1
|
Lee M, Han SH, Kim D, Yun S, Yeom J, Kyeong M, Park SY, Lee DY. Systematic identification of genomic hotspots for high-yield protein production in CHO cells. N Biotechnol 2025; 88:61-72. [PMID: 40228657 DOI: 10.1016/j.nbt.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
The efficient and stable production of therapeutic proteins in Chinese hamster ovary (CHO) cells hinges on robust cell line development (CLD). Traditional methods relying on random transgene integration often result in clonal variability, requiring extensive and resource-intensive screening. To address this limitation, we established a systematic, multiomics-driven framework that integrates 202 RNA-sequencing datasets and whole-genome sequencing data to identify genomic "hotspot" loci for precise and high-yield transgene integration. From an initial pool of 20 candidate loci, 5 top-performing hotspots were validated using site-specific integration in CHO-DG44 cells via the CRISPR/Cas9 system with Recombinase-mediated cassette exchange (RMCE). These genomic hotspots achieved 2.2- to 15.0-fold higher relative specific productivity compared to previously known controls (Fer1L4 and Locus1 sites), across multiple therapeutic proteins, including a lysosomal storage disorder-related enzyme and an Immunoglobulin G (IgG)-related monoclonal antibody (mAb) expression. This study offers a transformative approach to CLD, achieving significant improvements in productivity, genomic stability, and efficiency, as well as paving the way for enhanced biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Minouk Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sung-Hyuk Han
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Dongseok Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongtae Yun
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Jinho Yeom
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Minji Kyeong
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
2
|
Kuo CC, Chiang AWT, Baghdassarian HM, Lewis NE. Dysregulation of the secretory pathway connects Alzheimer's disease genetics to aggregate formation. Cell Syst 2021; 12:873-884.e4. [PMID: 34171228 PMCID: PMC8505362 DOI: 10.1016/j.cels.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Amyloid disorders such as Alzheimer's disease (AD) involve the aggregation of secreted proteins. However, it is largely unclear how secretory-pathway proteins contribute to amyloid formation. We developed a systems biology framework integrating expression data with protein-protein interaction networks to estimate a tissue's fitness for producing specific secreted proteins and analyzed the fitness of the secretory pathway of various brain regions and cell types for synthesizing the AD-associated amyloid precursor protein (APP). While key amyloidogenic pathway components were not differentially expressed in AD brains, we found Aβ deposition correlates with systemic down- and upregulation of the secretory-pathway components proximal to APP and amyloidogenic secretases, respectively, in AD. Our analyses suggest that perturbations from three AD risk loci cascade through the APP secretory-support network and into the endocytosis pathway, connecting amyloidogenesis to dysregulation of secretory-pathway components supporting APP and suggesting novel therapeutic targets for AD. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA
| | - Austin W T Chiang
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA
| | - Hratch M Baghdassarian
- Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Samoudi M, Kuo CC, Robinson CM, Shams-Ud-Doha K, Schinn SM, Kol S, Weiss L, Petersen Bjorn S, Voldborg BG, Rosa Campos A, Lewis NE. In situ detection of protein interactions for recombinant therapeutic enzymes. Biotechnol Bioeng 2021; 118:890-904. [PMID: 33169829 PMCID: PMC7855575 DOI: 10.1002/bit.27621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Despite their therapeutic potential, many protein drugs remain inaccessible to patients since they are difficult to secrete. Each recombinant protein has unique physicochemical properties and requires different machinery for proper folding, assembly, and posttranslational modifications (PTMs). Here we aimed to identify the machinery supporting recombinant protein secretion by measuring the protein-protein interaction (PPI) networks of four different recombinant proteins (SERPINA1, SERPINC1, SERPING1, and SeAP) with various PTMs and structural motifs using the proximity-dependent biotin identification (BioID) method. We identified PPIs associated with specific features of the secreted proteins using a Bayesian statistical model and found proteins involved in protein folding, disulfide bond formation, and N-glycosylation were positively correlated with the corresponding features of the four model proteins. Among others, oxidative folding enzymes showed the strongest association with disulfide bond formation, supporting their critical roles in proper folding and maintaining the ER stability. Knockdown of disulfide-isomerase PDIA4, a measured interactor with significance for SERPINC1 but not SERPINA1, led to the decreased secretion of SERPINC1, which relies on its extensive disulfide bonds, compared to SERPINA1, which has no disulfide bonds. Proximity-dependent labeling successfully identified the transient interactions supporting synthesis of secreted recombinant proteins and refined our understanding of key molecular mechanisms of the secretory pathway during recombinant protein production.
Collapse
Affiliation(s)
- Mojtaba Samoudi
- Dept of Pediatrics, University of California, San Diego
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego
| | - Chih-Chung Kuo
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego
- Dept of Bioengineering, University of California, San Diego
| | - Caressa M. Robinson
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego
- Dept of Bioengineering, University of California, San Diego
| | | | - Song-Min Schinn
- Dept of Pediatrics, University of California, San Diego
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego
| | - Stefan Kol
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark
| | - Linus Weiss
- Dept of Biochemistry, Eberhard Karls University of Tübingen, Germany
| | - Sara Petersen Bjorn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark
| | - Bjorn G. Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark
| | | | - Nathan E. Lewis
- Dept of Pediatrics, University of California, San Diego
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego
- Dept of Bioengineering, University of California, San Diego
| |
Collapse
|
4
|
Gutierrez JM, Feizi A, Li S, Kallehauge TB, Hefzi H, Grav LM, Ley D, Baycin Hizal D, Betenbaugh MJ, Voldborg B, Faustrup Kildegaard H, Min Lee G, Palsson BO, Nielsen J, Lewis NE. Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nat Commun 2020; 11:68. [PMID: 31896772 PMCID: PMC6940358 DOI: 10.1038/s41467-019-13867-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
In mammalian cells, >25% of synthesized proteins are exported through the secretory pathway. The pathway complexity, however, obfuscates its impact on the secretion of different proteins. Unraveling its impact on diverse proteins is particularly important for biopharmaceutical production. Here we delineate the core secretory pathway functions and integrate them with genome-scale metabolic reconstructions of human, mouse, and Chinese hamster ovary cells. The resulting reconstructions enable the computation of energetic costs and machinery demands of each secreted protein. By integrating additional omics data, we find that highly secretory cells have adapted to reduce expression and secretion of other expensive host cell proteins. Furthermore, we predict metabolic costs and maximum productivities of biotherapeutic proteins and identify protein features that most significantly impact protein secretion. Finally, the model successfully predicts the increase in secretion of a monoclonal antibody after silencing a highly expressed selection marker. This work represents a knowledgebase of the mammalian secretory pathway that serves as a novel tool for systems biotechnology.
Collapse
Affiliation(s)
- Jahir M Gutierrez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Amir Feizi
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Shangzhong Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Thomas B Kallehauge
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Hooman Hefzi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Lise M Grav
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Daniel Ley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218-2686, USA
| | - Bjorn Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Ley D, Pereira S, Pedersen LE, Arnsdorf J, Hefzi H, Davy AM, Ha TK, Wulff T, Kildegaard HF, Andersen MR. Reprogramming AA catabolism in CHO cells with CRISPR/Cas9 genome editing improves cell growth and reduces byproduct secretion. Metab Eng 2019; 56:120-129. [DOI: 10.1016/j.ymben.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/10/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022]
|
6
|
Singh A, Kildegaard HF, Andersen MR. An Online Compendium of CHO RNA-Seq Data Allows Identification of CHO Cell Line-Specific Transcriptomic Signatures. Biotechnol J 2018; 13:e1800070. [DOI: 10.1002/biot.201800070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ankita Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; 2800 Kgs. Lyngby Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Helene F. Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Mikael R. Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| |
Collapse
|
7
|
Kuo CC, Chiang AW, Shamie I, Samoudi M, Gutierrez JM, Lewis NE. The emerging role of systems biology for engineering protein production in CHO cells. Curr Opin Biotechnol 2017; 51:64-69. [PMID: 29223005 DOI: 10.1016/j.copbio.2017.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
To meet the ever-growing demand for effective, safe, and affordable protein therapeutics, decades of intense efforts have aimed to maximize the quantity and quality of recombinant proteins produced in CHO cells. Bioprocessing innovations and cell engineering efforts have improved product titer; however, uncharacterized cellular processes and gene regulatory mechanisms still hinder cell growth, specific productivity, and protein quality. Herein, we summarize recent advances in systems biology and data-driven approaches aiming to unravel how molecular pathways, cellular processes, and extrinsic factors (e.g. media supplementation) influence recombinant protein production. In particular, as the available omics data for CHO cells continue to grow, predictive models and screens will be increasingly used to unravel the biological drivers of protein production, which can be used with emerging genome editing technologies to rationally engineer cells to further control the quantity, quality and affordability of many biologic drugs.
Collapse
Affiliation(s)
- Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States
| | - Austin Wt Chiang
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States
| | - Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Bioinformatics and Systems Biology Program, University of California, San Diego, United States
| | - Mojtaba Samoudi
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States
| | - Jahir M Gutierrez
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States.
| |
Collapse
|