1
|
Teixeira SC, Melo Fernandes TAD, Souza GD, Rosini AM, Fajardo Martínez AF, Gomes AO, Alves RN, Lopes DS, Silva MVD, Beraldo-Neto E, Clissa PB, Barbosa BF, Ávila VDMR, Ferro EAV. MjTX-II, a Lys49-PLA 2 from Bothrops moojeni snake venom, restricts Toxoplasma gondii infection via ROS and VEGF regulation. Chem Biol Interact 2025; 409:111417. [PMID: 39922520 DOI: 10.1016/j.cbi.2025.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Owing to the lack of efficient therapy and emerging resistance strains, toxoplasmosis affects about one-third of the world's population. Also, pregnancy-related infection can cause vertical transmission and result in fetal death. Despite the global efforts to combat Toxoplasma gondii infection, conventional therapies have been associated with serious side effects. Therefore, it is relevant to search for effective and less-toxic treatments of toxoplasmosis. In this scenario, snake venoms emerged as a promising source of therapeutic molecules due to their wide variety of biological effects. The present study investigated the anti-T. gondii effects of MjTX-II, a Lys49-PLA2 isolated from Bothrops moojeni, in trophoblast cells and villous explants from the third trimester of pregnancy. We found that non-cytotoxic doses of MjTX-II impaired parasite invasion and intracellular growth in BeWo cells. Also, MjTX-II-pre-treated T. gondii tachyzoites exhibited irregular rough surfaces, papules, and dimples, suggesting a possible action directly on the parasites. Moreover, MjTX-II was able to modulate the host environment by increasing ROS and cytokine levels involved in the control of infection. In addition, we observed that MjTX-II decreased VEGF levels and the addition of rVEGF increased T. gondii growth in BeWo cells. Through molecular docking simulations, we verified that MjTX-II is able to bind VEGFR2 and ICAM-1 receptors associated with parasite proliferation and dissemination. This work contributes to the discovery of therapeutic targets against T. gondii infection and for the development of effective and low-toxic antiparasitic molecules against congenital toxoplasmosis.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Science, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | | | | | | | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Weng B, Li Y, Feng W, Yao P, Wang Y, Wang Q, Wang X, Li Y, Li L, Wang Q. Azithromycin inhibits the intracellular persistence of Acinetobacter baumannii by inducing host cell autophagy in human bronchial epithelial cells. Microb Pathog 2025; 198:107152. [PMID: 39586339 DOI: 10.1016/j.micpath.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The invasion of host cells by bacteria, leading to intracellular infections, is a major cause of infection recurrence. Drug-resistant Acinetobacter baumannii (A. baumannii) is one of the most challenging public health issues worldwide, with very limited clinical treatment options available. A. baumannii has been found to be able to invade host cells and proliferate within them in recent studies. In addition to the direct antimicrobial effect of antibiotics, the activation of host autophagic flux also plays an important role in eliminating intracellular pathogens. Herein, this study aimes to evaluate the clearance effect of antibiotics on intracellular A. baumannii both in vivo and in vitro, and explore the relationship between this effect and autophagy. The results showed that intracellular pathogens resulted in a significant increase in the minimum bactericidal concentration, while azithromycin can significantly eliminate intracellular A. baumannii in vitro and in vivo. Notably, 60 μg/mL azithromycin demonstrated intracellular clearance against multidrug-resistant A. baumannii and markedly induced autophagosomes in BEAS-2B cells with a mild stimulation of autophagosomes degradation. These findings indicated that azithromycin can significantly clear intracellular A. baumannii and its ability to clear intracellular A. baumannii may be related to the stimulation of autophagosome formation and the induction of host autophagy, which has important implications for the clinical treatment of A. baumannii infections, especially when intracellular infections are present.
Collapse
Affiliation(s)
- Bangbi Weng
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuliang Li
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Li
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Li Li
- Department of Pain Medicine, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
Castillo C, Díaz-Luján C, Liempi A, Fretes R, Kemmerling U. Mammalian placental explants: A tool for studying host-parasite interactions and placental biology. Placenta 2024:S0143-4004(24)00291-1. [PMID: 38910051 DOI: 10.1016/j.placenta.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The placenta plays a critical role in host-pathogen interactions. Thus, ex vivo infection of mammalian placental explants is an excellent and simple method to study the mechanisms of cellular and tissue invasion by different pathogens in different mammalian species. These explants can be maintained in culture for several days, preserving the tissue architecture and resembling in-utero conditions under more physiological conditions than their isolated counterparts in isolated cell culture models. In addition, placental explants not only allow us to study how the placenta responds and defends itself against various infections but also provide a versatile platform for advancing our understanding of placental biology and the immune response. Furthermore, they serve as powerful tools for drug discovery, facilitating the screening of potential therapeutics for placental infections and for the identification of diagnostic markers. This review highlights the utility of mammalian placental explants in studying the host-pathogen interaction of two relevant protozoan parasites, Trypanosoma cruzi, the causative agent of Chagas disease, and Toxoplasma gondii, the etiological agent of Toxoplasmosis. Here, we discuss the different methodologies and technical aspects of the model, as well as the effect of both parasites on placental responses in human, canine, and ovine explants.
Collapse
Affiliation(s)
- Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Cintia Díaz-Luján
- Institute and Cathedra of Cell Biology, Histology and Embryology, Health Science Faculty, INICSA (CONICET)-Universidad Nacional de Córdoba and Villa María, Córdoba, Argentina
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ricardo Fretes
- Institute and Cathedra of Cell Biology, Histology and Embryology, Health Science Faculty, INICSA (CONICET)-Universidad Nacional de Córdoba and Villa María, Córdoba, Argentina
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Koutsogiannis Z, Denny PW. Rapid genotyping of Toxoplasma gondii isolates via Nanopore-based multi-locus sequencing. AMB Express 2024; 14:68. [PMID: 38844693 PMCID: PMC11156620 DOI: 10.1186/s13568-024-01728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite associated with severe disease, especially in the immunosuppressed. It is also a cause of congenital malformation and abortion in both animals and humans and is considered one of the most important foodborne pathogens worldwide with different strains showing variable distribution and differing pathogenicity. Thus, strain-level differentiation of T. gondii isolates is an essential asset in the understanding of parasite's diversity, geographical distribution, epidemiology and health risk. Here, we designed and implemented an Oxford Nanopore MinION protocol to analyse genomic sequence variation including single nucleotide polymorphisms (SNPs) and insertion/deletion polymorphisms (InDel's) of four different genomic loci, part of protein coding genes SAG2, SAG3, ROP17 and ROP21. This method provided results with the sequencing depth necessary for accurate differentiation of T. gondii strains and represents a rapid approach compared to conventional techniques which we further validated against environmental samples isolated from wild wood mice. In summary, multi-locus sequence typing (MLST) of both highly conserved and more polymorphic areas of the genome, provided robust data for strain classification in a platform ready for further adaption for other strains and pathogens.
Collapse
Affiliation(s)
| | - Paul W Denny
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
5
|
de Souza G, Teixeira SC, Fajardo Martínez AF, Silva RJ, Luz LC, de Lima Júnior JP, Rosini AM, dos Santos NCL, de Oliveira RM, Paschoalino M, Barbosa MC, Alves RN, Gomes AO, da Silva CV, Ferro EAV, Barbosa BF. Trypanosoma cruzi P21 recombinant protein modulates Toxoplasma gondii infection in different experimental models of the human maternal-fetal interface. Front Immunol 2023; 14:1243480. [PMID: 37915581 PMCID: PMC10617204 DOI: 10.3389/fimmu.2023.1243480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.
Collapse
Affiliation(s)
- Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Júnior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Natália Carine Lima dos Santos
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafael Martins de Oliveira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Matheus Carvalho Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Science, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Claudio Vieira da Silva
- Laboratory of Trypanosomatids, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
6
|
Teixeira SC, Paschoalino M, de Souza G, Rosini AM, de Lima Junior JP, Luz LC, Fajardo Martínez AF, Alves RN, Almeida MPO, Damasceno JL, Silva MJB, Ietta F, Barbosa BF, Ferro EAV, Gomes Martins CH. Rottlerin impairs early and late steps of Toxoplasma gondii infection in human trophoblast cells and villous explants. Chem Biol Interact 2023; 384:110716. [PMID: 37722575 DOI: 10.1016/j.cbi.2023.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Congenital toxoplasmosis, caused by the opportunistic protozoan parasite T. gondii, can cause stillbirths, miscarriages and fetal abnormalities, as well as encephalitis and chorioretinitis in newborns. Available treatment options rely on antiparasitic drugs that have been linked to serious side effects, high toxicity and the development of drug-resistant parasites. The search for alternative therapeutics to treat this disease without acute toxicity for the mother and child is essential for the advancement of current therapeutic procedures. The present study aimed to unravel the mode of the anti-T. gondii action of Rottlerin, a natural polyphenol with multiple pharmacological properties described. Herein, we further assessed the antiparasitic activity of Rottlerin against T. gondii infection on the human trophoblastic cells (BeWo cells) and, for the first time, on human villous explants. We found that non-cytotoxic doses of Rottlerin impaired early and late steps of parasite infection with an irreversible manner in BeWo cells. Rottlerin caused parasite cell cycle arrest in G1 phase and compromised the ability of tachyzoites to infect new cells, thus highlighting the possible direct action on parasites. An additional and non-exclusive mechanism of action of Rottlerin involves the modulation of host cell components, by affecting lipid droplet formation, mitochondrial function and upregulation of the IL-6 and MIF levels in BeWo cells. Supporting our findings, Rottlerin also controlled T. gondii proliferation in villous explants with low toxicity and reduced the IL-10 levels, a cytokine associated with parasite susceptibility. Collectively, our results highlighted the potential use of Rottlerin as a promising tool to prevent and/or treat congenital toxoplasmosis.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Junior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Sciences, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Jaqueline Lopes Damasceno
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
7
|
Huang L, Yang C, Chen Y, Deng H, Liao Z, Xiao H. CRISPR-Mediated Base Editing: Promises and Challenges for a Viable Oncotherapy Strategy. Hum Gene Ther 2023; 34:669-681. [PMID: 37276175 DOI: 10.1089/hum.2023.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Base editing technology, developed from the CRISPR/Cas9 system, is able to efficiently implement single-base substitutions at specific DNA or RNA sites without generating double-strand breaks with precision and efficiency. Point mutations account for 58% of disease-causing genetic mutations in humans, and single nucleotide variants are an important cause of tumorigenesis, and the advent of base editors offers new hope for the study or treatment of such diseases. Although it has some limitations, base editors have been continuously improved in terms of editing efficiency, specificity, and product purity since their development. In this review, we examine the main base editing technologies and discuss their applications and prospects in tumor research and therapy, as well as elaborate on their mode of delivery.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Chao Yang
- Department of Traditional Chinese Medicine Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Han Deng
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhi Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Guimarães Gois PS, Franco PS, Cota Teixeira S, Guirelli PM, de Araújo TE, da Fonseca Batistão DW, de Oliveira FC, Lícia Santos Ferreira G, de Oliveira Gomes A, Favoreto S, Mineo JR, de Freitas Barbosa B, Ferro EAV. Polarisation of human macrophages towards an M1 subtype triggered by an atypical Brazilian strain of Toxoplasma gondii results in a reduction in parasite burden. Folia Parasitol (Praha) 2022; 69. [DOI: 10.14411/fp.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
|
9
|
Rosini AM, Teixeira SC, Milian ICB, Silva RJ, de Souza G, Luz LC, Gomes AO, Mineo JR, Mineo TWP, Ferro EAV, Barbosa BF. LPS-mediated activation of TLR4 controls Toxoplasma gondii growth in human trophoblast cell (BeWo) and human villous explants in a dependent-manner of TRIF, MyD88, NF-κB and cytokines. Tissue Cell 2022; 78:101907. [DOI: 10.1016/j.tice.2022.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023]
|
10
|
Toxoplasma gondii in South America: a differentiated pattern of spread, population structure and clinical manifestations. Parasitol Res 2021; 120:3065-3076. [PMID: 34390383 DOI: 10.1007/s00436-021-07282-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa. It has a worldwide distribution and can infect a wide variety of intermediate hosts, including humans. In South America, toxoplasmosis shows high health impacts, and the incidence of the disease is frequently reported and more severe than in other regions, such as Europe. Although most T. gondii infections are asymptomatic, severe manifestations can occur in cases of congenital toxoplasmosis and immunocompromised individuals. In South America, the ocular disease in immunocompetent individuals is also frequently reported. Treatment for any clinical manifestation of toxoplasmosis consists of the combination of sulfadiazine (SDZ) and pyrimethamine (PYR). However, failures in the treatment of toxoplasmosis have been reported, especially in South America, suggesting the acquisition of resistance against SDZ and PYR. Another paradigm present in the literature is that once infected with T. gondii, the host is immunologically protected from further reinfections. However, some studies indicate cases of congenital transmission of T. gondii from immunocompetent pregnant women with chronic infection, suggesting the possibility of reinfection in humans. Thus, in this review, we will cover several aspects of South American T. gondii isolates, such as genetic characterization, disease manifestation, host reinfection and drug resistance.
Collapse
|
11
|
de Souza G, Silva RJ, Milián ICB, Rosini AM, de Araújo TE, Teixeira SC, Oliveira MC, Franco PS, da Silva CV, Mineo JR, Silva NM, Ferro EAV, Barbosa BF. Cyclooxygenase (COX)-2 modulates Toxoplasma gondii infection, immune response and lipid droplets formation in human trophoblast cells and villous explants. Sci Rep 2021; 11:12709. [PMID: 34135407 PMCID: PMC8209052 DOI: 10.1038/s41598-021-92120-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Congenital toxoplasmosis is represented by the transplacental passage of Toxoplasma gondii from the mother to the fetus. Our studies demonstrated that T. gondii developed mechanisms to evade of the host immune response, such as cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) induction, and these mediators can be produced/stored in lipid droplets (LDs). The aim of this study was to evaluate the role of COX-2 and LDs during T. gondii infection in human trophoblast cells and villous explants. Our data demonstrated that COX-2 inhibitors decreased T. gondii replication in trophoblast cells and villous. In BeWo cells, the COX-2 inhibitors induced an increase of pro-inflammatory cytokines (IL-6 and MIF), and a decrease in anti-inflammatory cytokines (IL-4 and IL-10). In HTR-8/SVneo cells, the COX-2 inhibitors induced an increase of IL-6 and nitrite and decreased IL-4 and TGF-β1. In villous explants, the COX-2 inhibitors increased MIF and decreased TNF-α and IL-10. Furthermore, T. gondii induced an increase in LDs in BeWo and HTR-8/SVneo, but COX-2 inhibitors reduced LDs in both cells type. We highlighted that COX-2 is a key factor to T. gondii proliferation in human trophoblast cells, since its inhibition induced a pro-inflammatory response capable of controlling parasitism and leading to a decrease in the availability of LDs, which are essentials for parasite growth.
Collapse
Affiliation(s)
- Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Iliana Claudia Balga Milián
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Thádia Evelyn de Araújo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Mário Cézar Oliveira
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Claudio Vieira da Silva
- Laboratory of Trypanosomatids, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil.
| |
Collapse
|
12
|
Fernández-Escobar M, Calero-Bernal R, Regidor-Cerrillo J, Vallejo R, Benavides J, Collantes-Fernández E, Ortega-Mora LM. In vivo and in vitro models show unexpected degrees of virulence among Toxoplasma gondii type II and III isolates from sheep. Vet Res 2021; 52:82. [PMID: 34112256 PMCID: PMC8194156 DOI: 10.1186/s13567-021-00953-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii is an important zoonotic agent with high genetic diversity, complex epidemiology, and variable clinical outcomes in animals and humans. In veterinary medicine, this apicomplexan parasite is considered one of the main infectious agents responsible for reproductive failure in small ruminants worldwide. The aim of this study was to phenotypically characterize 10 Spanish T. gondii isolates recently obtained from sheep in a normalized mouse model and in an ovine trophoblast cell line (AH-1) as infection target cells. The panel of isolates met selection criteria regarding such parameters as genetic diversity [types II (ToxoDB #1 and #3) and III (#2)], geographical location, and sample of origin (aborted foetal brain tissues or adult sheep myocardium). Evaluations of in vivo mortality, morbidity, parasite burden and histopathology were performed. Important variations between isolates were observed, although all isolates were classified as “nonvirulent” (< 30% cumulative mortality). The isolates TgShSp16 (#3) and TgShSp24 (#2) presented higher degrees of virulence. Significant differences were found in terms of in vitro invasion rates and tachyzoite yield at 72 h post-inoculation (hpi) between TgShSp1 and TgShSp24 isolates, which exhibited the lowest and highest rates, respectively. The study of the CS3, ROP18 and ROP5 loci allelic profiles revealed only type III alleles in ToxoDB #2 isolates and type II alleles in the #1 and #3 isolates included. We concluded that there are relevant intra- and inter-genotype virulence differences in Spanish T. gondii isolates, which could not be inferred by genetic characterization using currently described molecular markers.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Javier Regidor-Cerrillo
- SALUVET-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | | | | | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
13
|
Pastor-Fernández I, Collantes-Fernández E, Jiménez-Pelayo L, Ortega-Mora LM, Horcajo P. Modeling the Ruminant Placenta-Pathogen Interactions in Apicomplexan Parasites: Current and Future Perspectives. Front Vet Sci 2021; 7:634458. [PMID: 33553293 PMCID: PMC7859336 DOI: 10.3389/fvets.2020.634458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Neospora caninum and Toxoplasma gondii are one of the main concerns of the livestock sector as they cause important economic losses in ruminants due to the reproductive failure. It is well-known that the interaction of these parasites with the placenta determines the course of infection, leading to fetal death or parasite transmission to the offspring. However, to advance the development of effective vaccines and treatments, there are still important gaps on knowledge on the placental host-parasite interactions that need to be addressed. Ruminant animal models are still an indispensable tool for providing a global view of the pathogenesis, lesions, and immune responses, but their utilization embraces important economic and ethics restrictions. Alternative in vitro systems based on caruncular and trophoblast cells, the key cellular components of placentomes, have emerged in the last years, but their use can only offer a partial view of the processes triggered after infection as they cannot mimic the complex placental architecture and neglect the activity of resident immune cells. These drawbacks could be solved using placental explants, broadly employed in human medicine, and able to preserve its cellular architecture and function. Despite the availability of such materials is constrained by their short shelf-life, the development of adequate cryopreservation protocols could expand their use for research purposes. Herein, we review and discuss existing (and potential) in vivo, in vitro, and ex vivo ruminant placental models that have proven useful to unravel the pathogenic mechanisms and the host immune responses responsible for fetal death (or protection) caused by neosporosis and toxoplasmosis.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Horcajo
- Animal Health and Zoonoses (SALUVET) Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants. Sci Rep 2020; 10:15158. [PMID: 32938966 PMCID: PMC7495442 DOI: 10.1038/s41598-020-72230-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.
Collapse
|