1
|
Hamann MV, Adiba M, Lange UC. Confounding factors in profiling of locus-specific human endogenous retrovirus (HERV) transcript signatures in primary T cells using multi-study-derived datasets. BMC Med Genomics 2023; 16:68. [PMID: 37013607 PMCID: PMC10068191 DOI: 10.1186/s12920-023-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERV) are repetitive sequence elements and a substantial part of the human genome. Their role in development has been well documented and there is now mounting evidence that dysregulated HERV expression also contributes to various human diseases. While research on HERV elements has in the past been hampered by their high sequence similarity, advanced sequencing technology and analytical tools have empowered the field. For the first time, we are now able to undertake locus-specific HERV analysis, deciphering expression patterns, regulatory networks and biological functions of these elements. To do so, we inevitable rely on omics datasets available through the public domain. However, technical parameters inevitably differ, making inter-study analysis challenging. We here address the issue of confounding factors for profiling locus-specific HERV transcriptomes using datasets from multiple sources. METHODS We collected RNAseq datasets of CD4 and CD8 primary T cells and extracted HERV expression profiles for 3220 elements, resembling most intact, near full-length proviruses. Looking at sequencing parameters and batch effects, we compared HERV signatures across datasets and determined permissive features for HERV expression analysis from multiple-source data. RESULTS We could demonstrate that considering sequencing parameters, sequencing-depth is most influential on HERV signature outcome. Sequencing samples deeper broadens the spectrum of expressed HERV elements. Sequencing mode and read length are secondary parameters. Nevertheless, we find that HERV signatures from smaller RNAseq datasets do reliably reveal most abundantly expressed HERV elements. Overall, HERV signatures between samples and studies overlap substantially, indicating a robust HERV transcript signature in CD4 and CD8 T cells. Moreover, we find that measures of batch effect reduction are critical to uncover genic and HERV expression differences between cell types. After doing so, differences in the HERV transcriptome between ontologically closely related CD4 and CD8 T cells became apparent. CONCLUSION In our systematic approach to determine sequencing and analysis parameters for detection of locus-specific HERV expression, we provide evidence that analysis of RNAseq datasets from multiple studies can aid confidence of biological findings. When generating de novo HERV expression datasets we recommend increased sequence depth ( > = 100 mio reads) compared to standard genic transcriptome pipelines. Finally, batch effect reduction measures need to be implemented to allow for differential expression analysis.
Collapse
Affiliation(s)
| | - Maisha Adiba
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ulrike C Lange
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
- Institute for Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Wang Y, Liu M, Guo X, Zhang B, Li H, Liu Y, Han J, Jia L, Li L. Endogenous Retrovirus Elements Are Co-Expressed with IFN Stimulation Genes in the JAK-STAT Pathway. Viruses 2022; 15:60. [PMID: 36680099 PMCID: PMC9861321 DOI: 10.3390/v15010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Endogenous retrovirus (ERV) elements can act as proximal regulatory elements in promoting interferon (IFN) responses. Previous relevant studies have mainly focused on IFN-stimulated genes (ISGs). However, the role of ERV elements as cis-regulatory motifs in regulating genes of the JAK-STAT pathway remains poorly understood. In our study, we analyzed the changes in ERV elements and genes under both IFN stimulation and blockade of the signaling pathway. Methods: The effects of interferon on cells under normal conditions and knockout of the receptor were compared based on the THP1_IFNAR1_KO and THP1_IFNAR2_mutant cell lines. The correlation between differentially expressed ERVs (DHERVs) and differentially expressed genes (DEGs) as DEHERV-G pairs was explored with construction of gene regulatory networks related to ERV and induced by proinflammatory cytokines. Results: A total of 430 DEHERV loci and 190 DEGs were identified in 842 DEHERV-G pairs that are common to the three groups. More than 87% of DEHERV-G pairs demonstrated a consistent expression pattern. ISGs such as AIM2, IFIT1, IFIT2, IFIT3, STAT1, and IRF were activated via the JAK-STAT pathway in response to interferon stimulation. Thus, STAT1, STAT2, and IRF1 appear to play core roles in regulatory networks and are closely associated with ERVs. Conclusions: The RNA expression of ISGs and ERV elements is correlated, indicating that ERV elements are closely linked to host innate immune responses.
Collapse
Affiliation(s)
- Yanglan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengying Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Guo
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| |
Collapse
|
3
|
Transcriptome Analyses Implicate Endogenous Retroviruses Involved in the Host Antiviral Immune System through the Interferon Pathway. Virol Sin 2021; 36:1315-1326. [PMID: 34009516 PMCID: PMC8131884 DOI: 10.1007/s12250-021-00370-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are the remains of ancient retroviruses that invaded our ancestors' germline cell and were integrated into the genome. The expression of HERVs has always been a cause for concern because of its association with various cancers and diseases. However, few previous studies have focused on specific activation of HERVs by viral infections. Our previous study has shown that dengue virus type 2 (DENV-2) infection induces the transcription of a large number of abnormal HERVs loci; therefore, the purpose of this study was to explore the relationship between exogenous viral infection and HERV activation further. In this study, we retrieved and reanalyzed published data on 21 transcriptomes of human cells infected with various viruses. We found that infection with different viruses could induce transcriptional activation of HERV loci. Through the comparative analysis of all viral datasets, we identified 43 key HERV loci that were up-regulated by DENV-2, influenza A virus, influenza B virus, Zika virus, measles virus, and West Nile virus infections. Furthermore, the neighboring genes of these HERVs were simultaneously up-regulated, and almost all such neighboring genes were interferon-stimulated genes (ISGs), which are enriched in the host's antiviral immune response pathways. Our data supported the hypothesis that activation of HERVs, probably via an interferon-mediated mechanism, plays an important role in innate immunity against viral infections.
Collapse
|
4
|
Natoli M, Gallon J, Lu H, Amgheib A, Pinato DJ, Mauri FA, Marafioti T, Akarca AU, Ullmo I, Ip J, Aboagye EO, Brown R, Karadimitris A, Ghaem-Maghami S. Transcriptional analysis of multiple ovarian cancer cohorts reveals prognostic and immunomodulatory consequences of ERV expression. J Immunother Cancer 2021; 9:jitc-2020-001519. [PMID: 33436485 PMCID: PMC7805370 DOI: 10.1136/jitc-2020-001519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Endogenous retroviruses (ERVs) play a role in a variety of biological processes, including embryogenesis and cancer. DNA methyltransferase inhibitors (DNMTi)-induced ERV expression triggers interferon responses in ovarian cancer cells via the viral sensing machinery. Baseline expression of ERVs also occurs in cancer cells, though this process is poorly understood and previously unexplored in epithelial ovarian cancer (EOC). Here, the prognostic and immunomodulatory consequences of baseline ERV expression was assessed in EOC. METHODS ERV expression was assessed using EOC transcriptional data from The Cancer Genome Atlas (TCGA) and from an independent cohort (Hammersmith Hospital, HH), as well as from untreated or DNMTi-treated EOC cell lines. Least absolute shrinkage and selection operator (LASSO) logistic regression defined an ERV expression score to predict patient prognosis. Immunohistochemistry (IHC) was conducted on the HH cohort. Combination of DNMTi treatment with γδ T cells was tested in vitro, using EOC cell lines and patient-derived tumor cells. RESULTS ERV expression was found to define clinically relevant subsets of EOC patients. An ERV prognostic score was successfully generated in TCGA and validated in the independent cohort. In EOC patients from this cohort, a high ERV score was associated with better survival (log-rank p=0.0009) and correlated with infiltration of CD8+PD1+T cells (r=0.46, p=0.0001). In the TCGA dataset, a higher ERV score was found in BRCA1/2 mutant tumors, compared to wild type (p=0.015), while a lower ERV score was found in CCNE1 amplified tumors, compared to wild type (p=0.019). In vitro, baseline ERV expression dictates the level of ERV induction in response to DNMTi. Manipulation of an ERV expression threshold by DNMTi resulted in improved EOC cell killing by cytotoxic immune cells. CONCLUSIONS These findings uncover the potential for baseline ERV expression to robustly inform EOC patient prognosis, influence tumor immune infiltration and affect antitumor immunity.
Collapse
Affiliation(s)
- Marina Natoli
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - John Gallon
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Haonan Lu
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ala Amgheib
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Francesco A Mauri
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Teresa Marafioti
- Department of Pathology, University College London Cancer Institute, London, UK
| | - Ayse U Akarca
- Department of Pathology, University College London Cancer Institute, London, UK
| | - Ines Ullmo
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jacey Ip
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Robert Brown
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Pathology, Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
5
|
Pisano MP, Grandi N, Tramontano E. High-Throughput Sequencing is a Crucial Tool to Investigate the Contribution of Human Endogenous Retroviruses (HERVs) to Human Biology and Development. Viruses 2020; 12:E633. [PMID: 32545287 PMCID: PMC7354619 DOI: 10.3390/v12060633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/19/2023] Open
Abstract
Human Endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that represent a large fraction of our genome. Their transcriptional activity is finely regulated in early developmental stages and their expression is modulated in different cell types and tissues. Such activity has an impact on human physiology and pathology that is only partially understood up to date. Novel high-throughput sequencing tools have recently allowed for a great advancement in elucidating the various HERV expression patterns in different tissues as well as the mechanisms controlling their transcription, and overall, have helped in gaining better insights in an all-inclusive understanding of the impact of HERVs in biology of the host.
Collapse
Affiliation(s)
- Maria Paola Pisano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Cagliari, Italy
| |
Collapse
|
6
|
Wang M, Qiu Y, Liu H, Liang B, Fan B, Zhou X, Liu D. Transcription profile of human endogenous retroviruses in response to dengue virus serotype 2 infection. Virology 2020; 544:21-30. [PMID: 32174511 DOI: 10.1016/j.virol.2020.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
Human endogenous retroviruses (HERVs), the remains of retroviruses infection in our ancestors' germline cell over millions of years, take up about 8% of the human genome in total. HERV transcription has been detected in various cancers and diseases. However, the interaction between HERV expression and viral infection has not been fully elucidated. Here, we provided the first transcriptional profile of HERVs in dengue virus serotype 2 (DENV-2) infected A549 cells by using high-throughput RNA sequencing. The results showed that a number of HERVs and human genes were significantly differentially expressed in response to DENV-2 infection. Further bioinformatic analyses indicated a correlation between HERVs and human genes. In particular, the genes near the HERVs activated by dengue infection were dominantly enriched in the antiviral immune response. Taken together, our findings suggest that activated HERVs may be involved in the cellular immune response to viral infection by coexpressing with nearby host genes.
Collapse
Affiliation(s)
- Miao Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bilin Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baofeng Fan
- Airforce Medical Center, PLA, Beijing, 100142, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
7
|
Bendall ML, de Mulder M, Iñiguez LP, Lecanda-Sánchez A, Pérez-Losada M, Ostrowski MA, Jones RB, Mulder LCF, Reyes-Terán G, Crandall KA, Ormsby CE, Nixon DF. Telescope: Characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLoS Comput Biol 2019; 15:e1006453. [PMID: 31568525 PMCID: PMC6786656 DOI: 10.1371/journal.pcbi.1006453] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Characterization of Human Endogenous Retrovirus (HERV) expression within the transcriptomic landscape using RNA-seq is complicated by uncertainty in fragment assignment because of sequence similarity. We present Telescope, a computational software tool that provides accurate estimation of transposable element expression (retrotranscriptome) resolved to specific genomic locations. Telescope directly addresses uncertainty in fragment assignment by reassigning ambiguously mapped fragments to the most probable source transcript as determined within a Bayesian statistical model. We demonstrate the utility of our approach through single locus analysis of HERV expression in 13 ENCODE cell types. When examined at this resolution, we find that the magnitude and breadth of the retrotranscriptome can be vastly different among cell types. Furthermore, our approach is robust to differences in sequencing technology and demonstrates that the retrotranscriptome has potential to be used for cell type identification. We compared our tool with other approaches for quantifying transposable element (TE) expression, and found that Telescope has the greatest resolution, as it estimates expression at specific TE insertions rather than at the TE subfamily level. Telescope performs highly accurate quantification of the retrotranscriptomic landscape in RNA-seq experiments, revealing a differential complexity in the transposable element biology of complex systems not previously observed. Telescope is available at https://github.com/mlbendall/telescope.
Collapse
Affiliation(s)
- Matthew L. Bendall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
| | - Miguel de Mulder
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
| | - Luis Pedro Iñiguez
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
- Center for Research in Infectious Diseases (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Aarón Lecanda-Sánchez
- Center for Research in Infectious Diseases (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Mario A. Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
| | - Christopher E. Ormsby
- Center for Research in Infectious Diseases (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
| |
Collapse
|
8
|
Guffanti G, Bartlett A, Klengel T, Klengel C, Hunter R, Glinsky G, Macciardi F. Novel Bioinformatics Approach Identifies Transcriptional Profiles of Lineage-Specific Transposable Elements at Distinct Loci in the Human Dorsolateral Prefrontal Cortex. Mol Biol Evol 2019; 35:2435-2453. [PMID: 30053206 PMCID: PMC6188555 DOI: 10.1093/molbev/msy143] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of transposable elements (TE) is transiently activated during human preimplantation embryogenesis in a developmental stage- and cell type-specific manner and TE-mediated epigenetic regulation is intrinsically wired in developmental genetic networks in human embryos and embryonic stem cells. However, there are no systematic studies devoted to a comprehensive analysis of the TE transcriptome in human adult organs and tissues, including human neural tissues. To investigate TE expression in the human Dorsolateral Prefrontal Cortex (DLPFC), we developed and validated a straightforward analytical approach to chart quantitative genome-wide expression profiles of all annotated TE loci based on unambiguous mapping of discrete TE-encoded transcripts using a de novo assembly strategy. To initially evaluate the potential regulatory impact of DLPFC-expressed TE, we adopted a comparative evolutionary genomics approach across humans, primates, and rodents to document conservation patterns, lineage-specificity, and colocalizations with transcription factor binding sites mapped within primate- and human-specific TE. We identified 654,665 transcripts expressed from 477,507 distinct loci of different TE classes and families, the majority of which appear to have originated from primate-specific sequences. We discovered 4,687 human-specific and transcriptionally active TEs in DLPFC, of which the prominent majority (80.2%) appears spliced. Our analyses revealed significant associations of DLPFC-expressed TE with primate- and human-specific transcription factor binding sites, suggesting potential cross-talks of concordant regulatory functions. We identified 1,689 TEs differentially expressed in the DLPFC of Schizophrenia patients, a majority of which is located within introns of 1,137 protein-coding genes. Our findings imply that identified DLPFC-expressed TEs may affect human brain structures and functions following different evolutionary trajectories. On one side, hundreds of thousands of TEs maintained a remarkably high conservation for ∼8 My of primates’ evolution, suggesting that they are likely conveying evolutionary-constrained primate-specific regulatory functions. In parallel, thousands of transcriptionally active human-specific TE loci emerged more recently, suggesting that they could be relevant for human-specific behavioral or cognitive functions.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA
| | - Andrew Bartlett
- Department of Psychology, University of Massachusetts, Boston, MA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Goettingen, Germany
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA
| | - Richard Hunter
- Department of Psychology, University of Massachusetts, Boston, MA
| | - Gennadi Glinsky
- Translational & Functional Genomics, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
9
|
Smith CC, Beckermann KE, Bortone DS, De Cubas AA, Bixby LM, Lee SJ, Panda A, Ganesan S, Bhanot G, Wallen EM, Milowsky MI, Kim WY, Rathmell WK, Swanstrom R, Parker JS, Serody JS, Selitsky SR, Vincent BG. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J Clin Invest 2018; 128:4804-4820. [PMID: 30137025 PMCID: PMC6205406 DOI: 10.1172/jci121476] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/10/2018] [Indexed: 12/27/2022] Open
Abstract
Human endogenous retroviruses (hERVs) are remnants of exogenous retroviruses that have integrated into the genome throughout evolution. We developed a computational workflow, hervQuant, which identified more than 3,000 transcriptionally active hERVs within The Cancer Genome Atlas (TCGA) pan-cancer RNA-Seq database. hERV expression was associated with clinical prognosis in several tumor types, most significantly clear cell renal cell carcinoma (ccRCC). We explored two mechanisms by which hERV expression may influence the tumor immune microenvironment in ccRCC: (i) RIG-I-like signaling and (ii) retroviral antigen activation of adaptive immunity. We demonstrated the ability of hERV signatures associated with these immune mechanisms to predict patient survival in ccRCC, independent of clinical staging and molecular subtyping. We identified potential tumor-specific hERV epitopes with evidence of translational activity through the use of a ccRCC ribosome profiling (Ribo-Seq) dataset, validated their ability to bind HLA in vitro, and identified the presence of MHC tetramer-positive T cells against predicted epitopes. hERV sequences identified through this screening approach were significantly more highly expressed in ccRCC tumors responsive to treatment with programmed death receptor 1 (PD-1) inhibition. hervQuant provides insights into the role of hERVs within the tumor immune microenvironment, as well as evidence that hERV expression could serve as a biomarker for patient prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Christof C. Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathryn E. Beckermann
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dante S. Bortone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Bioinformatics Group, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aguirre A. De Cubas
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lisa M. Bixby
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samuel J. Lee
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anshuman Panda
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; and Department of Physics, Rutgers University, Piscataway, New Jersey, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; and Department of Physics, Rutgers University, Piscataway, New Jersey, USA
| | - Gyan Bhanot
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; and Department of Physics, Rutgers University, Piscataway, New Jersey, USA
| | - Eric M. Wallen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Urology
| | - Matthew I. Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Hematology/Oncology, Department of Medicine
| | - William Y. Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Urology,,Division of Hematology/Oncology, Department of Medicine,,Department of Genetics
| | - W. Kimryn Rathmell
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Biochemistry and Biophysics, and
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Bioinformatics Group, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics
| | - Jonathan S. Serody
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Hematology/Oncology, Department of Medicine
| | - Sara R. Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Bioinformatics Group, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Benjamin G. Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Hematology/Oncology, Department of Medicine,,Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Attig J, Young GR, Stoye JP, Kassiotis G. Physiological and Pathological Transcriptional Activation of Endogenous Retroelements Assessed by RNA-Sequencing of B Lymphocytes. Front Microbiol 2017; 8:2489. [PMID: 29312197 PMCID: PMC5733090 DOI: 10.3389/fmicb.2017.02489] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
In addition to evolutionarily-accrued sequence mutation or deletion, endogenous retroelements (EREs) in eukaryotic genomes are subject to epigenetic silencing, preventing or reducing their transcription, particularly in the germplasm. Nevertheless, transcriptional activation of EREs, including endogenous retroviruses (ERVs) and long interspersed nuclear elements (LINEs), is observed in somatic cells, variably upon cellular differentiation and frequently upon cellular transformation. ERE transcription is modulated during physiological and pathological immune cell activation, as well as in immune cell cancers. However, our understanding of the potential consequences of such modulation remains incomplete, partly due to the relative scarcity of information regarding genome-wide ERE transcriptional patterns in immune cells. Here, we describe a methodology that allows probing RNA-sequencing (RNA-seq) data for genome-wide expression of EREs in murine and human cells. Our analysis of B cells reveals that their transcriptional response during immune activation is dominated by induction of gene transcription, and that EREs respond to a much lesser extent. The transcriptional activity of the majority of EREs is either unaffected or reduced by B cell activation both in mice and humans, albeit LINEs appear considerably more responsive in the latter host. Nevertheless, a small number of highly distinct ERVs are strongly and consistently induced during B cell activation. Importantly, this pattern contrasts starkly with B cell transformation, which exhibits widespread induction of EREs, including ERVs that minimally overlap with those responsive to immune stimulation. The distinctive patterns of ERE induction suggest different underlying mechanisms and will help separate physiological from pathological expression.
Collapse
Affiliation(s)
- Jan Attig
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom.,Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom.,Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Grandi N, Tramontano E. Type W Human Endogenous Retrovirus (HERV-W) Integrations and Their Mobilization by L1 Machinery: Contribution to the Human Transcriptome and Impact on the Host Physiopathology. Viruses 2017; 9:v9070162. [PMID: 28653997 PMCID: PMC5537654 DOI: 10.3390/v9070162] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Human Endogenous Retroviruses (HERVs) are ancient infection relics constituting ~8% of our DNA. While HERVs’ genomic characterization is still ongoing, impressive amounts of data have been obtained regarding their general expression across tissues. Among HERVs, one of the most studied is the W group, which is the sole HERV group specifically mobilized by the long interspersed element-1 (LINE-1) machinery, providing a source of novel insertions by retrotransposition of HERV-W processed pseudogenes, and comprising a member encoding a functional envelope protein coopted for human placentation. The HERV-W group has been intensively investigated for its putative role in several diseases, such as cancer, inflammation, and autoimmunity. Despite major interest in the link between HERV-W expression and human pathogenesis, no conclusive correlation has been demonstrated so far. In general, (i) the absence of a proper identification of the specific HERV-W sequences expressed in a given condition; and (ii) the lack of studies attempting to connect the various observations in the same experimental conditions are the major problems preventing the definitive assessment of the HERV-W impact on human physiopathology. In this review, we summarize the current knowledge on the HERV-W group presence within the human genome and its expression in physiological tissues as well as in the main pathological contexts.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
12
|
EnHERV: Enrichment analysis of specific human endogenous retrovirus patterns and their neighboring genes. PLoS One 2017; 12:e0177119. [PMID: 28472109 PMCID: PMC5417679 DOI: 10.1371/journal.pone.0177119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are flanked by long terminal repeats (LTRs), which contain the regulation part of the retrovirus. Remaining HERVs constitute 7% to 8% of the present day human genome, and most have been identified as solo LTRs. The HERV sequences have been associated with several molecular functions as well as certain diseases in human, but their roles in human diseases are yet to be established. We designed EnHERV to make accessible the identified endogenous retrovirus repetitive sequences from Repbase Update (a database of eukaryotic repetitive elements) that are present in the human genome. Defragmentation process was done to improve the RepeatMasker annotation output. The defragmented elements were used as core database in EnHERV. EnHERV is available at http://sysbio.chula.ac.th/enherv and can be searched using either gene lists of user interest or HERV characteristics. Besides the search function, EnHERV also provides an enrichment analysis function that allows users to perform enrichment analysis between selected HERV characteristics and user-input gene lists, especially genes with the expression profile of a certain disease. EnHERV will facilitate exploratory studies of specific HERV characteristics that control gene expression patterns related to various disease conditions. Here we analyzed 25 selected HERV groups/names from all four HERV superfamilies, using the sense and anti-sense directions of the HERV and gene expression profiles from 49 specific tissue and disease conditions. We found that intragenic HERVs were associated with down-regulated genes in most cancer conditions and in psoriatic skin tissues and associated with up-regulated genes in immune cells particularly from systemic lupus erythematosus (SLE) patients. EnHERV allowed the analysis of how different types of LTRs were differentially associated with specific gene expression profiles in particular disease conditions for further studies into their mechanisms and functions.
Collapse
|
13
|
SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata. PLoS One 2017; 12:e0175310. [PMID: 28403240 PMCID: PMC5389787 DOI: 10.1371/journal.pone.0175310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.
Collapse
|
14
|
Babaian A, Mager DL. Endogenous retroviral promoter exaptation in human cancer. Mob DNA 2016; 7:24. [PMID: 27980689 PMCID: PMC5134097 DOI: 10.1186/s13100-016-0080-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs) with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs) provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.
Collapse
Affiliation(s)
- Artem Babaian
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
15
|
Kozlov AP. Expression of evolutionarily novel genes in tumors. Infect Agent Cancer 2016; 11:34. [PMID: 27437030 PMCID: PMC4949931 DOI: 10.1186/s13027-016-0077-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023] Open
Abstract
The evolutionarily novel genes originated through different molecular mechanisms are expressed in tumors. Sometimes the expression of evolutionarily novel genes in tumors is highly specific. Moreover positive selection of many human tumor-related genes in primate lineage suggests their involvement in the origin of new functions beneficial to organisms. It is suggested to consider the expression of evolutionarily young or novel genes in tumors as a new biological phenomenon, a phenomenon of TSEEN (tumor specifically expressed, evolutionarily novel) genes.
Collapse
Affiliation(s)
- A. P. Kozlov
- The Biomedical Center and Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|