine reproductive and respiratory syndrome (PRRS), which lead to huge loss to porcine industry. RACK1 (receptor of activated protein C kinase 1) was first identified as a receptor for protein kinase C. Mounting evidence demonstrated that RACK1 played diverse roles in NF-κB activation and virus infections. We previously reported that siRNA knockdown of RACK1 inhibited PRRSV replication in Marc-145 cells, abrogated NF-κB activation induced by PRRSV infection and reduced the viral titer. Here we established a Marc-145 cell line which could stably overexpress RACK1 to consolidate our findings. Based on the data from RT-qPCR, western blot, immunofluorescence staining, cytopathic effects and viral titer analysis, we concluded that overexpression of RACK1 could enhance the replication of PRRSV in Marc-145 cells and promote the NF-κB activation via upregulating TRAF2 expression and its phosphorylation. Marc-145 cells overexpressing RACK1exhibited severe cytopathic effects post infection with PRRSV and elevated the viral titer. Taken together, RACK1 plays an essential role for PRRSV replication in Marc-145 cells and NF-κB activation. The results presented here shed more light on the understanding of the molecular mechanisms underlying PRRSV infection and its subsequent NF-κB activation. Therefore, we anticipate RACK1 as a promising target for PRRS control.
Collapse
|