1
|
Alzaidan H, Alluhaybi B, Albulayhid NA, Al-Jabr KH, Alotaibi FT, Alqahtani A. Autosomal Recessive Spastic Paraplegia and Psychomotor Retardation With or Without Seizures: A Case Report From Saudi Arabia. Cureus 2024; 16:e60642. [PMID: 38899231 PMCID: PMC11185932 DOI: 10.7759/cureus.60642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Spastic paraplegia and psychomotor retardation with or without seizures (SPPRS) is a rare neurodevelopmental disorder associated with autosomal recessive mutations in the HACE1 gene. This case report presents the clinical features and genetic analysis of an 11-month-old girl and her sister with SPPRS, making it the third reported case in the Middle East and the second in Saudi Arabia. The patient exhibited hypotonia, global developmental delay, speech delay, swallowing difficulties, and recurrent respiratory infections. A homozygous pathogenic variant in the HACE1 gene (p.R664*) was identified through genetic analysis, confirming the diagnosis of SPPRS. This case report emphasizes the importance of considering variations in clinical presentation, especially in rare disorders where only a few cases are reported. Further research and case studies are needed to better understand the complete phenotypic spectrum of SPPRS and its complications.
Collapse
Affiliation(s)
- Hamd Alzaidan
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, SAU
| | - Bashaer Alluhaybi
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, SAU
| | - Naif A Albulayhid
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, SAU
| | - Khalid H Al-Jabr
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, SAU
| | - Faihan T Alotaibi
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, SAU
| | - Assem Alqahtani
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, SAU
| |
Collapse
|
2
|
Olimpio C, Paramonov I, Matalonga L, Laurie S, Schon K, Polavarapu K, Kirschner J, Schara-Schmidt U, Lochmüller H, Chinnery PF, Horvath R. Increased Diagnostic Yield by Reanalysis of Whole Exome Sequencing Data in Mitochondrial Disease. J Neuromuscul Dis 2024; 11:767-775. [PMID: 38759022 PMCID: PMC11307028 DOI: 10.3233/jnd-240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Background The genetic diagnosis of mitochondrial disorders is complicated by its genetic and phenotypic complexity. Next generation sequencing techniques have much improved the diagnostic yield for these conditions. A cohort of individuals with multiple respiratory chain deficiencies, reported in the literature 10 years ago, had a diagnostic rate of 60% by whole exome sequencing (WES) but 40% remained undiagnosed. Objective We aimed to identify a genetic diagnosis by reanalysis of the WES data for the undiagnosed arm of this 10-year-old cohort of patients with suspected mitochondrial disorders. Methods The WES data was transferred and processed by the RD-Connect Genome-Phenome Analysis Platform (GPAP) using their standardized pipeline. Variant prioritisation was carried out on the RD-Connect GPAP. Results Singleton WES data from 14 individuals was reanalysed. We identified a possible or likely genetic diagnosis in 8 patients (8/14, 57%). The variants identified were in a combination of mitochondrial DNA (n = 1, MT-TN), nuclear encoded mitochondrial genes (n = 2, PDHA1, and SUCLA2) and nuclear genes associated with nonmitochondrial disorders (n = 5, PNPLA2, CDC40, NBAS and SLC7A7). Variants in both the NBAS and CDC40 genes were established as disease causing after the original cohort was published. We increased the diagnostic yield for the original cohort by 15% without generating any further genomic data. Conclusions In the era of multiomics we highlight that reanalysis of existing WES data is a valid tool for generating additional diagnosis in patients with suspected mitochondrial disease, particularly when more time has passed to allow for new bioinformatic pipelines to emerge, for the development of new tools in variant interpretation aiding in reclassification of variants and the expansion of scientific knowledge on additional genes.
Collapse
Affiliation(s)
- Catarina Olimpio
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | | | - Steven Laurie
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Katherine Schon
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kiran Polavarapu
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Hanns Lochmüller
- Centro Nacional de Análisis Genómico, Barcelona, Spain
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Patrick F. Chinnery
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Papadopoulou E, Pepe G, Konitsiotis S, Chondrogiorgi M, Grigoriadis N, Kimiskidis VK, Tsivgoulis G, Mitsikostas DD, Chroni E, Domouzoglou E, Tsaousis G, Nasioulas G. The evolution of comprehensive genetic analysis in neurology: Implications for precision medicine. J Neurol Sci 2023; 447:120609. [PMID: 36905813 DOI: 10.1016/j.jns.2023.120609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Technological advancements have facilitated the availability of reliable and thorough genetic analysis in many medical fields, including neurology. In this review, we focus on the importance of selecting the appropriate genetic test to aid in the accurate identification of disease utilizing currently employed technologies for analyzing monogenic neurological disorders. Moreover, the applicability of comprehensive analysis via NGS for various genetically heterogeneous neurological disorders is reviewed, revealing its efficiency in clarifying a frequently cloudy diagnostic picture and delivering a conclusive and solid diagnosis that is essential for the proper management of the patient. The feasibility and effectiveness of medical genetics in neurology require interdisciplinary cooperation among several medical specialties and geneticists, to select and perform the most relevant test according to each patient's medical history, using the most appropriate technological tools. The prerequisites for a comprehensive genetic analysis are discussed, highlighting the utility of appropriate gene selection, variant annotation, and classification. Moreover, genetic counseling and interdisciplinary collaboration could improve diagnostic yield further. Additionally, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, with a focus on neurology-related genes, to clarify the value of suitable variant categorization. Finally, we review the current applications of genetic analysis in the diagnosis and personalized management of neurological patients and the advances in the research and scientific knowledge of hereditary neurological disorders that are evolving the utility of genetic analysis towards the individualization of the treatment strategy.
Collapse
Affiliation(s)
| | - Georgia Pepe
- GeneKor Medical SA, Spaton 52, Gerakas 15344, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Maria Chondrogiorgi
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, "AHEPA" University Hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Vasilios K Kimiskidis
- First Department of Neurology, "AHEPA" University hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimos D Mitsikostas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Rio-Patras, Greece
| | - Eleni Domouzoglou
- Department of Pediatrics, University Hospital of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | | | | |
Collapse
|
4
|
Kovalskaia VA, Zabnenkova VV, Petukhova MS, Markova ZG, Tabakov VY, Ryzhkova OP. Previously Undescribed Gross HACE1 Deletions as a Cause of Autosomal Recessive Spastic Paraplegia. Genes (Basel) 2022; 13:genes13122186. [PMID: 36553453 PMCID: PMC9778407 DOI: 10.3390/genes13122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Spastic paraplegia and psychomotor retardation with or without seizures (SPPRS, OMIM 616756) is a rare genetic disease caused by biallelic pathogenic variants in the HACE1 gene. Originally, these mutations have been reported to be implicated in tumor predisposition. Nonetheless, via whole exome sequencing in 2015, HACE1 mutations were suggested to be the cause of a new autosomal recessive neurodevelopmental disorder, which is characterized by spasticity, muscular hypotonia, and intellectual disability. To date, 14 HACE1 pathogenic variants have been described; these variants have a loss-of-function effect that leads to clinical presentations with variable severities. However, gross deletions in the HACE1 gene have not yet been mentioned as a cause of spastic paraplegia. Here, we report a clinical case involving a 2-year-old male presenting with spasticity, mainly affecting the lower limbs, and developmental delay. Exome sequencing, chromosomal microarray analysis, and mRNA analysis were used to identify the causative gene. We revealed that the clinical findings were due to previously undescribed HACE1 biallelic deletions. We identified the deletion of exon 7: c.(534+1_535-1)_(617+1_618-1)del (NM_020771.4) and the gross deletion in the 6q16.3 locus, which affected the entire HACE1 gene: g.105018931_105337494del, (GRCh37). A comprehensive diagnostic approach for the patients with originally homozygous mutations in HACE1 is required since false homozygosity results are possible. More than 80% of the described mutations were reported to be homozygous. Initial hemizygosity is hard to detect by quantitative methods, and this may challenge molecular diagnostic identification in patients with spastic paraplegia.
Collapse
|
5
|
Kulchak Rahm A, Walton NA, Feldman LK, Jenkins C, Jenkins T, Person TN, Peterson J, Reynolds JC, Robinson PN, Woltz MA, Williams MS, Segal MM. User testing of a diagnostic decision support system with machine-assisted chart review to facilitate clinical genomic diagnosis. BMJ Health Care Inform 2021; 28:bmjhci-2021-100331. [PMID: 33962988 PMCID: PMC8108675 DOI: 10.1136/bmjhci-2021-100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives There is a need in clinical genomics for systems that assist in clinical diagnosis, analysis of genomic information and periodic reanalysis of results, and can use information from the electronic health record to do so. Such systems should be built using the concepts of human-centred design, fit within clinical workflows and provide solutions to priority problems. Methods We adapted a commercially available diagnostic decision support system (DDSS) to use extracted findings from a patient record and combine them with genomic variant information in the DDSS interface. Three representative patient cases were created in a simulated clinical environment for user testing. A semistructured interview guide was created to illuminate factors relevant to human factors in CDS design and organisational implementation. Results Six individuals completed the user testing process. Tester responses were positive and noted good fit with real-world clinical genetics workflow. Technical issues related to interface, interaction and design were minor and fixable. Testers suggested solving issues related to terminology and usability through training and infobuttons. Time savings was estimated at 30%–50% and additional uses such as in-house clinical variant analysis were suggested for increase fit with workflow and to further address priority problems. Conclusion This study provides preliminary evidence for usability, workflow fit, acceptability and implementation potential of a modified DDSS that includes machine-assisted chart review. Continued development and testing using principles from human-centred design and implementation science are necessary to improve technical functionality and acceptability for multiple stakeholders and organisational implementation potential to improve the genomic diagnosis process.
Collapse
Affiliation(s)
- Alanna Kulchak Rahm
- Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | - Nephi A Walton
- Intermountain Precision Genomics, Intermountain Healthcare, St. George, Utah, USA
| | | | | | | | - Thomas N Person
- Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | | | - Jonathon C Reynolds
- Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | - Peter N Robinson
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,University of Connecticut, Farmington, Connecticut, USA
| | - Makenzie A Woltz
- Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | - Marc S Williams
- Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | | |
Collapse
|