1
|
Myers BL, Brayer KJ, Paez-Beltran LE, Villicana E, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara RK, Borromeo MD, Lu QR, Bachoo RM, Johnson JE, Vue TY. Transcription factors ASCL1 and OLIG2 drive glioblastoma initiation and co-regulate tumor cell types and migration. Nat Commun 2024; 15:10363. [PMID: 39609428 PMCID: PMC11605073 DOI: 10.1038/s41467-024-54750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex genetic alterations. The basic-helix-loop-helix (bHLH) transcription factors ASCL1 and OLIG2 are dynamically co-expressed in GBMs; however, their combinatorial roles in regulating the plasticity and heterogeneity of GBM cells are unclear. Here, we show that induction of somatic mutations in subventricular zone (SVZ) progenitor cells leads to the dysregulation of ASCL1 and OLIG2, which then function redundantly and are required for brain tumor formation in a mouse model of GBM. Subsequently, the binding of ASCL1 and OLIG2 to each other's loci and to downstream target genes then determines the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in specifying highly migratory neural stem cell (NSC)/astrocyte-like tumor cell types, which are marked by upregulation of ribosomal protein, oxidative phosphorylation, cancer metastasis, and therapeutic resistance genes.
Collapse
Affiliation(s)
- Bianca L Myers
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Luis E Paez-Beltran
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Estrella Villicana
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew S Keith
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Hideaki Suzuki
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rebekka H Anderson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yunee Lo
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Conner M Mertz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, EHCB, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tou Yia Vue
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
DeSisto J, Donson AM, Griesinger AM, Fu R, Riemondy K, Mulcahy Levy J, Siegenthaler JA, Foreman NK, Vibhakar R, Green AL. Tumor and immune cell types interact to produce heterogeneous phenotypes of pediatric high-grade glioma. Neuro Oncol 2024; 26:538-552. [PMID: 37934854 PMCID: PMC10912009 DOI: 10.1093/neuonc/noad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Pediatric high-grade gliomas (PHGG) are aggressive brain tumors with 5-year survival rates ranging from <2% to 20% depending upon subtype. PHGG presents differently from patient to patient and is intratumorally heterogeneous, posing challenges in designing therapies. We hypothesized that heterogeneity occurs because PHGG comprises multiple distinct tumor and immune cell types in varying proportions, each of which may influence tumor characteristics. METHODS We obtained 19 PHGG samples from our institution's pediatric brain tumor bank. We constructed a comprehensive transcriptomic dataset at the single-cell level using single-cell RNA-Seq (scRNA-Seq), identified known glial and immune cell types, and performed differential gene expression and gene set enrichment analysis. We conducted multi-channel immunofluorescence (IF) staining to confirm the transcriptomic results. RESULTS Our PHGG samples included 3 principal predicted tumor cell types: astrocytes, oligodendrocyte progenitors (OPCs), and mesenchymal-like cells (Mes). These cell types differed in their gene expression profiles, pathway enrichment, and mesenchymal character. We identified a macrophage population enriched in mesenchymal and inflammatory gene expression as a possible source of mesenchymal tumor characteristics. We found evidence of T-cell exhaustion and suppression. CONCLUSIONS PHGG comprises multiple distinct proliferating tumor cell types. Microglia-derived macrophages may drive mesenchymal gene expression in PHGG. The predicted Mes tumor cell population likely derives from OPCs. The variable tumor cell populations rely on different oncogenic pathways and are thus likely to vary in their responses to therapy.
Collapse
Affiliation(s)
- John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Cell Biology, Stem Cells and Development Graduate Program, Aurora, Colorado, USA
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrea M Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jean Mulcahy Levy
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Julie A Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Cell Biology, Stem Cells and Development Graduate Program, Aurora, Colorado, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
3
|
Wilk A, Setkowicz Z, Banas D, Fernández-Ruiz R, Marguí E, Matusiak K, Wrobel P, Wudarczyk-Mocko J, Janik-Olchawa N, Chwiej J. Glioblastoma multiforme influence on the elemental homeostasis of the distant organs: the results of inter-comparison study carried out with TXRF method. Sci Rep 2024; 14:1254. [PMID: 38218977 PMCID: PMC10787745 DOI: 10.1038/s41598-024-51731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).
Collapse
Affiliation(s)
- Aleksandra Wilk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Dariusz Banas
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Ramón Fernández-Ruiz
- Interdepartmental Research Service (SIdI), Autonomous University of Madrid, Madrid, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, Girona, Spain
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Pawel Wrobel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | | | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Myers BL, Brayer KJ, Paez-Beltran LE, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara R, Borromeo MD, Bachoo RM, Johnson JE, Vue TY. Glioblastoma initiation, migration, and cell types are regulated by core bHLH transcription factors ASCL1 and OLIG2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560206. [PMID: 37873200 PMCID: PMC10592871 DOI: 10.1101/2023.09.30.560206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex driver mutations and glioma stem cells (GSCs). The neurodevelopmental transcription factors ASCL1 and OLIG2 are co-expressed in GBMs, but their role in regulating the heterogeneity and hierarchy of GBM tumor cells is unclear. Here, we show that oncogenic driver mutations lead to dysregulation of ASCL1 and OLIG2, which function redundantly to initiate brain tumor formation in a mouse model of GBM. Subsequently, the dynamic levels and reciprocal binding of ASCL1 and OLIG2 to each other and to downstream target genes then determine the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in defining GSCs by upregulating a collection of ribosomal protein, mitochondrial, neural stem cell (NSC), and cancer metastasis genes - all essential for sustaining the high proliferation, migration, and therapeutic resistance of GSCs.
Collapse
|
5
|
Gale JR, Hartnett-Scott K, Ross MM, Rosenberg PA, Aizenman E. Copper induces neuron-sparing, ferredoxin 1-independent astrocyte toxicity mediated by oxidative stress. J Neurochem 2023; 167:277-295. [PMID: 37702109 PMCID: PMC10591933 DOI: 10.1111/jnc.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Copper is an essential enzyme cofactor in oxidative metabolism, anti-oxidant defenses, and neurotransmitter synthesis. However, intracellular copper, when improperly buffered, can also lead to cell death. Given the growing interest in the use of copper in the presence of the ionophore elesclomol (CuES) for the treatment of gliomas, we investigated the effect of this compound on the surround parenchyma-namely neurons and astrocytes in vitro. Here, we show that astrocytes were highly sensitive to CuES toxicity while neurons were surprisingly resistant, a vulnerability profile that is opposite of what has been described for zinc and other toxins. Bolstering these findings, a human astrocytic cell line was similarly sensitive to CuES. Modifications of cellular metabolic pathways implicated in cuproptosis, a form of copper-regulated cell death, such as inhibition of mitochondrial respiration or knock-down of ferredoxin 1 (FDX1), did not block CuES toxicity to astrocytes. CuES toxicity was also unaffected by inhibitors of apoptosis, necrosis or ferroptosis. However, we did detect the presence of lipid peroxidation products in CuES-treated astrocytes, indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Indeed, treatment with anti-oxidants mitigated CuES-induced cell death in astrocytes indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Lastly, prior induction of metallothioneins 1 and 2 in astrocytes with zinc plus pyrithione was strikingly protective against CuES toxicity. As neurons express high levels of metallothioneins basally, these results may partially account for their resistance to CuES toxicity. These results demonstrate a unique toxic response to copper in glial cells which contrasts with the cell selectivity profile of zinc, another biologically relevant metal.
Collapse
Affiliation(s)
- Jenna R. Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Karen Hartnett-Scott
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Madeline M. Ross
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Paul A. Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States, 02115
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| |
Collapse
|
6
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
7
|
Rigamonti L, Reginato F, Ferrari E, Pigani L, Gigli L, Demitri N, Kopel P, Tesarova B, Heger Z. From solid state to in vitro anticancer activity of copper(II) compounds with electronically-modulated NNO Schiff base ligands. Dalton Trans 2021; 49:14626-14639. [PMID: 33057512 DOI: 10.1039/d0dt03038d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The copper(ii) complexes of general formula [Cu(GL)(Cl)] (1-3, G = OMe, H and NO2, respectively), bearing tridentate Schiff base ligands (GL-) and a chloride as a fourth labile one, are here reported. The Schiff bases derive from the monocondensation of ethylenediamine and substituted salicylaldehyde, where the electronic properties are modulated by the releasing or withdrawing power of the G group. The compounds were structurally characterized through single crystal Synchrotron X-ray diffraction experiments in the solid state, revealing that 1 (OMe) and 2 (H) adopt a dimeric assembly [Cu(μ-Cl)(GL)]2 through apical interaction of the chloride ions of two monomeric units, while 3 embraces a 1D polymeric chain structure [Cu(μ-Cl)(NO2L)]n with a similar bridging fashion, all supported by extended intramolecular or intrachain hydrogen bonds. The redox properties of the complexes were also studied by cyclic voltammetry with no marked effect of the substituent on the potential of the CuII/CuI redox system. UV/Vis spectroscopic studies in mimicked physiological conditions highlighted the intactness and stability of the coordinated NNO tridentate ligand in 1-3 and the lability of the coordinated chloride ion with the formation of the aquo-complexes [Cu(GL)(H2O)]+ in aqueous solution, as confirmed by conductance measurements with a 1 : 1 electrolyte molar conductivity. In vitro tests on cell viability were conducted on malignant cell lines typical for their poor prognosis and curability, revealing time-dependent and differential cytotoxicity given by the substituent G. All compounds were capable of formation of intracellular reactive oxygen species and DNA intercalation, acting as nuclease and producing double-strand DNA breaks. This is especially effective for 3 (NO2), which revealed the highest anticancer activity against malignant triple-negative breast cancer MDA-MB-231 cells, with a two-to-four-fold cytotoxicity enhancement with respect to 1 (OMe) and 2 (H), and, most important, substantial differentiation of cytotoxicity with respect to healthy endothelial HUVEC cell line.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Francesco Reginato
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Erika Ferrari
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Laura Pigani
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Lara Gigli
- Elettra Synchrotron Trieste, Strada Statale 14 - km 163.5 - Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra Synchrotron Trieste, Strada Statale 14 - km 163.5 - Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146, Olomouc, Czech Republic
| | - Barbora Tesarova
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, CZ-61300, Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612-00 Brno, Czech Republic
| |
Collapse
|
8
|
Planeta K, Setkowicz Z, Janik-Olchawa N, Matusiak K, Ryszawy D, Drozdz A, Janeczko K, Ostachowicz B, Chwiej J. Comparison of Elemental Anomalies Following Implantation of Different Cell Lines of Glioblastoma Multiforme in the Rat Brain: A Total Reflection X-ray Fluorescence Spectroscopy Study. ACS Chem Neurosci 2020; 11:4447-4459. [PMID: 33205959 PMCID: PMC7747222 DOI: 10.1021/acschemneuro.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor with a very high degree of malignancy and is classified by WHO as a glioma IV. At present, the treatment of patients suffering from GBM is based on surgical resection of the tumor with maximal protection of surrounding tissues followed by radio- and pharmacological therapy using temozolomide as the most frequently recommended drug. This strategy, however, does not guarantee success and has devastating consequences. Testing of new substances or therapies having potential in the treatment of GBM as well as detection of their side effects cannot be done on humans. Animal models of the disease are usually used for these purposes, and one possibility is the implantation of human tumor cells into rodent brains. Such a solution was used in the present study the purpose of which was comparison of elemental anomalies appearing in the brain as a result of implantation of different glioblastoma cell lines. These were two commercially available cell lines (U87MG and T98G), as well as tumor cells taken directly from a patient diagnosed with GBM. Using total reflection X-ray fluorescence we determined the contents of P, S, K, Ca, Fe, Cu, Zn, and Se in implanted-left and intact-right brain hemispheres. The number of elemental anomalies registered for both hemispheres was positively correlated with the invasiveness of GBM cells and was the highest for animals subjected to U87MG cell implantation, which presented significant decrease of P, K, and Cu levels and an increase of Se concentration within the left hemisphere. The abnormality common for all three groups of animals subjected to glioma cell implantation was increased Fe level in the brain, which may result from higher blood supply or the presence of hemorrhaging regions. In the case of the intact hemisphere, elevated Fe concentration may also indicate higher neuronal activity caused by taking over some functions of the left hemisphere impaired as a result of tumor growth.
Collapse
Affiliation(s)
- Karolina Planeta
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Zuzanna Setkowicz
- Jagiellonian
University, Institute of Zoology
and Biomedical Research, Krakow 31-007, Poland
| | - Natalia Janik-Olchawa
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Katarzyna Matusiak
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Damian Ryszawy
- Jagiellonian
University, Faculty of Biochemistry,
Biophysics, and Biotechnology, Krakow 31-007, Poland
| | - Agnieszka Drozdz
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Krzysztof Janeczko
- Jagiellonian
University, Institute of Zoology
and Biomedical Research, Krakow 31-007, Poland
| | - Beata Ostachowicz
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| | - Joanna Chwiej
- AGH
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow 30-059, Poland
| |
Collapse
|
9
|
Blanden AR, Yu X, Blayney AJ, Demas C, Ha JH, Liu Y, Withers T, Carpizo DR, Loh SN. Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. eLife 2020; 9:61487. [PMID: 33263541 PMCID: PMC7728444 DOI: 10.7554/elife.61487] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Missense mutations in the p53 DNA-binding domain (DBD) contribute to half of new cancer cases annually. Here we present a thermodynamic model that quantifies and links the major pathways by which mutations inactivate p53. We find that DBD possesses two unusual properties—one of the highest zinc affinities of any eukaryotic protein and extreme instability in the absence of zinc—which are predicted to poise p53 on the cusp of folding/unfolding in the cell, with a major determinant being available zinc concentration. We analyze the 20 most common tumorigenic p53 mutations and find that 80% impair zinc affinity, thermodynamic stability, or both. Biophysical, cell-based, and murine xenograft experiments demonstrate that a synthetic zinc metallochaperone rescues not only mutations that decrease zinc affinity, but also mutations that destabilize DBD without impairing zinc binding. The results suggest that zinc metallochaperones have the capability to treat 120,500 patients annually in the U.S.
Collapse
Affiliation(s)
- Adam R Blanden
- Department of Neurology, SUNY Upstate Medical University, Syracuse, Syracuse, United States
| | - Xin Yu
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, United States
| | - Alan J Blayney
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
| | - Christopher Demas
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
| | - Yue Liu
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, United States
| | - Tracy Withers
- Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, United States
| | - Darren R Carpizo
- Department of Surgery, University of Rochester School of Medicine and Dentistry and Wilmot Cancer Center, Rochester, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
| |
Collapse
|
10
|
Santangelo R, Rizzarelli E, Copani A. Role for Metallothionein-3 in the Resistance of Human U87 Glioblastoma Cells to Temozolomide. ACS OMEGA 2020; 5:17900-17907. [PMID: 32743161 PMCID: PMC7392386 DOI: 10.1021/acsomega.9b04483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Metallothioneins (MTs) are metal-binding proteins that are overexpressed in various human cancers and are thought to be associated with resistance to cytotoxic drugs. The knowledge on MT expression, regulation, and function in human gliomas is limited. We found that MT3 mRNA was highly expressed in cell lines derived from grade IV gliomas (i.e., A172 and U87 cells), as compared to grade II astrocytoma cells (i.e., 1321N1). Different from 1321N1, U87 cells were partly resistant to the alkylating drug, temozolomide (TMZ) (100 μM for 96 h), which induced a massive accumulation of U87 into the S and G2 fractions of the cell cycle but not apoptotic death. Silencing of MT3 did not significantly affect U87 cell proliferation and survival, but it delayed G1/S transition and favored the occurrence of apoptosis in TMZ-treated cells. Accordingly, the combination of MT3 silencing and TMZ treatment increased the protein levels of checkpoint kinase-1, which was ultimately responsible for the lasting G1 arrest and death of double treated U87 cells.
Collapse
Affiliation(s)
- Rosa Santangelo
- Department
of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Enrico Rizzarelli
- Department
of Chemical Sciences, University of Catania, 95125 Catania, Italy
- Institute
of Crystallography, National Council of
Research, 95125 Catania, Italy
| | - Agata Copani
- Department
of Drug Sciences, University of Catania, 95125 Catania, Italy
- Institute
of Crystallography, National Council of
Research, 95125 Catania, Italy
| |
Collapse
|
11
|
Sun S, Liu F, Xian S, Cai D. miR-325-3p Overexpression Inhibits Proliferation and Metastasis of Bladder Cancer Cells by Regulating MT3. Med Sci Monit 2020; 26:e920331. [PMID: 32512576 PMCID: PMC7297032 DOI: 10.12659/msm.920331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND miRNAs have been widely used in cancer treatment. Our study was designed to explore the effects of miR-325-3p in bladder cancer cells. MATERIAL AND METHODS Levels ofd miR-325-3p and MT3 in bladder cancer tissues and cells were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). miR-325-3p mimics were transfected into bladder cancer T24 cells, and cell migration and invasion rates and cell proliferation were assessed by transwell assay and Cell Counting Kit-8 (CCK-8). The target mRNA for miR-325-3p was predicted by Targetscan7.2 and confirmed by dual-luciferase reporter assay. More experiments were performed to confirm the effects of miR-325-3p and MT3 in T24 cells. Additionally, the levels of TIMP-2, MMP9, and E-cadherin were assessed by Western blotting to identify the effects of miR-325-3p and MT3 on epithelial-mesenchymal transition (EMT). RESULTS miR-325-3p expression was reduced and MT3 was increased in bladder cancer tissues and bladder cancer cells. miR-325-3p mimics suppressed cell proliferation ability and invasion and migration rates of T24 cells. Moreover, miR-325-3p was confirmed to target MT3. Further experiments showed that the effects of increased cell proliferation, invasion, migration, and EMT promoted by MT3 overexpression were abolished by miR-325-3p mimics, proving that miR-325-3p is a tumor suppressor through targeting MT3 in bladder cancer cells. CONCLUSIONS Downregulation of miR-325-3p in bladder cancer regulates cell proliferation, migration, invasion, and EMT by targeting MT3. Furthermore, miR-325-3p is a potential therapeutic target in treating bladder cancer.
Collapse
Affiliation(s)
- Shaopeng Sun
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Feng Liu
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Shaozhong Xian
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Dawei Cai
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
12
|
A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Sci Rep 2020; 10:2015. [PMID: 32029749 PMCID: PMC7005189 DOI: 10.1038/s41598-020-58237-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
Although metallothionein-3 (MT3), a brain-enriched form of metallothioneins, has been linked to Alzheimer's disease, little is known regarding the role of MT3 in glioma. As MT3 plays a role in autophagy in astrocytes, here, we investigated its role in irradiated glioma cells. Irradiation increased autophagy flux in GL261 glioma cells as evidenced by increased levels of LC3-II but decreased levels of p62 (SQSTM1). Indicating that autophagy plays a cytoprotective role in glioma cell survival following irradiation, measures inhibiting autophagy flux at various steps decreased their clonogenic survival of irradiated GL261 as well as SF295 and U251 glioma cells. Knockdown of MT3 with siRNA in irradiated glioma cells induced arrested autophagy, and decreased cell survival. At the same time, the accumulation of labile zinc in lysosomes was markedly attenuated by MT3 knockdown. Indicating that such zinc accumulation was important in autophagy flux, chelation of zinc with tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), induced arrested autophagy in and reduced survival of GL261 cells following irradiation. Suggesting a possible mechanism for arrested autophagy, MT3 knockdown and zinc chelation were found to impair lysosomal acidification. Since autophagy flux plays a cytoprotective role in irradiated glioma cells, present results suggest that MT3 and zinc may be regarded as possible therapeutic targets to sensitize glioma cells to ionizing radiation therapy.
Collapse
|
13
|
Evaluation of MT Family Isoforms as Potential Biomarker for Predicting Progression and Prognosis in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2957821. [PMID: 31380415 PMCID: PMC6662468 DOI: 10.1155/2019/2957821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Background Metallothioneins (MTs) family comprises many isoforms, most of which are frequently dysregulated in a wide range of cancers. However, the expression pattern and exact role of each distinct MT family isoform which contributes to tumorigenesis, progression, and drug resistance of gastric cancer (GC) are still unclear. Methods Publicly available databases including Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, SurvExpress, MethHC, cBioportal, and GeneMANIA were accessed to perform an integrated bioinformatic analysis and try to detect fundamental relationships between each MT family member and GC. Results Bioinformatic data indicated that the mRNA expression of all MT family members was almost lowly expressed in GC compared with normal gastric tissue (P<0.05), and patients with reduced mRNA expression of each individual MT member had inconsistent prognostic value (OS, FP, PPS), which depended on the individual isoform of MT. A negative correlation between the methylation in promoter region of majority of MT members and their mRNA expression was detected from MethHC database (p<0.001). Data downloaded from TCGA revealed that MTs were rarely mutated in GC patients and MT2A was frequently regulated by other three genes (FOS, JUN, SP1) in GC patients. Conclusion MTs were nearly downregulated, and distinct type of MT harbored different prognostic role in GC patients. Methylation in gene promoter region of MTs partially contributed to their reduced expression in GC. Our comprehensive analyses from multiple independent databases may further lead researches to explore MT-targeting reagents or potential diagnostic and prognostic markers for GC patients.
Collapse
|
14
|
Masiulionytė B, Valiulytė I, Tamašauskas A, Skiriutė D. Metallothionein Genes are Highly Expressed in Malignant Astrocytomas and Associated with Patient Survival. Sci Rep 2019; 9:5406. [PMID: 30932010 PMCID: PMC6443939 DOI: 10.1038/s41598-019-41974-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Gliomas are heterogeneous, primary brain tumours that originate from glial cells. The main type of gliomas is astrocytomas. There are four grades (I-IV) of astrocytoma malignancy. Astrocytoma grade IV known as glioblastoma multiforme (GBM) is the most common and aggressive type of astrocytic gliomas. Metallothioneins (MT) are low molecular weight, cysteine rich proteins encoded by a family of metallothionein (MT) genes. MT genes play a crucial role in carcinogenesis of diverse malignancies. We proposed MT genes as prognostic markers for malignant astrocytoma. MT1A, MT1E, MT1X, MT2, MT3 gene expression was elevated in grade IV astrocytomas (glioblastomas) as compared to astrocytomas grade I-III. Statistically significant differences were reached for MT1A and MT2 genes (Mann-Whitney test, p < 0.05). High MT1A, MT1X, MT2, MT3 genes expression was associated with shorter patient survival (Log-rank test, p < 0.05). MT1A gene promoter methylation was decreased in glioblastoma (57.6%) while the gene was highly methylated in grade II-III astrocytoma (from 66.7% to 83.3%) and associated with better patient survival (p < 0.05). MT1A gene methylation showed a trend of being associated with higher mRNA expression level in astrocytomas. Increased MT genes expression in grade IV astrocytomas as compared to I-III grade astrocytomas could be associated with malignant tumour behaviour and progression.
Collapse
Affiliation(s)
- Bernadeta Masiulionytė
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT-50161, Lithuania
| | - Indrė Valiulytė
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT-50161, Lithuania
| | - Arimantas Tamašauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT-50161, Lithuania
| | - Daina Skiriutė
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT-50161, Lithuania.
| |
Collapse
|
15
|
Cancer astrocytes have a more conserved molecular status in long recurrence free survival (RFS) IDH1 wild-type glioblastoma patients: new emerging cancer players. Oncotarget 2018; 9:24014-24027. [PMID: 29844869 PMCID: PMC5963624 DOI: 10.18632/oncotarget.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/02/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is a devastating disease that despite all the information gathered so far, its optimal management remains elusive due to the absence of validated targets from clinical studies. A better clarification of the molecular mechanisms is needed. In this study, having access to IDH1 wild-type glioblastoma of patients with exceptionally long recurrence free survival (RFS), we decided to compare their mutational and gene expression profile to groups of IDH1 wild-type glioblastoma of patients with shorter RFS, by using NGS technology. The exome analysis revealed that Long-RFS tumors have a lower mutational rate compared to the other groups. A total of 158 genes were found differentially expressed among the groups, 112 of which distinguished the two RFS extreme groups. Overall, the exome data suggests that shorter RFS tumors could be, chronologically, in a more advanced state in the muli-step tumor process of sequential accumulation of mutations. New players in this kind of cancer emerge from the analysis, confirmed at the RNA/DNA level, identifying, therefore, possible oncodrivers or tumor suppressor genes.
Collapse
|
16
|
Toren A, Pismenyuk T, Yalon M, Freedman S, Simon AJ, Fisher T, Moshe I, Reichardt JKV, Constantini S, Mardor Y, Last D, Guez D, Daniels D, Assoulin M, Mehrian-Shai R. Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems. Oncotarget 2018; 7:74860-74871. [PMID: 27556862 PMCID: PMC5342707 DOI: 10.18632/oncotarget.11382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/26/2022] Open
Abstract
Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients.
Collapse
Affiliation(s)
- Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Tatyana Pismenyuk
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Shani Freedman
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Amos J Simon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Tamar Fisher
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Itai Moshe
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv-Sourasky Medical Center, Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - David Guez
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dianne Daniels
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Moria Assoulin
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ruty Mehrian-Shai
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Merlos Rodrigo MA, Dostalova S, Buchtelova H, Strmiska V, Michalek P, Krizkova S, Vicha A, Jencova P, Eckschlager T, Stiborova M, Heger Z, Adam V. Comparative gene expression profiling of human metallothionein-3 up-regulation in neuroblastoma cells and its impact on susceptibility to cisplatin. Oncotarget 2017; 9:4427-4439. [PMID: 29435113 PMCID: PMC5796984 DOI: 10.18632/oncotarget.23333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Human metallothionein-3 (hMT-3), also known as growth inhibitory factor, is predominantly expressed in the central nervous system. hMT-3 is presumed to participate in the processes of heavy metal detoxification, regulation of metabolism and protection against oxidative damage of free radicals in the central nervous system; thus, it could play important neuromodulatory and neuroprotective roles. However, the primary functions of hMT-3 and the mechanism underlying its multiple functions in neuroblastoma have not been elucidated so far. First, we confirmed relatively high expression of hMT-3 encoding mRNA in biopsies (n = 23) from high-risk neuroblastoma subjects. Therefore, we focused on investigation of the impact of hMT-3 up-regulation in N-Myc amplifying neuroblastoma cells. The differentially up-regulated genes involved in biological pathways related to cellular senescence and cell cycle were identified using electrochemical microarray with consequent bioinformatic processing. Further, as experimental verification of microarray data, the cytotoxicity of the cisplatin (CDDP) was examined in hMT-3 and mock cells by MTT and clonogenic assays. Overall, our data strongly suggest that up-regulation of hMT-3 positively correlates with the genes involved in oncogene-induced senescence (CDKN2B and ANAPC5) or apoptosis (CASP4). Moreover, we identified a significant increase in chemoresistance to cisplatin (CDDP) due to hMT-3 up-regulation (24IC50: 7.5 vs. 19.8 μg/ml), indicating its multipurpose biological significance.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Ales Vicha
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Pavla Jencova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, CZ-128 40 Prague 2, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| |
Collapse
|
18
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
19
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
20
|
Zheng Y, Jiang L, Hu Y, Xiao C, Xu N, Zhou J, Zhou X. Metallothionein 1H (MT1H) functions as a tumor suppressor in hepatocellular carcinoma through regulating Wnt/β-catenin signaling pathway. BMC Cancer 2017; 17:161. [PMID: 28241806 PMCID: PMC5330125 DOI: 10.1186/s12885-017-3139-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Metallothionein 1H (MT1H) expression level is downregulated in several kinds of tumors, including hepatocellular cancer (HCC). However, its biological functions and underlying mechanisms in HCC is largely unknown. The current study aimed to demonstrate the expression status, biological roles and potential mechanisms of MT1H in HCC. METHODS We investigated the expression level of MT1H in the Cancer Genome Atlas (TCGA) dataset and a panel of 12 paired tumor/non-tumor tissues. In vitro, gain-of-function experiments were performed to examine the role of MT1H on HCC cell proliferation, invasion, and migration. Using bioinformatics assay, reporter assays, quantitative real-time PCR, and western blotting, we explored the possible mechanisms underlying the role of MT1H in HCC cells. In vivo nude mice experiments were performed to assess the anti-proliferative role of MT1H in HCC. RESULTS Downregulation of MT1H was observed in TCGA dataset and a panel of 12 paired tumor/non-tumor tissues. Ectopic overexpression of MT1H in HepG2 and Hep3B cells inhibited cell proliferation, invasion, and migration. Gene Set Enrichment Analysis (GSEA) showed that MT1H might involve in regulation of Wnt/β-catenin pathway. Top/Fop reporter assay confirmed that MT1H had an effect on Wnt/β-catenin signaling. Real-time PCR showed MT1H expression decreased the expression of Wnt/β-catenin target genes. Western blotting assay showed that overexpression of MT1H inhibited the nuclear translocation of β-catenin and that the Akt/GSK-3β axis mediated the modulatory role of MT1H on Wnt/β-catenin signaling in HCC. In vivo nude mice experiments demonstrated that MT1H suppressed the proliferation of HCC cells. Taken together, MT1H suppressed the proliferation, invasion and migration of HCC cells via regulating Wnt/β-catenin signaling pathway. CONCLUSIONS This study demonstrated that through inhibiting Wnt/β-catenin pathway, MT1H suppresses the proliferation and invasion of HCC cells. MT1H may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lihua Jiang
- Department of Neurology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Yongxian Hu
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Cheng Xiao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| | - Xinhui Zhou
- Department of Gynecology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
21
|
Scudiero R, Cigliano L, Verderame M. Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain. C R Biol 2016; 340:13-17. [PMID: 27939232 DOI: 10.1016/j.crvi.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed.
Collapse
Affiliation(s)
- Rosaria Scudiero
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy.
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| | - Mariailaria Verderame
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
22
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|
23
|
Mammalian Metallothionein-2A and Oxidative Stress. Int J Mol Sci 2016; 17:ijms17091483. [PMID: 27608012 PMCID: PMC5037761 DOI: 10.3390/ijms17091483] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023] Open
Abstract
Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy.
Collapse
|
24
|
Cosset E, Petty T, Dutoit V, Tirefort D, Otten-Hernandez P, Farinelli L, Dietrich PY, Preynat-Seauve O. Human tissue engineering allows the identification of active miRNA regulators of glioblastoma aggressiveness. Biomaterials 2016; 107:74-87. [PMID: 27614160 DOI: 10.1016/j.biomaterials.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive cancers associated with massive infiltration of peritumoral parenchyma by migrating tumor cells. The infiltrative nature of GBM cells, the intratumoral heterogeneity concomitant with redundant signaling pathways likely underlie the inability of conventional and targeted therapies to achieve long-term remissions. In this respect, microRNAs (miRNAs), which are endogenous small non-coding RNAs that play a role in cancer aggressiveness, emerge as possible relevant prognostic biomarkers or therapeutic targets for treatment of malignant gliomas. We previously described a tissue model of GBM developing into a stem cell-derived human Engineered Neural Tissue (ENT) that allows the study of tumor/host tissue interaction. Combined with high throughput sequencing analysis, we took advantage of this human and integrated tissue model to understand miRNAs regulation. Three miRNAs (miR-340, -494 and -1293) active on cell proliferation, adhesion to extracellular matrix and tumor cell invasion were identified in GBM cells developing within ENT, and also confirmed in GBM biopsies. The components of miRNAs regulatory network at the transcriptional and the protein level have been also revealed by whole transcriptome analysis and Tandem Mass Tag in transfected GBM cells. Notably, miR-340 has a clinical relevance and modulates the expression of miR-494 and -1293, emphasizing its biological significance. Altogether, these findings demonstrate that human tissue engineering modeling GBM development in neural host tissue is a suitable tool to identify active miRNAs. Collectively, our study identified miR-340 as a strong modulator of GBM aggressiveness which may constitute a therapeutic target for treatment of malignant gliomas.
Collapse
Affiliation(s)
- E Cosset
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| | - T Petty
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - V Dutoit
- Laboratory of Tumor Immunology, Centre of Oncology, Geneva University Hospitals, University of Geneva, Switzerland
| | - D Tirefort
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | | | | | - P-Y Dietrich
- Laboratory of Tumor Immunology, Centre of Oncology, Geneva University Hospitals, University of Geneva, Switzerland
| | - O Preynat-Seauve
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Switzerland; Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
25
|
de Aquino PF, Carvalho PC, Nogueira FCS, da Fonseca CO, de Souza Silva JCT, Carvalho MDGDC, Domont GB, Zanchin NIT, Fischer JDSDG. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme. Front Oncol 2016; 6:183. [PMID: 27597932 PMCID: PMC4992702 DOI: 10.3389/fonc.2016.00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique.
Collapse
Affiliation(s)
- Priscila F de Aquino
- Laboratory of Microbial Diversity from Amazon with Importance for Health, Instituto Leônidas e Maria Deane, Fiocruz , Manaus, Amazonas , Brazil
| | - Paulo Costa Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil; Laboratory of Toxinology, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory for Protein Chemistry, Chemistry Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Clovis Orlando da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University , Rio de Janeiro , Brazil
| | | | - Maria da Gloria da Costa Carvalho
- Laboratory of Molecular Pathology, Department of Pathology, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Gilberto B Domont
- Laboratory for Protein Chemistry, Chemistry Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Nilson I T Zanchin
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz , Curitiba, Paraná , Brazil
| | | |
Collapse
|
26
|
Ostrakhovitch EA, Song YP, Cherian MG. Basal and copper-induced expression of metallothionein isoform 1,2 and 3 genes in epithelial cancer cells: The role of tumor suppressor p53. J Trace Elem Med Biol 2016; 35:18-29. [PMID: 27049123 DOI: 10.1016/j.jtemb.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are a ubiquitous low-molecular weight, cysteine rich proteins with a high affinity for metal ions. The expression and induction of MTs have been associated with protection against DNA damage, oxidative stress, and apoptosis. Our past research had shown that p53 is an important factor in metal regulation of MTs. The present study was undertaken to explore further the interrelationship between p53 and MTs. We investigated whether silencing of p53 could affect expression pattern of basal and copper induced metallothioneins. The silencing of wild-type p53 (wt-p53) in epithelial breast cancer MCF7 cells affected the basal level of MT-2A RNA, whereas the levels of MT-1A and MT-1X RNA remained largely unchanged. The expression of MT-3 was undetectable in MCF7 with either functional or silenced p53. MCF7 cells with silenced wt-p53 failed to upregulate MT-2A in response to copper and showed a reduced sensitivity toward copper induced cell apoptotic death. Similarly in MCF7-E6 and MDA-MB-231 cells, the presence of inactive/mutated p53 halted MT-1A and MT-2A gene expression in response to copper. Constitutive expression of MT-3 RNA was detectable in the presence of mutated p53 (mtp53). Transient transfection of MDA-MB-231 cells with wt-p53 enabled copper induced upregulation of both MT-1A and MT-2A but not basal level of MT-2A, MT-1E, MT-1X and MT-3. Inactivation of p53 in HepG2 cells amplified the basal expression of studied MT isoforms, including MT-3, as well as copper-induced mRNA expression of MTs except MT-1H and MT-3. Presented data demonstrate a direct relation between p53 and MT-1A and MT-2A and they also indicate that wt-p53 might be a negative regulator of MT-3 in epithelial cancer cells.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada.
| | - Y P Song
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada
| | - M G Cherian
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada
| |
Collapse
|