1
|
Yoshioka H, Horita H, Tsukiboshi Y, Kurita H, Ogata A, Ogata K. Cleft Palate Induced by Mycophenolate Mofetil Is Associated with miR-4680-3p and let-7c-5p in Human Palate Cells. Noncoding RNA 2025; 11:12. [PMID: 39997612 PMCID: PMC11858478 DOI: 10.3390/ncrna11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Cleft palate is a birth defect associated with environmental and genetic factors. Disturbance of microRNAs (miRNAs) and exposure to medicinal agents during pregnancy can cause cleft palate. Although an association between medicine-induced cleft palate and miRNAs has been suggested, it remains to be fully elucidated. This study aimed to clarify the molecular mechanism underlying mycophenolate mofetil (MPM)-induced inhibition of cell proliferation and miRNA expression in human embryonic palatal mesenchymal (HEPM) cells. Methods: Cell viability, apoptosis, and cell cycle-related markers were evaluated 48 h after MPM treatment. In addition, miRNA levels and expression of their downstream genes were measured, and a rescue experiment was performed using miR-4680-3p and/or let-7c-5p inhibitors. Results: MPM dose-dependently reduced HEPM cell viability. Additionally, MPM treatment suppressed cyclin-D1, cyclin E1, cyclin-dependent kinase (CDK)-2, and CDK6 expression in HEPM cells. Furthermore, MPM upregulated miR-4680-3p and let-7c-5p expression and downregulated the downstream genes of each miRNA. Moreover, miR-4680-3p and/or let-7c-5p inhibitors alleviated MPM-induced inhibition of cell proliferation. Conclusions: These results suggest that MPM-induced cleft palate is associated with miR-4680-3p and let-7c-5p expression in HEPM cells.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
- Department of Hygiene, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Hanane Horita
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Yosuke Tsukiboshi
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan
| | - Aya Ogata
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Im H, Song Y, Kim JK, Park DK, Kim DS, Kim H, Shin JO. Molecular Regulation of Palatogenesis and Clefting: An Integrative Analysis of Genetic, Epigenetic Networks, and Environmental Interactions. Int J Mol Sci 2025; 26:1382. [PMID: 39941150 PMCID: PMC11818578 DOI: 10.3390/ijms26031382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Palatogenesis is a complex developmental process requiring temporospatially coordinated cellular and molecular events. The following review focuses on genetic, epigenetic, and environmental aspects directing palatal formation and their implication in orofacial clefting genesis. Essential for palatal shelf development and elevation (TGF-β, BMP, FGF, and WNT), the subsequent processes of fusion (SHH) and proliferation, migration, differentiation, and apoptosis of neural crest-derived cells are controlled through signaling pathways. Interruptions to these processes may result in the birth defect cleft lip and/or palate (CL/P), which happens in approximately 1 in every 700 live births worldwide. Recent progress has emphasized epigenetic regulations via the class of non-coding RNAs with microRNAs based on critically important biological processes, such as proliferation, apoptosis, and epithelial-mesenchymal transition. These environmental risks (maternal smoking, alcohol, retinoic acid, and folate deficiency) interact with genetic and epigenetic factors during palatogenesis, while teratogens like dexamethasone and TCDD inhibit palatal fusion. In orofacial cleft, genetic, epigenetic, and environmental impact on the complex epidemiology. This is an extensive review, offering current perspectives on gene-environment interactions, as well as non-coding RNAs, in palatogenesis and emphasizing open questions regarding these interactions in palatal development.
Collapse
Affiliation(s)
- Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Yujeong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong 339770, Republic of Korea
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE 19711, USA
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Hankyu Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| |
Collapse
|
3
|
Feng H, Wei B, Xie X, Li P, Shen X. The potential up-regulation risk of 3' UTR SNP (rs10787760 G > A) for the VAX1 gene is associated with NSCLP in the northwest Chinese population. Gene 2024; 922:148458. [PMID: 38608796 DOI: 10.1016/j.gene.2024.148458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/18/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
AIMS To investigate the association between single nucleotide polymorphisms (SNPs) in 3'UTR region of VAX1, SYT14 and PAX7 genes and the risk of non-syndromic cleft palate (NSCLP) in a northwest Chinese population. MAIN METHODS A case-control study was conducted in 406 normal controls and 399 NSCLP patients. Using iMLDRTM genotyping technology, eight SNPs of three genes ((rs10787760, rs7086344 at VAX1), (rs1010113, rs851114, and rs485874 at PAX7), and (rs61820397, rs4609425, rs12133399 at SYT14)) were genotyped to investigate the differences in alleles and genotype distribution frequencies between NSCLP patients and healthy controls. RNA Folding Form software was used to predict RNA secondary structure and expression vectors were constructed to explore the function of the relevant SNP. The effect of SNP polymorphism of gene transcription and translation was assessed using qPCR and Western blot analysis. KEY FINDINGS Among the eight SNPs of three genes, rs10787760 of VAX1 gene was found to be associated with an increased risk of NSCLP (OR = 1.341, CI = 1.004-1.790) and the GA genotype of rs10787760 increased the risk of cleft lip and/or palate (CL/P) about 1.42 times (p < 0.05), and carrying the A allele might increase the risk of NSCL/P in male (OR = 1.356, 95 % CI = 1.010-1.823). But there was no association observed with cleft palate only (CPO). Cell function experiments revealed that the G to A mutation in rs10787760 up-regulated GFP-VAX1 transcriptional level by 2.39 and 3.13 times in two cell lines respectively, and enhance the protein expression of the VAX1 gene further. RNA secondary structure study showed that the rs10787760 (G > A) had two different secondary structures in 3'UTR region. SIGNIFICANCE The rs10787760 variant in the 3'UTR region of VAX1 gene is associated with CL/P in northwest Chinese population. We hypothesize that the machanism of it might be caused by the RNA differenct fold in the 3'UTR region caused by the polymorphism of the gene. LEVEL OF EVIDENCE Original Reports.
Collapse
Affiliation(s)
- Huan Feng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bing Wei
- Donggang Branch of the First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xi Shen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Rahnama M, Movahedi T, Eslahi A, Kaseb-Mojaver N, Alerasool M, Adabi N, Mojarrad M. Identification of a novel mutation of Platelet-Derived Growth Factor-C (PDGFC) gene in a girl with Non-Syndromic cleft lip and palate. Gene 2024; 910:148335. [PMID: 38432532 DOI: 10.1016/j.gene.2024.148335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Cleft lip with or without cleft palate (CL/CP) is a prevalent congenital malformation. Approximately 16 candidate loci for CL/CP have been identified in both animal models and humans through association or genetic linkage studies. One of these loci is the platelet-derived growth factor-C (PDGFC) gene. In animal models, a mutation in the PDGFC gene has been shown to lead to CL/CP, with PDGF-C protein serving as a growth factor for mesenchymal cells, playing a crucial role in embryogenesis during the induction of neural crest cells. In this study, we present the identification of a novel frameshift mutation in the PDGFC gene, which we hypothesize to be associated with CL/CP, within a consanguineous Iranian family. CASE PRESENTATION The proband was a 3-year-old girl with non-syndromic CL/CP. A history of craniofacial clefts was present in her family. Following genetic counseling, karyotype analysis and whole-exome sequencing (WES) were performed. Cytogenetic analysis revealed normal results, while WES analysis showed that the proband carried a homozygous c.546dupA (p.L183fs) mutation in the PDGFC gene. Sanger sequencing confirmed that her parents were carriers of the mutation. CONCLUSION The c.546dupA (p.L183fs) mutation of PDGFC has not been previously reported and was not found in human genome databases. We speculate that the c.546dupA mutation of the PDGFC gene, identified in the Iranian patient, may be responsible for the phenotype of non-syndromic CL/CP (ns-CL/CP). Further studies are warranted to explore the specific pathogenesis of the PDGFC mutation in ns-CL/CP.
Collapse
Affiliation(s)
- Maryam Rahnama
- Department of Applied cell sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Genetic Foundation of Khorasan Razavi, Mashhad, Iran
| | | | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Masoome Alerasool
- Genetic Foundation of Khorasan Razavi, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasim Adabi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Genetic Foundation of Khorasan Razavi, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Rai V, Mendoza-Mari Y, Radwan MM, Brazdzionis J, Connett DA, Miulli DE, Agrawal DK. Transcriptional and Translational Regulation of Differentially Expressed Genes in Yucatan Miniswine Brain Tissues following Traumatic Brain Injury. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2024; 7:81-91. [PMID: 38818113 PMCID: PMC11138201 DOI: 10.26502/jbsb.5107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity, disability, and mortality worldwide. Motor and cognitive deficits and emotional disturbances are long-term consequences of TBI. A lack of effective treatment for TBI-induced neural damage, functional impairments, and cognitive deficits makes it challenging in the recovery following TBI. One of the reasons may be the lack of knowledge underlying the complex pathophysiology of TBI and the regulatory factors involved in the cellular and molecular mechanisms of inflammation, neural regeneration, and injury repair. These mechanisms involve a change in the expression of various proteins encoded by genes whose expression is regulated by transcription factors (TFs) at the transcriptional level and microRNA (miRs) at the mRNA level. In this pilot study, we performed the RNA sequencing of injured tissues and non-injured tissues from the brain of Yucatan miniswine and analyzed the sequencing data for differentially expressed genes (DEGs) and the TFs and miRs regulating the expression of DEGs using in-silico analysis. We also compared the effect of the electromagnetic field (EMF) applied to the injured miniswine on the expression profile of various DEGs. The results of this pilot study revealed a few DEGs that were significantly upregulated in the injured brain tissue and the EMF stimulation showed effect on their expression profile.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Yssel Mendoza-Mari
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Mohamed M Radwan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - James Brazdzionis
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - David A Connett
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Dan E Miulli
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
6
|
Shi C, Jiao P, Chen Z, Ma L, Yao S. Exploring the roles of noncoding RNAs in craniofacial abnormalities: A systematic review. Dev Biol 2024; 505:75-84. [PMID: 37923186 DOI: 10.1016/j.ydbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Congenital craniofacial abnormalities are congenital anomalies of variable expressivity and severity with a recognizable set of abnormalities, which are derived from five identifiable primordial structures. They can occur unilaterally or bilaterally and include various malformations such as cleft lip with/without palate, craniosynostosis, and craniofacial microsomia. To date, the molecular etiology of craniofacial abnormalities is largely unknown. Noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, circular RNAs and PIWI-interacting RNAs, function as major regulators of cellular epigenetic hallmarks via regulation of various molecular and cellular processes. Recently, aberrant expression of ncRNAs has been implicated in many diseases, including craniofacial abnormalities. Consequently, this review focuses on the role and mechanism of ncRNAs in regulating craniofacial development in the hope of providing clues to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Cheng Shi
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China; Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Pengfei Jiao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China
| | - Zhiyi Chen
- Suzhou Stomatological Hospital, Suzhou, 215000, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China.
| | - Siyue Yao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China.
| |
Collapse
|
7
|
Li Q, Chen J, Faux P, Delgado ME, Bonfante B, Fuentes-Guajardo M, Mendoza-Revilla J, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Barquera R, Everardo-Martínez P, Sánchez-Quinto M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Wu S, Du S, Giardina A, Paria SS, Khokan MR, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Rojas W, Rothhammer F, Navarro N, Wang S, Adhikari K, Ruiz-Linares A. Automatic landmarking identifies new loci associated with face morphology and implicates Neanderthal introgression in human nasal shape. Commun Biol 2023; 6:481. [PMID: 37156940 PMCID: PMC10167347 DOI: 10.1038/s42003-023-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
We report a genome-wide association study of facial features in >6000 Latin Americans based on automatic landmarking of 2D portraits and testing for association with inter-landmark distances. We detected significant associations (P-value <5 × 10-8) at 42 genome regions, nine of which have been previously reported. In follow-up analyses, 26 of the 33 novel regions replicate in East Asians, Europeans, or Africans, and one mouse homologous region influences craniofacial morphology in mice. The novel region in 1q32.3 shows introgression from Neanderthals and we find that the introgressed tract increases nasal height (consistent with the differentiation between Neanderthals and modern humans). Novel regions include candidate genes and genome regulatory elements previously implicated in craniofacial development, and show preferential transcription in cranial neural crest cells. The automated approach used here should simplify the collection of large study samples from across the world, facilitating a cosmopolitan characterization of the genetics of facial features.
Collapse
Affiliation(s)
- Qing Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
| | - Jieyi Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Pierre Faux
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Miguel Eduardo Delgado
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, República Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, República Argentina
| | - Betty Bonfante
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, 1000000, Chile
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, 75015, France
| | - J Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, 07745, Germany
| | - Paola Everardo-Martínez
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Mirsha Sánchez-Quinto
- Forensic Science, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México), Mexico City, 06320, Mexico
| | - Jorge Gómez-Valdés
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Sijie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andrea Giardina
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Soumya Subhra Paria
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Mahfuzur Rahman Khokan
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Winston Rojas
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica, 1000000, Chile
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, 21000, France
- EPHE, PSL University, Paris, 75014, France
| | - Sijia Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China.
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Iwaya C, Suzuki A, Iwata J. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate. Int J Mol Sci 2023; 24:3552. [PMID: 36834963 PMCID: PMC9958963 DOI: 10.3390/ijms24043552] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cleft lip and palate is one of the most common congenital birth defects and has a complex etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the type and severity of clefts vary. One of the longstanding questions is how environmental factors lead to craniofacial developmental anomalies. Recent studies highlight non-coding RNAs as potential epigenetic regulators in cleft lip and palate. In this review, we will discuss microRNAs, a type of small non-coding RNAs that can simultaneously regulate expression of many downstream target genes, as a causative mechanism of cleft lip and palate in humans and mice.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
9
|
Schuler R, Bugacov A, Hacia J, Ho T, Iwata J, Pearlman L, Samuels B, Williams C, Zhao Z, Kesselman C, Chai Y. FaceBase: A Community-Driven Hub for Data-Intensive Research. J Dent Res 2022; 101:1289-1298. [PMID: 35912790 PMCID: PMC9516628 DOI: 10.1177/00220345221107905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research of the National Institutes of Health, was established in 2009 with the recognition that dental and craniofacial research are increasingly data-intensive disciplines. Data sharing is critical for the validation and reproducibility of results as well as to enable reuse of data. In service of these goals, data ought to be FAIR: Findable, Accessible, Interoperable, and Reusable. The FaceBase data repository and educational resources exemplify the FAIR principles and support a broad user community including researchers in craniofacial development, molecular genetics, and genomics. FaceBase demonstrates that a model in which researchers "self-curate" their data can be successful and scalable. We present the results of the first 2.5 y of FaceBase's operations as an open community and summarize the data sets published during this period. We then describe a research highlight from work on the identification of regulatory networks and noncoding RNAs involved in cleft lip with/without cleft palate that both used and in turn contributed new findings to publicly available FaceBase resources. Collectively, FaceBase serves as a dynamic and continuously evolving resource to facilitate data-intensive research, enhance data reproducibility, and perform deep phenotyping across multiple species in dental and craniofacial research.
Collapse
Affiliation(s)
- R.E. Schuler
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - A. Bugacov
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - J.G. Hacia
- Keck School of Medicine, Biochemistry
and Molecular Medicine, University of Southern California, Los Angeles, CA,
USA
| | - T.V. Ho
- Ostrow School of Dentistry, Center for
Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA,
USA
| | - J. Iwata
- School of Dentistry, Diagnostic &
Biomedical Sciences, The University of Texas Health Science Center at Houston,
Houston, TX, USA
| | - L. Pearlman
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - B.D. Samuels
- Ostrow School of Dentistry, Center for
Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA,
USA
| | - C. Williams
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - Z. Zhao
- School of Biomedical Informatics,
Center for Precision Health, The University of Texas Health Science Center at
Houston, Houston, TX, USA
| | - C. Kesselman
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - Y. Chai
- Ostrow School of Dentistry, Center for
Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA,
USA
| |
Collapse
|
10
|
Seelan RS, Pisano MM, Greene RM. MicroRNAs as epigenetic regulators of orofacial development. Differentiation 2022; 124:1-16. [DOI: 10.1016/j.diff.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
|
11
|
Lecaudey LA, Singh P, Sturmbauer C, Duenser A, Gessl W, Ahi EP. Transcriptomics unravels molecular players shaping dorsal lip hypertrophy in the vacuum cleaner cichlid, Gnathochromis permaxillaris. BMC Genomics 2021; 22:506. [PMID: 34225643 PMCID: PMC8256507 DOI: 10.1186/s12864-021-07775-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Teleosts display a spectacular diversity of craniofacial adaptations that often mediates ecological specializations. A considerable amount of research has revealed molecular players underlying skeletal craniofacial morphologies, but less is known about soft craniofacial phenotypes. Here we focus on an example of lip hypertrophy in the benthivorous Lake Tangnayika cichlid, Gnathochromis permaxillaris, considered to be a morphological adaptation to extract invertebrates out of the uppermost layer of mud bottom. We investigate the molecular and regulatory basis of lip hypertrophy in G. permaxillaris using a comparative transcriptomic approach. RESULTS We identified a gene regulatory network involved in tissue overgrowth and cellular hypertrophy, potentially associated with the formation of a locally restricted hypertrophic lip in a teleost fish species. Of particular interest were the increased expression level of apoda and fhl2, as well as reduced expression of cyp1a, gimap8, lama5 and rasal3, in the hypertrophic lip region which have been implicated in lip formation in other vertebrates. Among the predicted upstream transcription factors, we found reduced expression of foxp1 in the hypertrophic lip region, which is known to act as repressor of cell growth and proliferation, and its function has been associated with hypertrophy of upper lip in human. CONCLUSION Our results provide a genetic foundation for future studies of molecular players shaping soft and exaggerated, but locally restricted, craniofacial morphological changes in fish and perhaps across vertebrates. In the future, we advocate integrating gene regulatory networks of various craniofacial phenotypes to understand how they collectively govern trophic and behavioural adaptations.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Trakanant S, Nihara J, Nagai T, Kawasaki M, Kawasaki K, Ishida Y, Meguro F, Kudo T, Yamada A, Maeda T, Saito I, Ohazama A. MicroRNAs regulate distal region of mandibular development through Hh signaling. J Anat 2021; 238:711-719. [PMID: 33011977 PMCID: PMC7855062 DOI: 10.1111/joa.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022] Open
Abstract
Mandibular anomalies are often seen in various congenital diseases, indicating that mandibular development is under strict molecular control. Therefore, it is crucial to understand the molecular mechanisms involved in mandibular development. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating the level of gene expression. We found that the mesenchymal conditional deletion of miRNAs arising from a lack of Dicer (an essential molecule for miRNA processing, Dicerfl/fl ;Wnt1Cre), led to an abnormal groove formation at the distal end of developing mandibles. At E10.5, when the region forms, inhibitors of Hh signaling, Ptch1 and Hhip1 showed increased expression at the region in Dicer mutant mandibles, while Gli1 (a major mediator of Hh signaling) was significantly downregulated in mutant mandibles. These suggest that Hh signaling was downregulated at the distal end of Dicer mutant mandibles by increased inhibitors. To understand whether the abnormal groove formation inDicer mutant mandibles was caused by the downregulation of Hh signaling, mice with a mesenchymal deletion of Hh signaling activity arising from a lack of Smo (an essential molecule for Hh signaling activation, Smofl/fl ;Wnt1Cre) were examined. Smofl/fl ;Wnt1Cre mice showed a similar phenotype in the distal region of their mandibles to those in Dicerfl/fl ;Wnt1Cre mice. We also found that approximately 400 miRNAs were expressed in wild-type mandibular mesenchymes at E10.5, and six microRNAs were identified as miRNAs with binding potential against both Ptch1 and Hhip1. Their expressions at the distal end of the mandible were confirmed by in situ hybridization. This indicates that microRNAs regulate the distal part of mandibular formation at an early stage of development by involving Hh signaling activity through controlling its inhibitor expression level.
Collapse
Affiliation(s)
- Supaluk Trakanant
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Jun Nihara
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takahiro Nagai
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Maiko Kawasaki
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Katsushige Kawasaki
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Center for Advanced Oral ScienceFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Yoko Ishida
- Center for Advanced Oral ScienceFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Fumiya Meguro
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takehisa Kudo
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Akane Yamada
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takeyasu Maeda
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Isao Saito
- Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Atsushi Ohazama
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| |
Collapse
|
13
|
Iwata J. Gene-Environment Interplay and MicroRNAs in Cleft Lip and Cleft Palate. ORAL SCIENCE INTERNATIONAL 2021; 18:3-13. [PMID: 36855534 PMCID: PMC9969970 DOI: 10.1002/osi2.1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cleft lip (CL) with/without cleft palate (CP) (hereafter CL/P) is the second most common congenital birth defect, affecting 7.94 to 9.92 children per 10,000 live births worldwide, followed by Down syndrome. An increasing number of genes have been identified as affecting susceptibility and/or as causative genes for CL/P in mouse genetic and chemically-induced CL and CP studies, as well as in human genome-wide association studies and linkage analysis. While marked progress has been made in the identification of genetic and environmental risk factors for CL/P, the interplays between these factors are not yet fully understood. This review aims to summarize our current knowledge of CL and CP from genetically engineered mouse models and environmental factors that have been studied in mice. Understanding the regulatory mechanism(s) of craniofacial development may not only advance our understanding of craniofacial developmental biology, but could also provide approaches for the prevention of birth defects and for tissue engineering in craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Pediatric Research Center, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, 77030 USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, 77030 USA
| |
Collapse
|
14
|
Yan F, Jia P, Yoshioka H, Suzuki A, Iwata J, Zhao Z. A developmental stage-specific network approach for studying dynamic co-regulation of transcription factors and microRNAs during craniofacial development. Development 2020; 147:226075. [PMID: 33234712 DOI: 10.1242/dev.192948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Craniofacial development is regulated through dynamic and complex mechanisms that involve various signaling cascades and gene regulations. Disruption of such regulations can result in craniofacial birth defects. Here, we propose the first developmental stage-specific network approach by integrating two crucial regulators, transcription factors (TFs) and microRNAs (miRNAs), to study their co-regulation during craniofacial development. Specifically, we used TFs, miRNAs and non-TF genes to form feed-forward loops (FFLs) using genomic data covering mouse embryonic days E10.5 to E14.5. We identified key novel regulators (TFs Foxm1, Hif1a, Zbtb16, Myog, Myod1 and Tcf7, and miRNAs miR-340-5p and miR-129-5p) and target genes (Col1a1, Sgms2 and Slc8a3) expression of which changed in a developmental stage-dependent manner. We found that the Wnt-FoxO-Hippo pathway (from E10.5 to E11.5), tissue remodeling (from E12.5 to E13.5) and miR-129-5p-mediated Col1a1 regulation (from E10.5 to E14.5) might play crucial roles in craniofacial development. Enrichment analyses further suggested their functions. Our experiments validated the regulatory roles of miR-340-5p and Foxm1 in the Wnt-FoxO-Hippo subnetwork, as well as the role of miR-129-5p in the miR-129-5p-Col1a1 subnetwork. Thus, our study helps understand the comprehensive regulatory mechanisms for craniofacial development.
Collapse
Affiliation(s)
- Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
15
|
Yang J, Yu X, Zhu G, Wang R, Lou S, Zhu W, Fu C, Liu J, Fan L, Li D, Shao Q, Ma L, Wang L, Wang Z, Pan Y. Integrating GWAS and eQTL to predict genes and pathways for non-syndromic cleft lip with or without palate. Oral Dis 2020; 27:1747-1754. [PMID: 33128317 DOI: 10.1111/odi.13699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore susceptibility genes and pathways for non-syndromic cleft lip with or without cleft palate (NSCL/P). MATERIALS AND METHODS Two genome-wide association studies (GWAS) datasets, including 858 NSCL/P cases and 1,248 controls, were integrated with expression quantitative trait loci (eQTL) dataset identified by Genotype-Tissue Expression (GTEx) project in whole-blood samples. The expression of the candidate genes in mouse orofacial development was inquired from FaceBase. Protein-protein interaction (PPI) network was visualized to identify protein functions. Go and KEGG pathway analyses were performed to explore the underlying risk pathways. RESULTS A total of 233 eQTL single-nucleotide polymorphisms (SNPs) in 432 candidate genes were identified to be associated with the risk of NSCL/P. One hundred and eighty-three susceptible genes were expressed in mouse orofacial development according to FaceBase. PPI network analysis highlighted that these genes involved in ubiquitin-mediated proteolysis (KCTD7, ASB1, UBOX5, ANAPC4) and DNA synthesis (XRCC3, RFC3, KAT5, RHNO1) were associated with the risk of NSCL/P. GO and KEGG pathway analyses revealed that the fatty acid metabolism pathway (ACADL, HSD17B12, ACSL5, PPT1, MCAT) played an important role in the development of NSCL/P. CONCLUSIONS Our results identified novel susceptibility genes and pathways associated with the development of NSCL/P.
Collapse
Affiliation(s)
- Jing Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ruimin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Weihao Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chengyi Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinsuo Liu
- Yifangming (Beijing) Technology Co., Ltd, Beijing, China
| | - Liwen Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dandan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qinghua Shao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhendong Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Yu L, Huo L, Shao X, Zhao J. lncRNA SNHG5 promotes cell proliferation, migration and invasion in oral squamous cell carcinoma by sponging miR-655-3p/FZD4 axis. Oncol Lett 2020; 20:310. [PMID: 33093919 PMCID: PMC7573890 DOI: 10.3892/ol.2020.12173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, previous studies have shown that long non-coding RNA (lncRNA) can act as a tumor promoter or inhibitor in the pathogenesis of oral squamous cell carcinoma (OSCC). However, the regulatory mechanism of lncRNA SNHG5 is unknown in OSCC. Therefore, the functional mechanism of lncRNA SNHG5 in OSCC was initially revealed in this study. Here, RT-qPCR and western blot analysis were used to assess mRNA and protein expression. The functional mechanism of SNHG5 was investigated by MTT, Transwell and luciferase reporter assays. The results showed that SNHG5 expression was upregulated in OSCC and promoted the viability, migration and invasion of OSCC cells. In addition, SNHG5 is the sponge of miR-655-3p in OSCC. And miR-655-3p was found to play an inhibitory effect in OSCC by interacting with SNHG5. Moreover, miR-655-3p directly targets FZD4 and negatively regulates its expression in OSCC. Functionally, FZD4 promoted the progression of OSCC by interacting with the SNHG5/miR-655-3p axis. In conclusion, lncRNA SNHG5 promotes cell proliferation, migration and invasion in OSCC by regulating miR-655-3p/FZD4 axis.
Collapse
Affiliation(s)
- Lijiang Yu
- Department of Oral and Maxillofacial Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lingli Huo
- Department of Stomatology, Traditional Chinese Medicine Hospital of Shijingshan District, Beijing 100043, P.R. China
| | - Xiaolin Shao
- Department of Stomatology, Beijing Ditan Hospital, Capital Medical University, Beijing 100013, P.R. China
| | - Jizhi Zhao
- Department of Oral and Maxillofacial Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
17
|
Garland MA, Sun B, Zhang S, Reynolds K, Ji Y, Zhou CJ. Role of epigenetics and miRNAs in orofacial clefts. Birth Defects Res 2020; 112:1635-1659. [PMID: 32926553 DOI: 10.1002/bdr2.1802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Orofacial clefts (OFCs) have multiple etiologies and likely result from an interplay between genetic and environmental factors. Within the last decade, studies have implicated specific epigenetic modifications and noncoding RNAs as additional facets of OFC etiology. Altered gene expression through DNA methylation and histone modification offer novel insights into how specific genes contribute to distinct OFC subtypes. Epigenetics research has also provided further evidence that cleft lip only (CLO) is a cleft subtype with distinct etiology. Polymorphisms or misexpression of genes encoding microRNAs, as well as their targets, contribute to OFC risk. The ability to experimentally manipulate epigenetic changes and noncoding RNAs in animal models, such as zebrafish, Xenopus, mice, and rats, has offered novel insights into the mechanisms of various OFC subtypes. Although much remains to be understood, recent advancements in our understanding of OFC etiology may advise future strategies of research and preventive care.
Collapse
Affiliation(s)
- Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
18
|
Yang K, Dong XY, Wu J, Zhu JJ, Tan Y, Yan YS, Lin L, Zhang DL. A clinical and multi‑omics study of Van der Woude syndrome in three generations of a Chinese family. Mol Med Rep 2020; 22:2925-2931. [PMID: 32945398 PMCID: PMC7457716 DOI: 10.3892/mmr.2020.11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
Previous studies have suggested that pathogenic variants in interferon regulatoryse factor 6 (IRF6) can account for almost 70% of familial Van der Woude Syndrome (VWS) cases. However, gene modifiers that account for the phenotypic variability of IRF6 in the context of VWS remain poorly characterized. The aim of this study was to report a family with VWS with variable expressivity and to identify the genetic cause. A 4-month-old boy initially presented with cleft palate and bilateral lower lip pits. Examination of his family history identified similar, albeit milder, clinical features in another four family members, including bilateral lower lip pits and/or hypodontia. Peripheral blood samples of eight members in this three-generation family were subsequently collected, and whole-exome sequencing was performed to detect pathogenic variants. A heterozygous missense IRF6 variant with a c.1198C>T change in exon 9 (resulting in an R400W change at the amino acid level) was detected in five affected subjects, but not in the other three unaffected subjects. Moreover, subsequent structural analysis was indicative of damaged stability to the structure in the mutant IRF protein. Whole-transcriptome sequencing, expression analysis and Gene Ontology enrichment analysis were conducted on two groups of patients with phenotypic diversity from the same family. These analyses identified significant differentially expressed genes and enriched pathways in these two groups. Altogether, these findings provide insight into the mechanism underlying the variable expressivity of VWS.
Collapse
Affiliation(s)
- Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xing-Yue Dong
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Jue Wu
- Department of Translational Medicine Laboratory, First Medical Center of People's Liberation Army General Hospital, Beijing 100039, P.R. China
| | - Jian-Jiang Zhu
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing 100080, P.R. China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - You-Sheng Yan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Dong-Liang Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
19
|
Liu WH, Qiao HY, Xu J, Wang WQ, Wu YL, Wu X. LINC00473 contributes to the radioresistance of esophageal squamous cell carcinoma by regulating microRNA‑497‑5p and cell division cycle 25A. Int J Mol Med 2020; 46:571-582. [PMID: 32468021 PMCID: PMC7307861 DOI: 10.3892/ijmm.2020.4616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNA (lncRNA) LINC00473 plays a carcinogenic role in a variety of different tumor types. Nevertheless, the mechanisms through which LINC00473 regulates the radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells remains elusive. In the present study, reverse transcription-quantitative PCR was used to quantify the expression of LINC00473, microRNA (miRNA/miR)-497-5p and cell division cycle 25A (CDC25A) in ESCC tissues. The association between LINC00473 expression and the clinicopathological characteristics of patients with ESCC was also assessed. Furthermore, Cell Counting kit-8 and colony formation assays were carried out to monitor the proliferation of ESCC cells exposed to X-ray radiation. A dual-luciferase reporter assay was also conducted to analyze the interaction between LINC00473 and miR-497-5p, as well as the interaction between CDC25A and miR-497-5p. The findings of the present study demonstrated that in ESCC tissues and cells, the expression levels of LINC00473 and CDC25A were significantly upregulated, while the expression of miR-497-5p was downregulated. The high expression level of LINC00473 was associated with a higher T stage, lymph node metastasis stage and a lower tumor differentiation grade in patients with ESCC. Following irradiation, transfection with miR-497-5p mimics reduced the promoting effect of LINC00473 overexpression on ESCC cell proliferation, and partially impeded the resistance of ESCC cells to X-ray radiation induced by LINC00473 overexpression. Moreover, transfection with miR-497-5p inhibitors partially alleviated the inhibitory effects of LINC00473 knockdown on cellular proliferation, and partly reversed the sensitivity of cells to X-ray irradiation induced by LINC00473 knockdown. Furthermore, it was confirmed that miR-497-5p was able to bind LINC00473 and the 3′-untranslated region of CDC25A. On the whole, the findings of the present study demonstrate that LINC00473 reduces the radiosensitivity of ESCC cells by modulating the miR-497-5p/CDC25A axis.
Collapse
Affiliation(s)
- Wei-Hua Liu
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Han-Yong Qiao
- Department of Special Inspection, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Jian Xu
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Wei-Qing Wang
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Yi-Lei Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xia Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| |
Collapse
|
20
|
Wang XJ, Liu JW, Liu J. MiR-655-3p inhibits the progression of osteoporosis by targeting LSD1 and activating BMP-2/Smad signaling pathway. Hum Exp Toxicol 2020; 39:1390-1404. [PMID: 32431171 DOI: 10.1177/0960327120924080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is one of the most common chronic metabolic bone diseases in the seniors and postmenopausal women. Plenty of microRNAs (miRNAs) have been confirmed to be involved in OP progression. However, the role of miR-655-3p in osteogenic differentiation and bone formation was still unclear. In this study, we aimed to investigate the cellular function of miR-655-3p and its underlying mechanism in OP. We found that miR-655-3p expression was downregulated in both ovariectomized (OVX) mice bone tissues and MC3T3-E1 cells treated with simulated microgravity (MG). MiR-655-3p overexpression facilitated cell differentiation but suppressed cell apoptosis of MC3T3-E1 cells induced by simulated MG. Mechanistically, we confirmed that lysine-specific histone demethylase 1 (LSD1) is a downstream target gene of miR-655-3p. Furthermore, overexpression of miR-655-3p activated the bone morphogenetic protein 2 (BMP-2)/decapentaplegic homolog (Smad) signaling pathway by suppressing LSD1 expression. Moreover, LSD1 knockdown accelerated osteogenic differentiation and inhibited apoptosis in MC3T3-E1 cells under simulated MG. Additionally, the OVX mouse model was established to investigate the role of miR-655-3p/LSD1 axis in vivo. The results demonstrated that LSD1 could reverse the effects triggered by the injection of adeno-associated virus-miR-655-3p on OP development. Further investigations revealed that miR-655-3p boosted osteogenic differentiation through LSD1/BMP-2/Smad signaling pathway. In summary, these findings implied a potential value of miR-655-3p in OP therapy.
Collapse
Affiliation(s)
- X-J Wang
- Department of Orthopedics, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - J-W Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - J Liu
- Department of Orthopedics, Traditional Chinese Medicine Hospital Dianjiang Chongqing, Chongqing, China
| |
Collapse
|