1
|
Shah SMA, Rafi M, Malik MS, Malik SA, Ou YY. mCNN-glucose: Identifying families of glucose transporters using a deep convolutional neural network based on multiple-scanning windows. Int J Biol Macromol 2025; 294:139522. [PMID: 39761890 DOI: 10.1016/j.ijbiomac.2025.139522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Glucose transporters are essential carrier proteins that function on the phospholipid bilayer to facilitate glucose diffusion across cell membranes. The transporters play many physiological and pathological roles in addition to absorption and metabolism of fructose in food and the pathogenesis of gastrointestinal diseases. These carrier proteins play an important role in diseases of the nervous system, cardiovascular system, digestive system, and urinary system. These essential transporters have been extensively studied as potential therapeutic targets for cancers such as pancreatic, prostate, and hepatocellular carcinoma, which serve as diagnostic and prognostic indicators. The method uses position-specific scoring metrics (PSSM) with multiple-scanning windows-based convolutional neural networks to classify glucose transport proteins based on their functional significance and crucial role in therapy. Convolutional neural networks with multiple window scanning are employed to capture biologically meaningful, significant, and meaningful features from PSSM evolutionary profiles. Our proposed Method obtained Matthews correlation coefficients (MCC) of 0.99, Accuracy (AC) of 99.46, for Glucose facilitative transporters (GLUT), 0.99, 99.46, for Sodium Coupled glucose transporters (SGLT), and 0.92, and 97.3 for Sugars will eventually be exported transporters (SWEET) respectively. This study shows significantly higher performance than our previous study, which could be used to accurately classify novel glucose transporters.
Collapse
Affiliation(s)
- Syed Muazzam Ali Shah
- Department of Software Engineering, National University of Computer and Emerging Sciences, Shah Latif Town, 75030 Karachi, Pakistan
| | - Muhammad Rafi
- Artificial Intelligence and Data Science Department, National University of Computer and Emerging Sciences, Shah Latif Town, 75030 Karachi, Pakistan
| | - Muhammad Shahid Malik
- Department of Computer Science and Engineering, Yuan Ze University, Zhongli, Taoyuan 320315, Taiwan; Department of Computer Sciences, Karakoram International University, Gilgit-Baltistan 15100, Pakistan
| | - Sohail Ahmed Malik
- Artificial Intelligence and Data Science Department, National University of Computer and Emerging Sciences, Shah Latif Town, 75030 Karachi, Pakistan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Zhongli, Taoyuan 320315, Taiwan; Graduate program for Biomedical Informatics, Yuan Ze University, Zhongli, Taoyuan 320315, Taiwan.
| |
Collapse
|
2
|
Wang Y, Sun Z, Zhao Z, Pang J, Chen J. Recent Progress in the Development of Glucose Transporter (GLUT) Inhibitors. J Med Chem 2025; 68:1033-1050. [PMID: 39746141 DOI: 10.1021/acs.jmedchem.4c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer cells exhibit an accelerated glucose uptake and glycolysis. The transmembrane uptake of glucose requires specific carrier proteins, such as glucose transporters (GLUTs) and sodium-coupled glucose cotransporters (SGLTs). GLUTs transport glucose independently of the energy supply and have become promising targets for cancer therapy. This Perspective mainly focuses on the current research progress and design strategy of GLUT inhibitors, particularly those targeting class I (GLUT1-4). To the best of our knowledge, this is the first systematic interpretation of the research progress, opportunities, and challenges faced in the development of GLUT inhibitors from a medicinal chemistry perspective. We hope that this Perspective will provide insights into the development of GLUT inhibitors, offering a feasible approach to cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Wang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Martos-Guillami N, Vergara A, Llorens-Cebrià C, Motto AE, Martínez-Díaz I, Gonçalves F, Garcias-Ramis MM, Allo-Urzainqui E, Narváez A, Bermejo S, Muñoz V, León-Román J, Ferrer-Costa R, Jacobs-Cachá C, Vilardell-Vilà J, Soler MJ. SGLT2i and GLP1-RA exert additive cardiorenal protection with a RAS blocker in uninephrectomized db/db mice. Front Pharmacol 2024; 15:1415879. [PMID: 39434906 PMCID: PMC11491409 DOI: 10.3389/fphar.2024.1415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/20/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Diabetic Kidney Disease (DKD) is the main cause of end-stage renal disease in the developed world. The current treatment of the DKD with renin-angiotensin system (RAS) blockade does not totally halt the progression to end stage kidney disease. Currently, several drugs have shown to delay DKD progression such as sodium-glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like-1 receptor agonists (GLP-1RA). We hypothesized that by combining several drugs that prevent DKD progression on top of RAS blockade a synergistic effect would be achieved in terms of cardiorenal protection. In the present study, we analysed if the combination of a RAS blocker (ramipril) with a SGLT2i (empagliflozin) and/or GLP-1RA (semaglutide) in a type 2 diabetic mouse model could have add-on effects in kidney and heart protection. Methods Male and female uninephrectomized type 2 diabetic db/db mice were treated with empagliflozin and/or semaglutide on top of ramipril during 8 weeks. During the study body weight, water and food intake were weekly monitored, glycaemia biweekly and albuminuria and glomerular filtration rate (GFR) before and after the treatment. At the end of the experiment, kidney and heart were isolated for histological and gene expression studies as well as for intrarenal RAS state assessment. Results Semaglutide combined with ramipril and/or empagliflozin significantly decreased albuminuria but only when combined with both compounds, semaglutide further decreased blood glucose, glomerular hyperfiltration in male mice and glomerular mesangial matrix expansion. In kidney, only the triple treatment with empagliflozin, semaglutide and ramipril reduced the expression of the proinflammatory and profibrotic genes ccl2 and TGFß1. In addition, the combination of empagliflozin and semaglutide on top of RAS blockade was superior in decreasing cardiomyocyte hypertrophy and heart fibrosis in db/db mice. Discussion Our results suggest that the combination of SGLT2i with GLP-1RA is superior in cardiorenal protection in DKD than the drugs administered alone on top of RAS blockade.
Collapse
Affiliation(s)
- Nerea Martos-Guillami
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| | - Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Aku Enam Motto
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Physiology/ Pharmacology, Unit of Pathophysiology, Bioactive Substances and Safety, Faculty of Sciences, University of Lomé, Lomé, Togo
| | - Irene Martínez-Díaz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Gonçalves
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Magdalena Garcias-Ramis
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Estibaliz Allo-Urzainqui
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Alonso Narváez
- Urology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sheila Bermejo
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| | - Vicent Muñoz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan León-Román
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roser Ferrer-Costa
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Jordi Vilardell-Vilà
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| |
Collapse
|
4
|
U N, R C T, R KR, Mahalingam G. Glucose transporters and their energy homeostasis function in various organs. VITAMINS AND HORMONES 2024; 128:1-47. [PMID: 40097247 DOI: 10.1016/bs.vh.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Glucose transporters (GLUTs) belong to a membrane-protein family that essentially participates in easing the transportation and absorption of glucose molecules throughout the cellular membranes. From the brain to the eyes, each section delves into the intricate mechanisms of glucose uptake and utilization, shedding light on the unique adaptations and regulatory pathways in different anatomical structures. Beginning with the brain, known for its high energy demands, the chapter explicates the specialized GLUT expression patterns crucial for neuronal function and synaptic transmission. Moving to metabolic powerhouses like the liver, muscles, and adipose tissue, it elucidates the dynamic interplay of GLUT isoforms in energy storage, mobilization, and insulin responsiveness. Furthermore, the chapter navigates through the kidneys, lungs, skin, and reproductive organs, unveiling the diverse roles of GLUTs in renal glucose reabsorption, pulmonary-epithelial transportation, skin barrier associated functions, and gonadal development. It also explores the significance of placental GLUTs in fatal nutrient supply and the implications of cardiac GLUTs in myocardial energy metabolism. Additionally, it examines the intricate regulation of GLUTs at key barriers like the BBB (Blood-Brain Barrier) and placenta, as well as in endocrine glands such as the pancreas, adrenal medulla and thyroid. Moreover, it further elucidates the less-explored territories of GLUT expression in the bones, gastrointestinal tract, and ocular tissues like the retina, unraveling their implications in immune function, bone metabolism, intestinal glucose-sensing, and retinal physiology.
Collapse
Affiliation(s)
- Nithya U
- Department of Bio-Medical Sciences, School of Bio, sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Theijeswini R C
- Department of Bio-Medical Sciences, School of Bio, sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Karthick Raja R
- Department of Bio-Medical Sciences, School of Bio, sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gayathri Mahalingam
- Department of Bio-Medical Sciences, School of Bio, sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Chen J, Chen Z, Wang W, Wang L, Zheng J, Wu S, Pan Y, Li S, Zhao J, Cai Z. Effects of Commonly used Surfactants, Poloxamer 188 and Tween 80, on the Drug Transport Capacity of Intestinal Glucose Transporters. AAPS PharmSciTech 2024; 25:163. [PMID: 38997614 DOI: 10.1208/s12249-024-02881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Some glycoside drugs can be transported through intestinal glucose transporters (IGTs). The surfactants used in oral drug preparations can affect the function of transporter proteins. This study aimed to investigate the effect of commonly used surfactants, Poloxamer 188 and Tween 80, on the drug transport capacity of IGTs. Previous studies have shown that gastrodin is the optimal drug substrate for IGTs. Gastrodin was used as a probe drug to evaluate the effect of these two surfactants on intestinal absorption in SD rats through pharmacokinetic and in situ single-pass intestinal perfusion. Then, the effects of the two surfactants on the expression of glucose transporters and tight-junction proteins were examined using RT-PCR and western blotting. Additionally, the effect of surfactants on intestinal permeability was evaluated through hematoxylin-eosin staining. The results found that all experimental for Poloxamer 188 (0.5%, 2.0% and 8.0%) and Tween 80 (0.1% and 2.0%) were not significantly different from those of the blank group. However, the AUC(0-∞) of gastrodin increased by approximately 32% when 0.5% Tween 80 was used. The changes in IGT expression correlated with the intestinal absorption of gastrodin. A significant increase in the expression of IGTs was observed at 0.5% Tween 80. In conclusion, Poloxamer 188 had minimal effect on the drug transport capacity of IGTs within the recommended limits of use. However, the expression of IGTs increased in response to 0.5% Tween 80, which significantly enhanced the drug transport capacity of IGTs. However, 0.1% and 2.0% Tween 80 had no significant effect.
Collapse
Affiliation(s)
- Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wentao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liyang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiqiong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuru Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
6
|
Yu Y, Xia Y, Liang G. Exploring novel lead scaffolds for SGLT2 inhibitors: Insights from machine learning and molecular dynamics simulations. Int J Biol Macromol 2024; 263:130375. [PMID: 38403210 DOI: 10.1016/j.ijbiomac.2024.130375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) plays a pivotal role in mediating glucose reabsorption within the renal filtrate, representing a well-known target in type 2 diabetes and heart failure. Recent emphasis has been directed toward designing SGLT2 inhibitors, with C-glycoside inhibitors emerging as front-runners. The architecture of SGLT2 has been successfully resolved using cryo-electron microscopy. However, comprehension of the pharmacophores within the binding site of SGLT2 remains unclear. Here, we use machine learning and molecular dynamics simulations on SGLT2 bound with its inhibitors in preclinical or clinical development to shed light on this issue. Our dataset comprises 1240 SGLT2 inhibitors amalgamated from diverse sources, forming the basis for constructing machine learning models. SHapley Additive exPlanation (SHAP) elucidates the crucial fragments that contribute to inhibitor activity, specifically Morgan_3, 162, 310, 325, 366, 470, 597, 714, 926, and 975. Furthermore, the computed binding free energies and per-residue contributions for SGLT2-inhibitor complexes unveil crucial fragments of inhibitors that interact with residues Asn-75, His-80, Val-95, Phe-98, Val-157, Leu-274, and Phe-453 in the binding site of SGLT2. This comprehensive investigation enhances understanding of the binding mechanism for SGLT2 inhibitors, providing a robust framework for evaluating and discovering novel lead scaffolds within this domain.
Collapse
Affiliation(s)
- Yuandong Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yuting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
8
|
Lee CT, Ng HY, Zhong HR, Wang Y, Liu CH, Lee YT. Ageing-Related Alterations in Renal Epithelial Glucose Transport. Int J Mol Sci 2023; 24:16455. [PMID: 38003644 PMCID: PMC10671470 DOI: 10.3390/ijms242216455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The kidney plays a crucial role in glucose homeostasis by regulating glucose transport. We aimed to investigate the impact of alterations in glucose transport on glucose metabolism during ageing. Adult male Sprague Dawley rats were divided into five groups: 3-month, 6-month, and 12-month control groups, and 6- and 12-month groups receiving the hydrogen sulfide donor molecule GYY4137. The study found that, as age increased, daily urinary uric acid and protein levels increased in the 12-month group. Blood sugar level and HOMA-IR index increased in the 12-month group, and were partially improved by GYY4137. The kidney tissue showed mild glomerulosclerosis in the 12-month group, which was diminished by GYY4137. Gene expression analysis showed decreased sirtuin and increased p21 expression in the aging groups. Increased SGLT1 and SGLT2 expression was observed in the 12-month group, which was reversed by GYY4137. Both GLUT1 and GLUT2 expression was increased in the 6- and 12-month groups, and reversed by GYY4137 in the 12-month group. The study concluded that aging was associated with increased blood sugar levels and the HOMA-IR index, and the abundance of renal glucose transporters increased as aging progressed. GYY4137 effectively reversed aging-related alterations in glucose homeostasis and renal epithelial transporters.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hua-Rong Zhong
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
| | - Yi Wang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chih-Han Liu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yuai-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
| |
Collapse
|
9
|
Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci 2023; 316:121414. [PMID: 36682521 DOI: 10.1016/j.lfs.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
A significant portion of the health burden of diabetic kidney disease (DKD) is caused by both type 1 and type 2 diabetes which leads to morbidity and mortality globally. It is one of the most common diabetic complications characterized by loss of renal function with high prevalence, often leading to acute kidney disease (AKD). Inflammation triggered by gut microbiota is commonly associated with the development of DKD. Interactions between the gut microbiota and the host are correlated in maintaining metabolic and inflammatory homeostasis. However, the fundamental processes through which the gut microbiota affects the onset and progression of DKD are mainly unknown. In this narrative review, we summarised the potential role of the gut microbiome, their pathogenicity between diabetic and non-diabetic kidney disease (NDKD), and their impact on host immunity. A well-established association has already been seen between gut microbiota, diabetes and kidney disease. The gut-kidney interrelationship is confirmed by mounting evidence linking gut dysbiosis to DKD, however, it is still unclear what is the real cause of gut dysbiosis, the development of DKD, and its progression. In addition, we also try to distinguish novel biomarkers for early detection of DKD and the possible therapies that can be used to regulate the gut microbiota and improve the host immune response. This early detection and new therapies will help clinicians for better management of the disease and help improve patient outcomes.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramanathan Gnanasambandan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
10
|
The membrane-associated protein 17 (MAP17) is up-regulated in response to empagliflozin on top of RAS blockade in experimental diabetic nephropathy. Clin Sci (Lond) 2023; 137:87-104. [PMID: 36524468 DOI: 10.1042/cs20220447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice. Vehicle-treated db/db and db/m mice were used as controls. At the end of the experiment, mice were killed, and the kidneys were saved to perform a differential high-throughput proteomic analysis by mass spectrometry using isobaric tandem mass tags (TMT labeling) that allow relative quantification of the identified proteins. The differential proteomic analysis revealed 203 proteins differentially expressed in one or more experimental groups (false discovery rate < 0.05 and Log2 fold change ≥ ±1). Fourteen were differentially expressed in the kidneys from the db/db mice treated with empagliflozin with ramipril. Among them, MAP17 was up-regulated. These findings were subsequently validated by Western blot. The combined therapy of empagliflozin and ramipril up-regulated MAP17 in the kidney of a diabetic mice model. MAP17 is a major scaffolding protein of the proximal tubular cells that places transporters together, namely SGLT2 and NHE3. Our results suggest that SGLT2i on top of RAS blockade may protect the kidney by boosting the inactivation of NHE3 via the up-regulation of key scaffolder proteins such as MAP17.
Collapse
|
11
|
Xu S, Zhang P, Heing-Becker I, Zhang J, Tang P, Bej R, Bhatia S, Zhong Y, Haag R. Dual tumor- and subcellular-targeted photodynamic therapy using glucose-functionalized MoS 2 nanoflakes for multidrug-resistant tumor ablation. Biomaterials 2022; 290:121844. [PMID: 36302305 DOI: 10.1016/j.biomaterials.2022.121844] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022]
Abstract
Photodynamic therapy (PDT) is emerging as an efficient strategy to combat multidrug-resistant (MDR) cancer. However, the short half-life and limited diffusion of reactive oxygen species (ROS) undermine the therapeutic outcomes of this therapy. To address this issue, a tumor-targeting nanoplatform was developed to precisely deliver mitochondria- and endoplasmic reticulum (ER)-targeting PDT agents to desired sites for dual organelle-targeted PDT. The nanoplatform is constructed by functionalizing molybdenum disulfide (MoS2) nanoflakes with glucose-modified hyperbranched polyglycerol (hPG), and then loading the organelle-targeting PDT agents. The resultant nanoplatform Cy7.5-TG@GPM is demonstrated to mediate both greatly enhanced internalization within MDR cells and precise subcellular localization of PDT agents, facilitating in situ near-infrared (NIR)-triggered ROS generation for augmented PDT and reversal of MDR, causing impressive tumor shrinkage in a HeLa multidrug-resistant tumor mouse model. As revealed by mechanistic studies of the synergistic mitochondria- and ER-targeted PDT, ROS-induced ER stress not only activates the cytosine-cytosine-adenosine-adenosine thymidine/enhancer-binding protein homologous protein (CHOP) pro-apoptotic signaling pathway, but also cooperates with ROS-induced mitochondrial dysfunction to trigger cytochrome C release from the mitochondria and induce subsequent cell death. Furthermore, the mitochondrial dysfunction reduces ATP production and thereby contributes to the reversal of MDR. This nanoplatform, with its NIR-responsive properties and ability to target tumors and subcellular organelles, offers a promising strategy for effective MDR cancer therapy.
Collapse
Affiliation(s)
- Shaohui Xu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Pan Zhang
- School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, 211198, Nanjing, China
| | - Isabelle Heing-Becker
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Junmei Zhang
- School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, 211198, Nanjing, China
| | - Peng Tang
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Raju Bej
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Yinan Zhong
- School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, 211198, Nanjing, China.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany.
| |
Collapse
|
12
|
Sharma V, Patial V. Peroxisome proliferator-activated receptor gamma and its natural agonists in the treatment of kidney diseases. Front Pharmacol 2022; 13:991059. [PMID: 36339586 PMCID: PMC9634118 DOI: 10.3389/fphar.2022.991059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
Kidney disease is one of the leading non-communicable diseases related to tremendous health and economic burden globally. Diabetes, hypertension, obesity and cardiovascular conditions are the major risk factors for kidney disease, followed by infections, toxicity and autoimmune causes. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated nuclear receptor that plays an essential role in kidney physiology and disease. The synthetic agonists of PPAR-γ shows a therapeutic effect in various kidney conditions; however, the associated side effect restricts their use. Therefore, there is an increasing interest in exploring natural products with PPARγ-activating potential, which can be a promising solution to developing effective and safe treatment of kidney diseases. In this review, we have discussed the role of PPAR-γ in the pathophysiology of kidney disease and the potential of natural PPAR-γ agonists in treating various kidney diseases, including acute kidney injury, diabetic kidney disease, obesity-induced nephropathy, hypertension nephropathy and IgA nephropathy. PPAR-γ is a potential target for the natural PPAR-γ agonists against kidney disease; however, more studies are required in this direction.
Collapse
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
13
|
Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev 2022; 16:561. [PMID: 35340885 PMCID: PMC8941341 DOI: 10.4081/oncol.2022.561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
The primary metabolic substrate for cells is glucose, which acts as both a source of energy and a substrate in several processes. However, being lipophilic, the cell membrane is impermeable to glucose and specific carrier proteins are needed to allow transport. In contrast to normal cells, cancer cells are more likely to generate energy by glycolysis; as this process generates fewer molecules of adenosine triphosphate (ATP) than complete oxidative breakdown, more glucose molecules are needed. The increased demand for glucose in cancer cells is satisfied by overexpression of a number of glucose transporters, and decreased levels of others. As specific correlations have been observed between the occurrence of cancer and the expression of glucose carrier proteins, the presence of changes in expression of glucose transporters may be treated as a marker of diagnosis and/or prognosis for cancer patients.
Collapse
|
14
|
Bicalutamide May enhance kidney injury in diabetes by concomitantly damaging energy production from OXPHOS and glycolysis. Chem Biol Interact 2022; 356:109858. [DOI: 10.1016/j.cbi.2022.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
|
15
|
GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems. Sci Rep 2022; 12:1429. [PMID: 35082341 PMCID: PMC8791944 DOI: 10.1038/s41598-022-05383-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma’s reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.
Collapse
|
16
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne) 2022; 13:927329. [PMID: 35957825 PMCID: PMC9357883 DOI: 10.3389/fendo.2022.927329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis is the result of renal tissue damage and repair response disorders. If fibrosis is not effectively blocked, it causes loss of renal function, leading to chronic renal failure. Metabolic reprogramming, which promotes cell proliferation by regulating cellular energy metabolism, is considered a unique tumor cell marker. The transition from oxidative phosphorylation to aerobic glycolysis is a major feature of renal fibrosis. Hypoxia-inducible factor-1 α (HIF-1α), a vital transcription factor, senses oxygen status, induces adaptive changes in cell metabolism, and plays an important role in renal fibrosis and glucose metabolism. This review focuses on the regulation of proteins related to aerobic glycolysis by HIF-1α and attempts to elucidate the possible regulatory mechanism underlying the effects of HIF-1α on glucose metabolism during renal fibrosis, aiming to provide new ideas for targeted metabolic pathway intervention in renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yujun Du,
| |
Collapse
|
17
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
18
|
Sędzikowska A, Szablewski L. Human Glucose Transporters in Renal Glucose Homeostasis. Int J Mol Sci 2021; 22:13522. [PMID: 34948317 PMCID: PMC8708129 DOI: 10.3390/ijms222413522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
The kidney plays an important role in glucose homeostasis by releasing glucose into the blood stream to prevent hypoglycemia. It is also responsible for the filtration and subsequent reabsorption or excretion of glucose. As glucose is hydrophilic and soluble in water, it is unable to pass through the lipid bilayer on its own; therefore, transport takes place using carrier proteins localized to the plasma membrane. Both sodium-independent glucose transporters (GLUT proteins) and sodium-dependent glucose transporters (SGLT proteins) are expressed in kidney tissue, and mutations of the genes coding for these glucose transporters lead to renal disorders and diseases, including renal cancers. In addition, several diseases may disturb the expression and/or function of renal glucose transporters. The aim of this review is to describe the role of the kidney in glucose homeostasis and the contribution of glucose transporters in renal physiology and renal diseases.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
19
|
Ahmad AA, Draves SO, Rosca M. Mitochondria in Diabetic Kidney Disease. Cells 2021; 10:cells10112945. [PMID: 34831168 PMCID: PMC8616075 DOI: 10.3390/cells10112945] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in the USA. The pathogenesis of DKD is multifactorial and involves activation of multiple signaling pathways with merging outcomes including thickening of the basement membrane, podocyte loss, mesangial expansion, tubular atrophy, and interstitial inflammation and fibrosis. The glomerulo-tubular balance and tubule-glomerular feedback support an increased glomerular filtration and tubular reabsorption, with the latter relying heavily on ATP and increasing the energy demand. There is evidence that alterations in mitochondrial bioenergetics in kidney cells lead to these pathologic changes and contribute to the progression of DKD towards ESRD. This review will focus on the dialogue between alterations in bioenergetics in glomerular and tubular cells and its role in the development of DKD. Alterations in energy substrate selection, electron transport chain, ATP generation, oxidative stress, redox status, protein posttranslational modifications, mitochondrial dynamics, and quality control will be discussed. Understanding the role of bioenergetics in the progression of diabetic DKD may provide novel therapeutic approaches to delay its progression to ESRD.
Collapse
|
20
|
Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P. Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 2021; 17:688-703. [PMID: 34188207 PMCID: PMC7612034 DOI: 10.1038/s41581-021-00440-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
In nephrology, differential diagnosis or assessment of disease activity largely relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and tissue obtained through invasive kidney biopsies. However, currently available non-invasive functional parameters, and most serum and urine biomarkers, cannot capture intrarenal molecular disease processes specifically. Moreover, although histopathological analyses of kidney biopsy samples enable the visualization of pathological morphological and molecular alterations, they only provide information about a small part of the kidney and do not allow longitudinal monitoring. These limitations not only hinder understanding of the dynamics of specific disease processes in the kidney, but also limit the targeting of treatments to active phases of disease and the development of novel targeted therapies. Molecular imaging enables non-invasive and quantitative assessment of physiological or pathological processes by combining imaging technologies with specific molecular probes. Here, we discuss current preclinical and clinical molecular imaging approaches in nephrology. Non-invasive visualization of the kidneys through molecular imaging can be used to detect and longitudinally monitor disease activity and can therefore provide companion diagnostics to guide clinical trials, as well as the safe and effective use of drugs.
Collapse
Affiliation(s)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
21
|
Głuchowska K, Pliszka M, Szablewski L. Expression of glucose transporters in human neurodegenerative diseases. Biochem Biophys Res Commun 2021; 540:8-15. [PMID: 33429199 DOI: 10.1016/j.bbrc.2020.12.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The central nervous system (CNS) plays an important role in the human body. It is involved in the receive, store and participation in information retrieval. It can use several substrates as a source of energy, however, the main source of energy is glucose. Cells of the central nervous system need a continuous supply of energy, therefore, transport of glucose into these cells is very important. There are three distinct families of glucose transporters: sodium-independent glucose transporters (GLUTs), sodium-dependent glucose cotransporters (SGLTs), and uniporter, SWEET protein. In the human brain only GLUTs and SGLTs were detected. In neurodegenerative diseases was observed hypometabolism of glucose due to decreased expression of glucose transporters, in particular GLUT1 and GLUT3. On the other hand, animal studies revealed, that increased levels of these glucose transporters, due to for example by the increased copy number of SLC2A genes, may have a beneficial effect and may be a targeted therapy in the treatment of patients with AD, HD and PD.
Collapse
Affiliation(s)
- Kinga Głuchowska
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| | - Monika Pliszka
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| | - Leszek Szablewski
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| |
Collapse
|
22
|
Shirakawa K, Sano M. Sodium-Glucose Co-Transporter 2 Inhibitors Correct Metabolic Maladaptation of Proximal Tubular Epithelial Cells in High-Glucose Conditions. Int J Mol Sci 2020; 21:ijms21207676. [PMID: 33081406 PMCID: PMC7589591 DOI: 10.3390/ijms21207676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023] Open
Abstract
Glucose filtered in the glomerulus is actively reabsorbed by sodium-glucose co-transporter 2 (SGLT2) in proximal tubular epithelial cells (PTEC) and passively returned to the blood via glucose transporter 2 (GLUT2). Healthy PTEC rely primarily on fatty acid beta-oxidation (FAO) for energy. In phase III trials, SGLT2 inhibitors improved outcomes in diabetic kidney disease (DKD). Tubulointerstitial renal fibrosis due to altered metabolic reprogramming of PTEC might be at the root of the pathogenesis of DKD. Here, we investigated the molecular mechanism of SGLT2 inhibitors’ renoprotective effect by examining transcriptional activity of Spp1, which encodes osteopontin, a key mediator of tubulointerstitial renal fibrosis. With primary cultured PTEC from Spp1-enhanced green fluorescent protein knock-in mice, we proved that in high-glucose conditions, increased SGLT2- and GLUT-mediated glucose uptake is causatively involved in aberrant activation of the glycolytic pathway in PTEC, thereby increasing mitochondrial reactive oxygen species (ROS) formation and transcriptional activation of Spp1. FAO activation did not play a direct role in these processes, but elevated expression of a tubular-specific enzyme, myo-inositol oxygenase, was at least partly involved. Notably, canagliflozin blocked overexpression of myo-inositol oxygenase. In conclusion, SGLT2 inhibitors exerted renoprotective effects by inhibiting aberrant glycolytic metabolism and mitochondrial ROS formation in PTEC in high-glucose conditions.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
23
|
Chiba Y, Murakami R, Matsumoto K, Wakamatsu K, Nonaka W, Uemura N, Yanase K, Kamada M, Ueno M. Glucose, Fructose, and Urate Transporters in the Choroid Plexus Epithelium. Int J Mol Sci 2020; 21:E7230. [PMID: 33008107 PMCID: PMC7582461 DOI: 10.3390/ijms21197230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Wakako Nonaka
- Department of Supportive and Promotive Medicine of the Municipal Hospital, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| |
Collapse
|
24
|
Zhang J, Dong XJ, Ding MR, You CY, Lin X, Wang Y, Wu MJY, Xu GF, Wang GD. Resveratrol decreases high glucose‑induced apoptosis in renal tubular cells via suppressing endoplasmic reticulum stress. Mol Med Rep 2020; 22:4367-4375. [PMID: 33000199 PMCID: PMC7533457 DOI: 10.3892/mmr.2020.11511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic nephropathy (DN) is the second most common complication of diabetes mellitus after cardiovascular complications. Endoplasmic reticulum (ER) stress is known to be associated with DN. Resveratrol (RSV) exhibits anti-oxidative, anti-inflammatory and cytoprotective effects. Therefore, the aims of the present study were to investigate the role of RSV in the inhibition of high concentration glucose (HG)-induced apoptosis in renal tubular cells, as well as to examine the protective effects of RSV against diabetes-mediated renal damage via inhibition of ER stress in DN. RSV was orally administered to diabetic db/db mice once a day for 12 consecutive weeks. Compared with untreated db/db mice, treating db/db mice with RSV significantly decreased urine albumin excretion and the urine albumin to creatinine ratio, and attenuated renal histopathological injury. Furthermore, RSV treatment resulted in decreased expression levels of glucose-regulated protein of 78 kDa and C/EBP-homologous protein (two ER stress markers) and caspase12 in murine kidneys. RSV administration also inhibited the apoptosis of NRK-52E cells and activation of the ER stress signal transduction pathway induced by HG treatment in vitro. Collectively, the present results indicated that RSV protected renal tubular cells against HG-induced apoptosis in DN by suppressing ER stress.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiong-Jun Dong
- Department of Nephrology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Meng-Ru Ding
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| | - Chun-Yu You
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xin Lin
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ying Wang
- School of Medical Imaging, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Miao-Jie-Yang Wu
- School of Medical Imaging, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Guo-Fei Xu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| | - Guo-Dong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
25
|
Górriz JL, Navarro-González JF, Ortiz A, Vergara A, Nuñez J, Jacobs-Cachá C, Martínez-Castelao A, Soler MJ. Sodium-glucose cotransporter 2 inhibition: towards an indication to treat diabetic kidney disease. Nephrol Dial Transplant 2020; 35:i13-i23. [PMID: 32003834 PMCID: PMC6993197 DOI: 10.1093/ndt/gfz237] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have clearly demonstrated their beneficial effect in diabetic kidney disease (DKD) on top of the standard of care [blood glucose control, renin–angiotensin system blockade, smoking cessation and blood pressure (BP) control], even in patients with overt DKD. However, the indication of this drug class is still blood glucose lowering in type 2 diabetic patients with estimated glomerular filtration rate >45 mL/min/1.73 m2. Based on the new evidence, several scientific societies have emphasized the preferential prescription of SGLT2i for patients at risk of heart failure or kidney disease, but still within the limits set by health authorities. A rapid positioning of both the European Medicines Agency and the US Food and Drug Administration will allow patients with overt DKD to benefit from SGLT2i. Clinical experience suggests that SGLT2i safety management may in part mirror renin–angiotensin blockade safety management in patients with overt DKD. This review focuses on the rationale for an indication of SGTL2i in DKD. We further propose clinical steps for maximizing the safety of SGLT2i in DKD patients on other antidiabetic, BP or diuretic medication.
Collapse
Affiliation(s)
- Jose Luis Górriz
- Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, GEENDIAB, Valencia, Spain.,REDINREN, Madrid, Spain
| | - Juan F Navarro-González
- REDINREN, Madrid, Spain.,Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, GEENDIAB, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- REDINREN, Madrid, Spain.,IIS-Fundación Jimenez Diaz UAM and School of Medicine, UAM, GEENDIAB, Madrid, Spain
| | - Ander Vergara
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | - Julio Nuñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Universitat de Valencia, INCLIVA, Valencia, Spain.,CIBER Cardiovascular
| | - Conxita Jacobs-Cachá
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | | | - Maria Jose Soler
- REDINREN, Madrid, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| |
Collapse
|
26
|
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472:1345-1370. [PMID: 32144488 PMCID: PMC7483786 DOI: 10.1007/s00424-020-02361-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
27
|
dos Santos Maia M, Rodrigues GCS, de Sousa NF, Scotti MT, Scotti L, Mendonça-Junior FJB. Identification of New Targets and the Virtual Screening of Lignans against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3098673. [PMID: 32879651 PMCID: PMC7448245 DOI: 10.1155/2020/3098673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people, worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed, based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B (PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1), phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64) 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and (135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.
Collapse
Affiliation(s)
- Mayara dos Santos Maia
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Natália Ferreira de Sousa
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | |
Collapse
|
28
|
Rogacka D, Audzeyenka I, Piwkowska A. Regulation of podocytes function by AMP-activated protein kinase. Arch Biochem Biophys 2020; 692:108541. [PMID: 32781053 DOI: 10.1016/j.abb.2020.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that form an essential, integral part of the glomerular filter. These cells limit the outside border of the glomerular basement membrane, forming a tight barrier that prevents significant protein loss from the capillary space. The slit diaphragm formed by podocytes is crucial for maintaining glomerular integrity and function. They are the target of injury in many glomerular diseases, including hypertension and diabetes mellitus. Accumulating studies have revealed that AMP-activated protein kinase (AMPK), an essential cellular energy sensor, might play a fundamental role in regulating podocyte metabolism and function. AMPK participates in insulin signaling, therefore controls glucose uptake and podocytes insulin sensitivity. It is also involved in insulin-dependent cytoskeleton reorganization in podocytes, mediating glomerular albumin permeability. AMPK plays an important role in the regulation of autophagy/apoptosis processes, which influence podocytes viability. The present review aimed to highlight the molecular mechanisms associated with AMPK that are involved in the regulation of podocyte function in health and disease states.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Irena Audzeyenka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
29
|
Fishman B, Shlomai G, Twig G, Derazne E, Tenenbaum A, Fisman EZ, Leiba A, Grossman E. Renal glucosuria is associated with lower body weight and lower rates of elevated systolic blood pressure: results of a nationwide cross-sectional study of 2.5 million adolescents. Cardiovasc Diabetol 2019; 18:124. [PMID: 31554505 PMCID: PMC6760097 DOI: 10.1186/s12933-019-0929-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene coding mutations found in sodium glucose co-transporters (SGLTs) are known to cause renal glucosuria. SGLT2 inhibitors have recently been shown to be effective hypoglycemic agents as well as possessing cardiovascular and renal protective properties. These beneficial effects have to some extent, been attributed to weight loss and reduced blood pressure. The aim of the current study was to evaluate the prevalence of renal glucosuria amongst a large cohort of Israeli adolescents and to investigate whether renal glucosuria is associated with lower body weight and lower blood pressure values. METHODS Medical and socio-demographic data were collected from the Israeli Defense Force's conscription center's database. A cross-sectional study to evaluate the association between conscripts diagnosed as overweight [BMI percentiles of ≥ 85 and < 95 and obesity (≥ 95 BMI percentile)] and afflicted with renal glucosuria was conducted. In addition, we assessed the association of renal glucosuria with elevated diastolic and systolic blood pressure. Multinomial regression models were used. RESULTS The final study cohort comprised 2,506,830 conscripts of whom 1108 (0.044%) were diagnosed with renal glucosuria, unrelated to diabetes mellitus, with males twice as affected compared to females. The adjusted odds ratio for overweight and obesity was 0.66 (95% CI 0.50-0.87) and 0.62 (95% CI 0.43-0.88), respectively. Adolescents afflicted with renal glucosuria were also less likely to have an elevated systolic blood pressure of 130-139 mmHg with an adjusted odds ratio of 0.74 (95% CI 0.60-0.90). CONCLUSIONS Renal glucosuria is associated with lower body weight and obesity as well as with lower rates of elevated systolic blood pressure.
Collapse
Affiliation(s)
- Boris Fishman
- Israel Defense Forces, Medical Corps, Tel Hashomer, Ramat Gan, Israel
- Internal Medicine D and Hypertension Unit, Sheba Medical Center, 2 Derech Sheba, Migdal Ishpuz, 1st Floor, Tel Hashomer, 5265601, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Gadi Shlomai
- Internal Medicine D and Hypertension Unit, Sheba Medical Center, 2 Derech Sheba, Migdal Ishpuz, 1st Floor, Tel Hashomer, 5265601, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Institute of Endocrinology, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel
| | - Gilad Twig
- Israel Defense Forces, Medical Corps, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Military Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Estela Derazne
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Alexander Tenenbaum
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Cardiac Rehabilitation Institute, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel
| | - Enrique Z Fisman
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Adi Leiba
- Israel Defense Forces, Medical Corps, Tel Hashomer, Ramat Gan, Israel
- Division of Nephrology and Hypertension, Assuta Ashdod Academic Medical Center, 7747629, Ashdod, Israel
- Faculty of Health sciences, Ben Gurion University, Beer Sheva, Israel
- Department of Medicine, Mount Auburn Hospital, 330 Mt Auburn St, Cambridge, MA, 02138, USA
- Department of Medicine, Harvard Medical School, Boston, USA
| | - Ehud Grossman
- Internal Medicine D and Hypertension Unit, Sheba Medical Center, 2 Derech Sheba, Migdal Ishpuz, 1st Floor, Tel Hashomer, 5265601, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
30
|
Microparticles as Potential Mediators of High Glucose-Induced Renal Cell Injury. Biomolecules 2019; 9:biom9080348. [PMID: 31390845 PMCID: PMC6723350 DOI: 10.3390/biom9080348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022] Open
Abstract
Diabetic nephropathy (DN) is the most common cause of chronic kidney disease worldwide. Activation of signaling pathways such as the mammalian target of rapamycin (mTOR), extracellular signal-regulated kinases (ERK), endoplasmic reticulum (ER) stress, transforming growth factor-beta (TGF-β), and epithelial-mesenchymal transition (EMT), are thought to play a significant role in the etiology of DN. Microparticles (MPs), the small membrane vesicles containing bioactive signals shed by cells upon activation or during apoptosis, are elevated in diabetes and were identified as biomarkers in DN. However, their exact role in the pathophysiology of DN remains unclear. Here, we examined the effect of MPs shed from renal proximal tubular cells (RPTCs) exposed to high glucose conditions on naïve RPTCs in vitro. Our results showed significant increases in the levels of phosphorylated forms of 4E-binding protein 1 and ERK1/2 (the downstream targets of mTOR and ERK pathways), phosphorylated-eIF2α (an ER stress marker), alpha smooth muscle actin (an EMT marker), and phosphorylated-SMAD2 and nuclear translocation of SMAD4 (markers of TGF-β signaling). Together, our findings indicate that MPs activate key signaling pathways in RPTCs under high glucose conditions. Pharmacological interventions to inhibit shedding of MPs from RPTCs might serve as an effective strategy to prevent the progression of DN.
Collapse
|
31
|
García-Carro C, Vergara A, Agraz I, Jacobs-Cachá C, Espinel E, Seron D, Soler MJ. The New Era for Reno-Cardiovascular Treatment in Type 2 Diabetes. J Clin Med 2019; 8:E864. [PMID: 31212945 PMCID: PMC6617211 DOI: 10.3390/jcm8060864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease in the developed world. Until 2016, the only treatment that was clearly demonstrated to delay the DKD was the renin-angiotensin system blockade, either by angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. However, this strategy only partially covered the DKD progression. Thus, new strategies for reno-cardiovascular protection in type 2 diabetic patients are urgently needed. In the last few years, hypoglycaemic drugs, such as sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide-1 receptor agonists, demonstrated a cardioprotective effect, mainly in terms of decreasing hospitalization for heart failure and cardiovascular death in type 2 diabetic patients. In addition, these drugs also demonstrated a clear renoprotective effect by delaying DKD progression and decreasing albuminuria. Another hypoglycaemic drug class, dipeptidyl peptidase 4 inhibitors, has been approved for its use in patients with advanced chronic kidney disease, avoiding, in part, the need for insulinization in this group of DKD patients. Studies in diabetic and non-diabetic experimental models suggest that these drugs may exert their reno-cardiovascular protective effect by glucose and non-glucose dependent mechanisms. This review focuses on newly demonstrated strategies that have shown reno-cardiovascular benefits in type 2 diabetes and that may change diabetes management algorithms.
Collapse
Affiliation(s)
- Clara García-Carro
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Ander Vergara
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Irene Agraz
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Eugenia Espinel
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Daniel Seron
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - María José Soler
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Schmidt L, Wielsch N, Wang D, Boland W, Burse A. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:81-91. [PMID: 30922827 DOI: 10.1016/j.ibmb.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Sequestration of plant secondary metabolites is a detoxification strategy widespread in herbivorous insects including not only storage, but also usage of these metabolites for the insects' own benefit. Larvae of the poplar leaf beetle Chrysomela populi sequester plant-derived salicin to produce the deterrent salicylaldehyde in specialized exocrine glands. To identify putative transporters involved in the sequestration process we investigated integral membrane proteins of several tissues from juvenile C. populi by using a proteomics approach. Computational analyses led to the identification of 122 transport proteins in the gut, 105 in the Malpighian tubules, 94 in the fat body and 27 in the defensive glands. Among these, primary active transporters as well as electrochemical potential-driven transporters were most abundant in all tissues, including ABC transporters (especially subfamilies B, C and G) and sugar porters as most interesting families facilitating the sequestration of plant glycosides. Whereas ABC transporters are predominantly expressed simultaneously in several tissues, sugar porters are often expressed in only one tissue, suggesting that sugar porters govern more distinct functions than members of the ABC family. The inventory of transporters presented in this study provides the base for further functional characterizations on transport processes of sequestered glycosides in insects.
Collapse
Affiliation(s)
- Lydia Schmidt
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Natalie Wielsch
- Max Planck Institute for Chemical Ecology, Research Group Mass Spectrometry/ Proteomics, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Ding Wang
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Antje Burse
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany.
| |
Collapse
|
33
|
Gao HF, Chen LY, Cheng CS, Chen H, Meng ZQ, Chen Z. SLC5A1 promotes growth and proliferation of pancreatic carcinoma via glucose-dependent AMPK/mTOR signaling. Cancer Manag Res 2019; 11:3171-3185. [PMID: 31114359 PMCID: PMC6489640 DOI: 10.2147/cmar.s195424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Accumulating studies have reported that aberrant expression of SLC5A1 is a negative prognostic factor to various cancer patients. Purpose: Pancreatic cancer tissue has also shown to harbor higher expression of SLC5A1, however how SLC5A1 mediates pancreatic cancer cells growth remains unclear. Methods: In this study, we examined the mRNA and protein expressions of SLC5A1 in human pancreatic tissue and various cell lines. The in vitro and in vivo roles of SLC5A1 in pancreatic cancer were investigated through stably transfected pancreatic cells with shRNA plasmid targeting SLC5A1. Results: Our results observed SLC5A1 was over-expressed in human pancreatic cancer tissues as well as most pancreatic cancer cell lines. Both in vitro and in vivo inhibition of SLC5A1 retarded pancreatic cancer cell growth and progression. The SLC5A1 knockdown mediated growth suppression is mainly regulated by reduced cellular glucose uptake by pancreatic cancer cells. Our further mechanistic observation showed that inhibition of SLC5A1 induced AMPK-dependent mTOR suppression and pharmacological inhibition of AMPK rescued the effect of SLC5A1 blockade. Further protein-protein interaction analysis showed association of SLC5A1 with EGFR and knockdown of EGFR also showed decreased cellular survival and glucose uptake by pancreatic cancer cells. Conclusion: Our findings postulated SLC5A1/EGFR as the potential therapeutic target of pancreatic cancer patients.
Collapse
Affiliation(s)
- Hui-Feng Gao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Lian-Yu Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Chien-Shan Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Hao Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Zhi-Qiang Meng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Zhen Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| |
Collapse
|
34
|
Abd Elmaaboud MA, Kabel AM, Elrashidy M. Pre-treatment with Empagliflozin ameliorates Cisplatin induced acute kidney injury by suppressing apoptosis. J Appl Biomed 2019; 17:90. [PMID: 34907751 DOI: 10.32725/jab.2019.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/23/2019] [Indexed: 01/14/2023] Open
Abstract
Dose-limiting nephrotoxicity restricts Cisplatin use in high therapeutic doses. Empagliflozin showed a reno-protective effect in diabetic nephropathy. We investigated if Empagliflozin can ameliorate Cisplatin nephrotoxicity whether used prophylactically or therapeutically. Forty male Wistar rats were divided into 5 groups: (1) control; (2) Cisplatin-induced nephrotoxicity by single intraperitoneal dose; (3) Empagliflozin was given for 10 days before a single dose of Cisplatin; (4) a single dose of Cisplatin followed by Empagliflozin for 10 days; (5) received Empagliflozin only. Regular assessment of weight was done, biochemical evaluation for serum urea, creatinine, uric acid, albumin, and glucose was performed, kidney tissue nerve growth factor-β (NGF-β) and oxidative stress parameters were measured, kidneys were evaluated histopathologically and immunostained for caspase 3. Cisplatin significantly reduced body weight, NGF-β, and reduced glutathione, elevated urea, creatinine, and malondialdehyde with no effect on other serum biochemical parameters. Histopathologically, there was high acute tubular necrosis (ATN) score with strong immunostaining of caspase 3. The use of Empagliflozin significantly reduced urea and creatinine in both prophylactic and therapeutic, reduced ATN score in the prophylactic group associated with minimal staining of caspase 3 and elevated reduced glutathione. In conclusion, prophylactic Empagliflozin protected against Cisplatin-induced acute kidney injury mainly via anti-apoptotic effect.
Collapse
Affiliation(s)
| | - Ahmed M Kabel
- Tanta University, Faculty of Medicine, Department of Pharmacology, Tanta, Egypt
- Taif University, College of Pharmacy, Department of Clinical Pharmacy, Taif, Saudi Arabia
| | - Mohamed Elrashidy
- Tanta University, Faculty of Medicine, Department of Pathology, Tanta, Egypt
| |
Collapse
|
35
|
Spires D, Manis AD, Staruschenko A. Ion channels and transporters in diabetic kidney disease. CURRENT TOPICS IN MEMBRANES 2019; 83:353-396. [PMID: 31196609 PMCID: PMC6815098 DOI: 10.1016/bs.ctm.2019.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 and 2 diabetes mellitus are major medical epidemics affecting millions of patients worldwide. Diabetes mellitus is the leading cause of diabetic kidney disease (DKD), which is the most common cause of end-stage renal disease (ESRD). DKD is associated with significant changes in renal hemodynamics and electrolyte transport. Alterations in renal ion transport triggered by pathophysiological conditions in diabetes can exacerbate hypertension, accelerate renal injury, and are integral to the development of DKD. Renal ion transporters and electrolyte homeostasis play a fundamental role in functional changes and injury to the kidney during DKD. With the large number of ion transporters involved in DKD, understanding the roles of individual transporters as well as the complex cascades through which they interact is essential in the development of effective treatments for patients suffering from this disease. This chapter aims to gather current knowledge of the major renal ion transporters with altered expression and activity under diabetic conditions, and provide a comprehensive overview of their interactions and collective functions in DKD.
Collapse
Affiliation(s)
- Denisha Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States.
| |
Collapse
|
36
|
Yaribeygi H, Atkin SL, Butler AE, Sahebkar A. Sodium–glucose cotransporter inhibitors and oxidative stress: An update. J Cell Physiol 2018; 234:3231-3237. [DOI: 10.1002/jcp.26760] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Habib Yaribeygi
- Neurosciences Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
37
|
Swe MT, Pongchaidecha A, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions. J Cell Physiol 2018; 234:8134-8151. [PMID: 30370538 DOI: 10.1002/jcp.27598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
The kidneys are as involved as the liver in gluconeogenesis which can significantly contribute to hyperglycemia in the diabetic condition. Substantial evidence has demonstrated the overexpression of rate-limiting gluconeogenic enzymes, especially phosphoenolpyruvate carboxykinase and glucose 6 phosphatase, and the accelerated glucose release both in the isolated proximal tubular cells and in the kidneys of diabetic animal models and diabetic patients. The aim of this review is to provide an insight into the mechanisms that accelerate renal gluconeogenesis in the diabetic conditions and the therapeutic approaches that could affect this process in the kidney. Increase in gluconeogenic substrates, reduced insulin concentration or insulin resistance, downregulation of insulin receptors and insulin signaling, oxidative stress, and inappropriate activation of the renin-angiotensin system are likely to participate in enhancing renal gluconeogenesis in the diabetic milieu. Several studies have suggested that controlling glucose metabolism at the renal level favors effective overall glycemic control in both type 1 and type 2 diabetes. Therefore, renal gluconeogenesis may be a promising target for effective glycemic control as a therapeutic strategy in diabetes.
Collapse
Affiliation(s)
- Myat Theingi Swe
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, University of Medicine 2, Yangon, Myanmar
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
38
|
Trotta MC, Maisto R, Alessio N, Hermenean A, D'Amico M, Di Filippo C. The Melanocortin MC5R as a New Target for Treatment of High Glucose-Induced Hypertrophy of the Cardiac H9c2 Cells. Front Physiol 2018; 9:1475. [PMID: 30416452 PMCID: PMC6212602 DOI: 10.3389/fphys.2018.01475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
The study explored the anti-hypertrophic effect of the melanocortin MC5R stimulation in H9c2 cardiac myocytes exposed to high glucose. This has been done by using α-MSH and selective MC5R agonists and assessing the expression of GLUT4 and GLUT1 transporters, miR-133 and urotensin receptor levels as a marker of cardiac hypertrophy. The study shows for the first time an up-regulation of MC5R expression levels in H9c2 cardiomyocytes exposed to high glucose medium (33 mM D-glucose) for 48 h, compared to cells grown in normal glucose medium (5.5 mM D-glucose). Moreover, H9c2 cells exposed to high glucose showed a significant reduction in cell viability (-40%), a significant increase in total protein per cell number (+109%), and an increase of the urotensin receptor expression levels as an evidence of cells hypertrophy. The pharmacological stimulation of MC5R with α-MSH (90 pM)of the high glucose exposed H9c2 cells increased the cell survival (+50,8%) and reduced the total protein per cell number (-28,2%) with respect to high glucose alone, confirming a reduction of the hypertrophic state as per cell area measurement. Similarly, PG-901 (selective agonist, 10-10 M) significantly increased cell viability (+61,0 %) and reduced total protein per cell number (-40,2%), compared to cells exposed to high glucose alone. Interestingly, the MC5R agonist reduced the GLUT1/GLUT4 glucose transporters ratio on the cell membranes exhibited by the hypertrophic H9c2 cells and increased the intracellular PI3K activity, mediated by a decrease of the levels of the miRNA miR-133a. The beneficial effects of MC5R agonism on the cardiac hypertrophy caused by high glucose was also observed also by echocardiographic evaluations of rats made diabetics with streptozotocin (65 mg/kg i.p.). Therefore, the melanocortin MC5R could be a new target for the treatment of high glucose-induced hypertrophy of the cardiac H9c2 cells.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Maisto
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clara Di Filippo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
39
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
40
|
Villalba H, Shah K, Albekairi TH, Sifat AE, Vaidya B, Abbruscato TJ. Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Res 2018; 1699:166-176. [PMID: 30165043 DOI: 10.1016/j.brainres.2018.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
Brain edema is one of the critical factors causing hightened disability and mortality in stroke patients, which is exaggerated further in diabetic patients. Organic osmolytes could play a critical role in the maintenance of cytotoxic edema. The present study was aimed to assess the role of myo-inositol, an organic osmolyte, on stroke outcome in diabetic and non-diabetic animals. In situ brain perfusion and acute brain slice methods were used to assess transport of myo-inositol across the blood-brain barrier and uptake by brain cells using non-diabetic (C57BL/6) and diabetic (streptozotocin-induced) mice, respectively. In vitro studies were conducted to assess the role of myo-inositol during and after ischemia utilizing oxygen glucose deprivation (OGD) and reperfusion. Further, the expression of transporters, such as SGLT6, SMIT1 and AQP4 were measured using immunofluorescence. Therapeutic efficacy of myo-inositol was evaluated in a transient middle cerebral artery occlusion (tMCAO) mouse model using non-diabetic (C57BL/6) and diabetic (db/db) mice. Myo-inositol release from and uptake in astrocytes and altered expression of myo-inositol transporters at different OGD timepoints revealed the role of myo-inositol and myo-inositol transporters during ischemia reperfusion. Further, hyperglycemic conditions reduced myo-inositol uptake in astrocytes. Interestingly, in in-vivo tMCAO, infarct and edema ratios following 24 h reperfusion decreased in myo-inositol treated mice. These results were supported by improvement in behavioral outcomes in open-field test, corner test and neurological score in both non-diabetic and db/db animals. Our data suggest that myo-inositol and myo-inositol transporters may provide neuroprotection during/following stroke both in non-diabetic and diabetic conditions.
Collapse
Affiliation(s)
- Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
41
|
Alicic RZ, Johnson EJ, Tuttle KR. SGLT2 Inhibition for the Prevention and Treatment of Diabetic Kidney Disease: A Review. Am J Kidney Dis 2018; 72:267-277. [DOI: 10.1053/j.ajkd.2018.03.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
42
|
Marable SS, Chung E, Adam M, Potter SS, Park JS. Hnf4a deletion in the mouse kidney phenocopies Fanconi renotubular syndrome. JCI Insight 2018; 3:97497. [PMID: 30046000 PMCID: PMC6124415 DOI: 10.1172/jci.insight.97497] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
Different nephron tubule segments perform distinct physiological functions, collectively acting as a blood filtration unit. Dysfunction of the proximal tubule segment can lead to Fanconi renotubular syndrome (FRTS), with major symptoms such as excess excretion of water, glucose, and phosphate in the urine. It has been shown that a mutation in HNF4A is associated with FRTS in humans and that Hnf4a is expressed specifically in proximal tubules in adult rat nephrons. However, little is known about the role of Hnf4a in nephrogenesis. Here, we found that Hnf4a is expressed in both presumptive and differentiated proximal tubules in the developing mouse kidney. We show that Hnf4a is required for the formation of differentiated proximal tubules but is dispensable for the formation of presumptive proximal tubules. Furthermore, we show that loss of Hnf4a decreased the expression of proximal tubule-specific genes. Adult Hnf4a mutant mice presented with FRTS-like symptoms, including polyuria, polydipsia, glycosuria, and phosphaturia. Analysis of the adult Hnf4a mutant kidney also showed proximal tubule dysgenesis and nephrocalcinosis. Our results demonstrate the critical role of Hnf4a in proximal tubule development and provide mechanistic insight into the etiology of FRTS.
Collapse
Affiliation(s)
- Sierra S. Marable
- Division of Pediatric Urology and
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | | | - Mike Adam
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - S. Steven Potter
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Joo-Seop Park
- Division of Pediatric Urology and
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| |
Collapse
|
43
|
Zhang J, Jiang S, Wei J, Yip KP, Wang L, Lai EY, Liu R. Glucose dilates renal afferent arterioles via glucose transporter-1. Am J Physiol Renal Physiol 2018; 315:F123-F129. [PMID: 29513069 PMCID: PMC6335005 DOI: 10.1152/ajprenal.00409.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glomerular hyperfiltration occurs during the early stage of diabetes. An acute glucose infusion increases glomerular filtration rate. The involvement of tubuloglomerular feedback response and direct effect of glucose on the afferent arterioles (Af-Arts) have been suggested. However, the signaling pathways to trigger Af-Art dilatation have not been fully identified. Therefore, in the present study we tested our hypothesis that an increase in glucose concentration enhances endothelial nitric oxide synthesis activity and dilates the Af-Arts via glucose transporter-1 (GLUT1) using isolated mouse Af-Arts with perfusion. We isolated and microperfused the Af-Arts from nondiabetic C57BL/6 mice. The Af-Arts were preconstricted with norepinephrine (1 µM). When we switched the d-glucose concentration from low (5 mM) to high (30 mM) in the perfusate, the preconstricted Af-Arts significantly dilated by 37.8 ± 7.1%, but L-glucose did not trigger the dilation. GLUT1 mRNA was identified in microdisserted Af-Arts measured by RT-PCR. Changes in nitric oxide (NO) production in Af-Art were also measured using fluorescent probe when ambient glucose concentration was increased. When the d-glucose concentration was switched from 5 to 30 mM, NO generation in Af-Art was significantly increased by 19.2 ± 6.2% (84.7 ± 4.1 to 101.0 ± 9.3 U/min). l-Glucose had no effect on the NO generation. The GLUT1-selective antagonist 4-[({[4-(1,1-Dimethylethyl)phenyl]sulfonyl}amino)methyl]- N-3-pyridinylbenzamide and the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester blocked the high glucose-induced NO generation and vasodilation. In conclusion, we demonstrated that an increase in glucose concentration dilates the Af-Art by stimulation of the endothelium-derived NO production mediated by GLUT1.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida.,Department of Physiology, Zhejiang University School of Medicine , Zhejiang , China
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - En Yin Lai
- Department of Physiology, Zhejiang University School of Medicine , Zhejiang , China
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| |
Collapse
|