1
|
Hong Z, Xu Y, Wu J. Bisphenol A: Epigenetic effects on the male reproductive system and male offspring. Reprod Toxicol 2024; 129:108656. [PMID: 39004383 DOI: 10.1016/j.reprotox.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Bisphenol A (BPA) is a commonly used organic compound. Over the past decades, many studies have examined the mechanisms of BPA toxicity, with BPA-induced alterations in epigenetic modifications receiving considerable attention. Particularly in the male reproductive system, abnormal alterations in epigenetic markers can adversely affect reproductive function. Furthermore, these changes in epigenetic markers can be transmitted to offspring through the father. Here, we review the effects of BPA exposure on various epigenetic markers in the male reproductive system, including DNA methylation, histone modifications, and noncoding RNA, as well as associated changes in the male reproductive function. We also reviewed the effects of father's exposure to BPA on offspring epigenetic modification patterns.
Collapse
Affiliation(s)
- Zhilin Hong
- The center of clinical laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China.
| | - Yingpei Xu
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, PR China
| | - Jinxiang Wu
- Department of reproductive medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China.
| |
Collapse
|
2
|
Hu J, Yu T, Huang K, Liang C, Li Y, Li X, Sun J, Bai W. Covalent Interactions of Anthocyanins with Proteins: Activity-Based Protein Profiling of Cyanidin-3- O-glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39036896 DOI: 10.1021/acs.jafc.4c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Anthocyanins are common natural pigments with a variety of physiological activities. Traditional perspectives attribute their molecular mechanism to noncovalent interactions influencing signaling pathways. However, this ignores the nature of its benzopyrylium skeleton, which readily reacts with the electron-rich groups of proteins. Here, we modified cyanidin-3-O-glucoside (C3G) via activity-based protein profiling technology by our previous synthesis route and prepared the covalent binding probe (C3G-Probe) and the noncovalent photoaffinity probe (C3G-Diazirine). The properties of C3G's covalent binding to proteins were also discovered by comparing the labeling of the two probes to the whole HepG2 cell proteome. We further explored its target proteins and enriched pathways in HepG2 and HeLa cells. Western blot analysis further confirmed the covalent binding of C3G to four target proteins: insulin-degrading enzyme, metal cation symporter ZIP14, spermatid perinuclear RNA-binding protein, and Cystatin-B. Pathway analysis showed that covalent targets of C3G were concentrated in metabolic pathways and several ribonucleoprotein complexes that were also coenriched. The results of this study provide new insights into the interaction of the naturally active molecule C3G with proteins.
Collapse
Affiliation(s)
- Jun Hu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Tingxin Yu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Kuanchen Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Chujie Liang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Yue Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Jiang C, Dong W, Gao G, Sun W, Wang Y, Zhan B, Sun Y, Yu J. Maternal oral exposure to low-dose BPA accelerates the onset of puberty by promoting prepubertal Kiss1 expression in the AVPV nucleus of female offspring. Reprod Toxicol 2024; 124:108543. [PMID: 38232916 DOI: 10.1016/j.reprotox.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
As the incidence of precocious puberty has risen in recent years and the age at puberty onset is younger, children may be at increased risk for health consequences associated with the early onset of puberty. Bisphenol A (BPA) is recognized as an endocrine disruptor chemical that is reported to induce precocious puberty. The effect of BPA exposure modes, times, and doses (especially low dose) were controversial. In the present study, we evaluated the potential effects of maternal exposure to low-dose BPA on the hypothalamus, particularly on the arcuate (ARC) nucleus and anteroventral periventricular (AVPV) nucleus during peri-puberty in offspring of BPA-treated rats. Pregnant rats were exposed to corn oil vehicle, 0.05 mg·kg-1·day-1 BPA, or 5 mg·kg-1·day-1 from gestation day 1 (GD1) to postnatal day 21 (PND21) by daily gavage. Body weight (BW), vaginal opening (VO), ovarian follicular luteinization, and relevant hormone concentrations were measured; hypothalamic Kiss1 and GnRH1 levels by western immunoblot analysis were also assessed as indices of puberty onset. During or after exposure, low-dose BPA restricted BW after birth (at PND1 and PND5), and subsequently accelerated puberty onset by promoting the expression of prepubertal Kiss1 and GnRH1 in the AVPV nucleus on PND30, leading to advanced VO, an elevation in LH and FSH concentrations (on PND30). We also noted increased BW on PND30 and PND35. Maternal oral exposure to low-dose BPA altered the BW curve during the neonatal and peripubertal periods, and subsequently accelerated puberty onset by promoting prepubertal Kiss1 expression in the AVPV nucleus.
Collapse
Affiliation(s)
- Chenyan Jiang
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wenke Dong
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Guanglin Gao
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Sun
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yonghong Wang
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Bowen Zhan
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yanyan Sun
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| | - Jian Yu
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Bonaldo B, Casile A, Ostuni MT, Bettarelli M, Nasini S, Marraudino M, Panzica G, Gotti S. Perinatal exposure to bisphenol A or S: Effects on anxiety-related behaviors and serotonergic system. CHEMOSPHERE 2024; 349:140827. [PMID: 38042429 DOI: 10.1016/j.chemosphere.2023.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Bisphenols, synthetic organic compounds used in the production of plastics, are an extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals or mixtures of chemicals that can interfere with any aspect of hormone action. Exposure to BPs can lead to a wide range of effects, and it is especially dangerous if it occurs during specific critical periods of life. Focusing on the perinatal exposure to BPA or its largely used substitute BPS, we investigated the effects on anxiety-related behaviors and the serotonergic system, which is highly involved in controlling these behaviors, in adult mice. We treated C57BL/6J dams orally with a dose of 4 μg/kg body weight/day (i.e., EFSA TDI) of BPA or BPS dissolved in corn oil or with vehicle alone, at the onset of mating and continued treatment until the offspring were weaned. Adult offspring of both sexes performed the elevated plus maze and the open field tests. Then, we analyzed the serotonergic system in dorsal (DR) and median (MnR) raphe nuclei by immunohistochemical techniques. Behavioral tests highlighted alterations in BPA- and BPS-treated mice, suggesting different effects of the bisphenols exposure on anxiety-related behavior in males (anxiolytic) and females (anxiogenic). The analysis of the serotonergic system highlighted a sex dimorphism in the DR only, with control females showing higher values of serotonin immunoreactivity (5-HT-ir) than control males. BPA-treated males displayed a significant increase of 5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in ventral DR only. In females, both bisphenols-treated groups showed a significant increase of 5-HT-ir in dorsal DR compared to the controls, and BPA-treated females also showed a significant increase in MnR.These results provide evidence that exposure during the early phases of life to BPA or BPS alters anxiety and the raphe serotonergic neurons in a sex-dependent manner.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Marialaura Teresa Ostuni
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, 35131, Padua, PD, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
5
|
Yang J, Ou X, Shu M, Wang J, Zhang X, Wu Z, Hao W, Zeng H, Shao L. Inhibition of p38MAPK signalling pathway alleviates radiation-induced testicular damage through improving spermatogenesis. Br J Pharmacol 2024; 181:393-412. [PMID: 37580308 DOI: 10.1111/bph.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/24/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Damage to the testis following exposure to ionizing radiation has become an urgent problem to be solved. Here we have investigated if inhibition of p38 mitogen-activated protein kinase (p38MAPK) signalling could alleviate radiation-induced testicular damage. EXPERIMENTAL APPROACH In mice exposed to whole body radiation (2-6 Gy), morphological changes of the epididymis and testis was measured by histochemical staining. immunohistochemical and immunofluorescence procedures and western blotting were used to monitor expression and cellular location of proteins. Expression of genes was assessed by qPCR and RNA-Seq was used to profile gene expression. KEY RESULTS Exposure to ionizing radiation induced dose-dependent damage to mouse testis. The sperm quality decreased at 6 and 8 weeks after 6 Gy X-ray radiation. Radiation decreased PLZF+ cells and increased SOX9+ cells, and affected the expression of 969 genes, compared with data from non-irradiated mice. Expression of genes related to p38MAPK were enriched by GO analysis and were increased in the irradiated testis, and confirmed by qPCR. Levels of phospho-p38MAPK protein increased at 28 days after irradiation. In irradiated mice, SB203580 treatment increased spermatozoa, SOX9+ cells, the area and diameter of seminiferous tubules, sperm movement rate and density. Furthermore, SB203580 treatment increased SCP3+ cells, accelerating the process of spermatogenesis. CONCLUSION AND IMPLICATIONS Exposure to ionizing radiation clearly changed gene expression in mouse testis, involving activation of p38MAPK signalling pathways. Inhibition of p38MAPK by SB203580 partly alleviated the testicular damage caused by radiation and accelerated the recovery of sperms through promoting spermatogenesis.
Collapse
Affiliation(s)
- Juan Yang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Xiangying Ou
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Manling Shu
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jie Wang
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Xuan Zhang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Zhenyu Wu
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Wei Hao
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Huihong Zeng
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lijian Shao
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Zhang J, Zhu Z, Huang J, Yang H, Wang Q, Zhang Y. Analyzing the impact and mechanism of bisphenol A on testicular lipid metabolism in Gobiocypris rarus through integrated lipidomics and transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115498. [PMID: 37742580 DOI: 10.1016/j.ecoenv.2023.115498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Bisphenol A (BPA) is one of the most common environmental endocrine chemicals, known for its estrogenic effects that can interfere with male spermatogenesis. Lipids play crucial roles in sperm production, capacitation, and motility as important components of the sperm plasma membrane. However, limited research has explored whether BPA affects lipid metabolism in the testes of male fish and subsequently impacts spermatogenesis. In this study, we employed Gobiocypris rarus rare minnow as a research model and exposed them to environmentally relevant concentrations of BPA (15 μg/L) for 5 weeks. We assessed sperm morphology and function and analyzed changes in testicular lipid composition and transcriptomics. The results demonstrated a significant increase in the sperm head membrane damage rate, along with reduced sperm motility and fertilization ability due to BPA exposure. Lipidomics analysis revealed that BPA increased the content of 11 lipids while decreasing the content of 6 lipids in the testes, particularly within glycerophospholipids, glycerolipids, and sphingolipid subclasses. Transcriptomics results indicated significant up-regulation in pathways such as cholesterol metabolism, peroxisome proliferator-activated receptor signaling, and fat digestion and absorption, with significant alterations in key genes related to lipid metabolism, including apolipoprotein A-I, apolipoprotein C-I, and translocator protein. These findings suggest that BPA exposure can induce testicular lipid metabolism disruption in rare minnows, potentially resulting in abnormalities in rare minnow spermatogenesis.
Collapse
Affiliation(s)
- Jianlu Zhang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China; College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiqin Huang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qijun Wang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China.
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Zou Y, Zhang L, Yue M, Zou Z, Wu X, Zhang Q, Huang Y, Zeng S, Chen C, Gao J. Reproductive effects of pubertal exposure to neonicotinoid thiacloprid in immature male mice. Toxicol Appl Pharmacol 2023; 474:116629. [PMID: 37468076 DOI: 10.1016/j.taap.2023.116629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Thiacloprid (THIA) is a kind of neonicotinoid, a widely used insecticide class. Animal studies of adult and prenatal exposure to THIA have revealed deleterious effects on mammalian sperm fertility and embryonic development. A recent cross-sectional study linked higher THIA concentrations to delayed genitalia development stages in adolescent boys, suggesting that pubertal exposure to THIA may adversely affect reproductive development in immature males. Hence, this study aimed to investigate the effects of daily oral administration of THIA during puberty on the reproductive system of developing male mice. Young male C57 BL/6 J mice aged 21 days were administrated with THIA at concentrations of 10 (THIA-10), 50 (THIA-50) and 100 mg/kg (THIA-100) for 4 weeks by oral gavage. It is found that exposure to 100 mg/kg THIA diminished sexual behavior in immature male mice, caused a decrease in the spermatogenic cell layers and irregular arrangement of the seminiferous epithelium, and down-regulated the mRNA levels of spermatogenesis-related genes Ddx4, Scp3, Atg5, Crem, and Ki67, leading to an increase of sperm abnormality rate. In addition, THIA exposure at 50 and 100 mg/kg reduced the serum levels of testosterone and FSH, and decreased the expression levels of Star and Cyp11a1 related to testosterone biosynthesis. THIA exposure at 10 mg/kg did not produce any of the above significant changes. In conclusion, the high dose of THIA exposure impaired reproductive function in immature mice. It seems that THIA has no detrimental effects on the reproductive system of mice at low dose of 10 mg/kg.
Collapse
Affiliation(s)
- Yong Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Liyu Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Min Yue
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China; Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xu Wu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qiuyan Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yue Huang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shaohua Zeng
- China Coal Technology & Engineering Group Chongqing Research Institute, Chongqing 400039, People's Republic of China
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jieying Gao
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
8
|
Zhu Z, Long X, Wang J, Cao Q, Yang H, Zhang Y. Bisphenol A has a sex-dependent disruptive effect on hepatic lipid metabolism in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109616. [PMID: 36963593 DOI: 10.1016/j.cbpc.2023.109616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor that has adverse effects on lipid metabolism. However, most of the current studies on the effects of BPA on lipid metabolism in fish have focused on middle- and short-term exposure tests. The aim of this study was to investigate the effects of long-term BPA exposure on liver lipid metabolism in zebrafish. Post-fertilization embryos were exposed to environmentally relevant concentrations of BPA for 120 days, and the changes in triglyceride (TG), total cholesterol (TC) levels, and gene expression related to liver lipid metabolism were investigated in both male and female fish. The results showed that long-term exposure to BPA led to lipid deposition in liver, and there was a sex difference. In the liver of female fish, there was higher lipid transport and synthesis at low concentration of BPA, while overall metabolic levels were increased at high concentration of BPA. In contrast, BPA showed a dose-dependent effect on the lipid deposition in male fish. The expression of mRNA of TG transport-related and lipid synthesis-related genes was significantly up-regulated and the expression of genes related to lipid catabolism, was significantly down-regulated with increasing BPA dose. Taken together, our results indicate that long-term exposure to BPA can increase lipid deposition in a gender-specific manner. This may be due to the different responses of lipid metabolism related genes to BPA in male and female zebrafish. These results will provide a new reference for a deeper understanding of the ecotoxicological effects of BPA on aquatic animals.
Collapse
Affiliation(s)
- Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaodong Long
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingsheng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Salem M, Feizollahi N, Jabari A, Golmohammadi MG, Shirinsokhan A, Ghanami Gashti N, Bashghareh A, Nikmahzar A, Abbasi Y, Naji M, Abbasi M. Differentiation of human spermatogonial stem cells using a human decellularized testicular scaffold supplemented by platelet-rich plasma. Artif Organs 2023; 47:840-853. [PMID: 36721957 DOI: 10.1111/aor.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Effective culture systems for attachment, migration, proliferation, and differentiation of spermatogonial stem cells (SSCs) can be a promising therapeutic modality for preserving male fertility. Decellularized extracellular matrix (ECM) from native testis tissue creates a local microenvironment for testicular cell culture. Furthermore, platelet-rich plasma (PRP) contains various growth factors for the proliferation and differentiation of SSCs. METHODS In this study, human testicular cells were isolated and cultured for 4 weeks, and SSCs were characterized using immunocytochemistry (ICC) and flow cytometry. Human testicular tissue was decellularized (0.3% SDS, 1% Triton), and the efficiency of the decellularization process was confirmed by histological staining and DNA content analysis. SSCs were cultured on the human decellularized testicular matrix (DTM) for 4 weeks. The viability and the expression of differentiation genes were evaluated by MTT and real-time polymerase chain reaction (PCR), respectively. RESULTS Histological evaluation and DNA content analysis showed that the components of ECM were preserved during decellularization. Our results showed that after 4 weeks of culture, the expression levels of BAX, BCL-2, PLZF, and SCP3 were unchanged, while the expression of PRM2 significantly increased in the cells cultured on DTM supplemented with PRP (ECM-PRP). In addition, the expression of GFRA1 was significantly decreased in the ECM group compared to the control and PRP groups. Furthermore, the MTT test indicated that viability was significantly enhanced in cells plated on DTM supplemented with PRP. CONCLUSION Our study demonstrated that DTM supplemented with PRP can provide an effective culture system for the differentiation and viability of SSCs.
Collapse
Affiliation(s)
- Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayob Jabari
- Department of Obstetrics and Gynecology, Molud Infertility Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Armaghan Shirinsokhan
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Nasrin Ghanami Gashti
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland
| | - Alieh Bashghareh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Abbasi
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|