1
|
Du L, Chen J, Du C, Chen J, Wang Z, Bao B, Zhonglin LV, Xing C, Liang M, Wang L, Xie S, Li Y, Wang Z, Li G, Zhang J, Han G. Tim-3 promotes viral infection by suppressing the USP25-TRAF3-IRF7 signaling pathway. Cell Immunol 2025; 409-410:104930. [PMID: 39946759 DOI: 10.1016/j.cellimm.2025.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/15/2025]
Abstract
Tim-3, an immune checkpoint inhibitor, plays key roles in maintaining immune homeostasis and is involved in viral evasion. However, the precise role of Tim-3 in viral infection remains to be determined. USP25 is a deubiquitinating enzyme that initiates antiviral immunity by deubiquitinating TRAF3 and triggering the antiviral signaling pathway. Here we found that Tim-3-specific knockout in myeloid cells leads to enhanced antiviral immunity in mice with vesicular stomatitis virus (VSV) encephalitis by increasing the type I interferon response. Mechanistically, Tim-3 inhibits the expression of USP25 via STAT1 and interacts with USP25 but does not regulate its posttranslational modification; as a result, Tim-3 inhibits USP25-mediated deubiquitination of TRAF3, promotes K48-linked ubiquitination and degradation of TRAF3, inhibits the phosphorylation of IRF7, and ultimately downregulates the interferon response. These findings provide new insights into the function of Tim-3 in antiviral immunity and its related clinical significance.
Collapse
Affiliation(s)
- Lin Du
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Jinjie Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Chunxiao Du
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Junrui Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhaoxiang Wang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bing Bao
- Department of Medical Information Data Service, The General Hospital of Western Theater Command, Chengdu, China
| | - L V Zhonglin
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Meng Liang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lanying Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Shun Xie
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhiding Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jun Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Luo J, Lu Y, Dai E, Yin N, Wang T, Qian H, Jiang Q, Cao X, Wang C, Zeng Y. The PB1 protein of H9N2 influenza A virus inhibits antiviral innate immunity by targeting MAVS for TRIM25-mediated autophagic degradation. Poult Sci 2025; 104:104639. [PMID: 39647358 PMCID: PMC11666973 DOI: 10.1016/j.psj.2024.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
The proteins encoded by Influenza A virus (IAV) evade the innate immune system through diverse strategies to facilitate their replication. However, the regulatory mechanisms remain not fully understood. In this study, we identified that the H9N2 PB1 protein suppressed the activities of the IFN-β, ISRE, and NF-κB promoters. Furthermore, H9N2 PB1 inhibited the phosphorylation of IRF3, IκBα, and TBK1 and the secretion of IFN-β. The results demonstrated H9N2 PB1 as a negative regulator of the RIG-I signaling pathway. Subsequent investigations revealed a specific interaction between H9N2 PB1 and MAVS, which disturbed the stability of MAVS. Notably, we discovered that H9N2 PB1 exploited the function of TRIM25, leading to the autophagic degradation of MAVS through K48-linked polyubiquitination. In conclusion, we uncovered a negative regulatory axis consisting of H9N2 PB1-TRIM25-MAVS-IFN-I. These findings provide valuable insights into the molecular interactions involved in the regulation of the host's innate immune antiviral response by IAV.
Collapse
Affiliation(s)
- Jiawei Luo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China
| | - Enqi Dai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China
| | - Nianchun Yin
- Suining Municipal Agricultural and Rural Bureau of Sichuan Province, Suining, 629000, PR China
| | - Ting Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China
| | - Hongxi Qian
- TECHLEX Food Co. Ltd, Mianyang, 621000, PR China
| | - Qingrong Jiang
- Sichuan Sundaily Farm Ecological Food Co. Ltd, Mianyang, 621000, PR China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, PR China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, 130118, PR China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
3
|
Zhang X, Zhang Y, Wei F. Research progress on the nonstructural protein 1 (NS1) of influenza a virus. Virulence 2024; 15:2359470. [PMID: 38918890 PMCID: PMC11210920 DOI: 10.1080/21505594.2024.2359470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Influenza A virus (IAV) is the leading cause of highly contagious respiratory infections, which poses a serious threat to public health. The non-structural protein 1 (NS1) is encoded by segment 8 of IAV genome and is expressed in high levels in host cells upon IAV infection. It is the determinant of virulence and has multiple functions by targeting type Ι interferon (IFN-I) and type III interferon (IFN-III) production, disrupting cell apoptosis and autophagy in IAV-infected cells, and regulating the host fitness of influenza viruses. This review will summarize the current research on the NS1 including the structure and related biological functions of the NS1 as well as the interaction between the NS1 and host cells. It is hoped that this will provide some scientific basis for the prevention and control of the influenza virus.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Chen KR, Yang CY, Shu SG, Lo YC, Lee KW, Wang LC, Chen JB, Shih MC, Chang HC, Hsiao YJ, Wu CL, Tan TH, Ling P. Endosomes serve as signaling platforms for RIG-I ubiquitination and activation. SCIENCE ADVANCES 2024; 10:eadq0660. [PMID: 39504361 PMCID: PMC11540011 DOI: 10.1126/sciadv.adq0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
RIG-I-like receptors (RLRs) are cytosolic RNA sensors critical for antiviral immunity. RLR activation is regulated by polyubiquitination and oligomerization following RNA binding. Yet, little is known about how RLRs exploit subcellular organelles to facilitate their posttranslational modifications and activation. Endosomal adaptor TAPE regulates the endosomal TLR and cytosolic RLR pathways. The potential interplay between RIG-I signaling and endosomes has been explored. Here, we report that endosomes act as platforms for facilitating RIG-I polyubiquitination and complex formation. RIG-I was translocated onto endosomes to form signaling complexes upon activation. Ablation of endosomes impaired RIG-I signaling to type I IFN activation. TAPE mediates the interaction and polyubiquitination of RIG-I and TRIM25. TAPE-deficient myeloid cells were defective in type I IFN activation upon RNA ligand and virus challenges. Myeloid TAPE deficiency increased the susceptibility to RNA virus infection in vivo. Our work reveals endosomes as signaling platforms for RIG-I activation and antiviral immunity.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Research, E-Da Hospital, I-Shou University, 824005 Kaohsiung, Taiwan
| | - Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 33302 Tao-Yuan, Taiwan
| | - San-Ging Shu
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Yin-Chiu Lo
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Kuan-Wei Lee
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Li-Chun Wang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Jia-Bao Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Meng-Cen Shih
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Hung-Chun Chang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Yu-Ju Hsiao
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Pin Ling
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| |
Collapse
|
5
|
Viñán Garcés AE, Cáceres E, Gómez JO, Martín-Loeches I, Reyes LF. Inflammatory response to SARS-CoV 2 and other respiratory viruses. Expert Rev Anti Infect Ther 2024; 22:725-738. [PMID: 39228288 DOI: 10.1080/14787210.2024.2400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lower respiratory tract infections (LRTI) remain a significant global cause of mortality and disability. Viruses constitute a substantial proportion of LRTI cases, with their pandemic potential posing a latent threat. After the SARS-CoV-2 pandemic, the resurgence of other respiratory viruses, including Influenza and Respiratory Syncytial Virus responsible for LRTI has been observed especially in susceptible populations. AREAS COVERED This review details the inflammatory mechanisms associated with three primary respiratory viruses: SARS-CoV-2, Influenza, and Respiratory Syncytial Virus (RSV). The focus will be on elucidating the activation of inflammatory pathways, understanding cellular contributions to inflammation, exploring the role of interferon and induced cell death in the response to these pathogens and detailing viral evasion mechanisms. Furthermore, the distinctive characteristics of each virus will be explained. EXPERT OPINION The study of viral pneumonia, notably concerning SARS-CoV-2, Influenza, and RSV, offers critical insights into infectious and inflammatory mechanisms with wide-ranging implications. Addressing current limitations, such as diagnostic accuracy and understanding host-virus interactions, requires collaborative efforts and investment in technology. Future research holds promise for uncovering novel therapeutic targets, exploring host microbiome roles, and addressing long-term sequelae. Integrating advances in molecular biology and technology will shape the evolving landscape of viral pneumonia research, potentially enhancing global public health outcomes.
Collapse
Affiliation(s)
- André Emilio Viñán Garcés
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
7
|
Su G, Chen Y, Li X, Shao JW. Virus versus host: influenza A virus circumvents the immune responses. Front Microbiol 2024; 15:1394510. [PMID: 38817972 PMCID: PMC11137263 DOI: 10.3389/fmicb.2024.1394510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen causing dreadful losses to humans and animals around the globe. As is known, immune escape is a strategy that benefits the proliferation of IAVs by antagonizing, blocking, and suppressing immune surveillance. The HA protein binds to the sialic acid (SA) receptor to enter the cytoplasm and initiate viral infection. The conserved components of the viral genome produced during replication, known as the pathogen-associated molecular patterns (PAMPs), are thought to be critical factors for the activation of effective innate immunity by triggering dependent signaling pathways after recognition by pattern recognition receptors (PRRs), followed by a cascade of adaptive immunity. Viral infection-induced immune responses establish an antiviral state in the host to effectively inhibit virus replication and enhance viral clearance. However, IAV has evolved multiple mechanisms that allow it to synthesize and transport viral components by "playing games" with the host. At its heart, this review will describe how host and viral factors interact to facilitate the viral evasion of host immune responses.
Collapse
Affiliation(s)
- Guanming Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, China
| | - Yiqun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
8
|
Dupré J, Le Dimna M, Hutet E, Dujardin P, Fablet A, Leroy A, Fleurot I, Karadjian G, Roesch F, Caballero I, Bourry O, Vitour D, Le Potier MF, Caignard G. Exploring type I interferon pathway: virulent vs. attenuated strain of African swine fever virus revealing a novel function carried by MGF505-4R. Front Immunol 2024; 15:1358219. [PMID: 38529285 PMCID: PMC10961335 DOI: 10.3389/fimmu.2024.1358219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
African swine fever virus represents a significant reemerging threat to livestock populations, as its incidence and geographic distribution have surged over the past decade in Europe, Asia, and Caribbean, resulting in substantial socio-economic burdens and adverse effects on animal health and welfare. In a previous report, we described the protective properties of our newly thermo-attenuated strain (ASFV-989) in pigs against an experimental infection of its parental Georgia 2007/1 virulent strain. In this new study, our objective was to characterize the molecular mechanisms underlying the attenuation of ASFV-989. We first compared the activation of type I interferon pathway in response to ASFV-989 and Georgia 2007/1 infections, employing both in vivo and in vitro models. Expression of IFN-α was significantly increased in porcine alveolar macrophages infected with ASFV-989 while pigs infected with Georgia 2007/1 showed higher IFN-α than those infected by ASFV-989. We also used a medium-throughput transcriptomic approach to study the expression of viral genes by both strains, and identified several patterns of gene expression. Subsequently, we investigated whether proteins encoded by the eight genes deleted in ASFV-989 contribute to the modulation of the type I interferon signaling pathway. Using different strategies, we showed that MGF505-4R interfered with the induction of IFN-α/β pathway, likely through interaction with TRAF3. Altogether, our data reveal key differences between ASFV-989 and Georgia 2007/1 in their ability to control IFN-α/β signaling and provide molecular mechanisms underlying the role of MGF505-4R as a virulence factor.
Collapse
Affiliation(s)
- Juliette Dupré
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Mireille Le Dimna
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Evelyne Hutet
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Pascal Dujardin
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Fablet
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurélien Leroy
- UMR 1282 Infectiologie et santé publique (ISP), INRAE Centre Val de Loire, Nouzilly, France
| | - Isabelle Fleurot
- UMR 1282 Infectiologie et santé publique (ISP), INRAE Centre Val de Loire, Nouzilly, France
| | - Grégory Karadjian
- UMR Biologie moléculaire et Immunologie Parasitaires (BIPAR), ENVA-INRAE-ANSES, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Ferdinand Roesch
- UMR 1282 Infectiologie et santé publique (ISP), INRAE Centre Val de Loire, Nouzilly, France
| | - Ignacio Caballero
- UMR 1282 Infectiologie et santé publique (ISP), INRAE Centre Val de Loire, Nouzilly, France
| | - Olivier Bourry
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Damien Vitour
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Marie-Frédérique Le Potier
- Unité Virologie Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Grégory Caignard
- Unité Mixte de Recherche (UMR) VIROLOGIE, Institut National Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Vétérinaire d’Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES) Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
9
|
Tewari DN, Biswas A, Chakrabarti AK, Dutta S. AMFR promotes innate immunity activation and proteasomal degradation of HMGCR in response to influenza virus infection in A549 cells. Virology 2023; 587:109875. [PMID: 37703797 DOI: 10.1016/j.virol.2023.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Differential regulation of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which is considered the rate-limiting enzyme of the cholesterol biosynthesis pathway, has been reported in case of infection with many viruses. In our study, we have found that influenza virus infection decreases total cellular cholesterol level which is directly related to the downregulation of HMGCR protein. We found that HMGCR is degraded through ubiquitination and proteasomal-mediated pathway upon viral infection. Upregulation of Autocrine Motility Factor Receptor (AMFR), which is an E3-ubiquitin ligase of HMGCR, was also observed. Furthermore, knockdown of AMFR inhibits ubiquitination of HMGCR and also leads to inactivation of the innate immunity components TANK-binding kinase 1 (TBK1) and Interferon regulatory factor 3 (IRF3). Our study is the first to show the role of HMGCR and AMFR in influenza virus infection and reveals that AMFR plays a crucial role in the downregulation of HMGCR and the activation of innate immunity following influenza virus infection.
Collapse
Affiliation(s)
- Devendra Nath Tewari
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Asim Biswas
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Alok Kumar Chakrabarti
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India.
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| |
Collapse
|
10
|
Ning H, Chiu SH, Xu X, Ma Y, Chen JL, Yang G. The Immunosuppressive Roles of PD-L1 during Influenza A Virus Infection. Int J Mol Sci 2023; 24:ijms24108586. [PMID: 37239931 DOI: 10.3390/ijms24108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical benefits of targeting programmed death-ligand 1 (PD-L1) in various cancers represent a strategy for the treatment of immunosuppressive diseases. Here, it was demonstrated that the expression levels of PD-L1 in cells were greatly upregulated in response to H1N1 influenza A virus (IAV) infection. Overexpression of PD-L1 promoted viral replication and downregulated type-I and type-III interferons and interferon-stimulated genes. Moreover, the association between PD-L1 and Src homology region-2, containing protein tyrosine phosphatase (SHP2), during IAV/H1N1 infection was analyzed by employing the SHP2 inhibitor (SHP099), siSHP2, and pNL-SHP2. The results showed that the expressions of PD-L1 mRNA and protein were decreased under SHP099 or siSHP2 treatment, whereas the cells overexpressing SHP2 exhibited the opposite effects. Additionally, the effects of PD-L1 on the expression of p-ERK and p-SHP2 were investigated in PD-L1-overexpressed cells following WSN or PR8 infection, determining that the PD-L1 overexpression led to the decreased expression of p-SHP2 and p-ERK induced by WSN or PR8 infection. Taken together, these data reveal that PD-L1 could play an important role in immunosuppression during IAV/H1N1 infection; thus, it may serve as a promising therapeutic target for development of novel anti-IAV drugs.
Collapse
Affiliation(s)
- Hongya Ning
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences (College of Bee Science), Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Shih-Hsin Chiu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences (College of Bee Science), Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Xiaodong Xu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences (College of Bee Science), Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yanmei Ma
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences (College of Bee Science), Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences (College of Bee Science), Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Guihong Yang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences (College of Bee Science), Fujian Agricultural and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Jiang L, Chen H, Li C. Advances in deciphering the interactions between viral proteins of influenza A virus and host cellular proteins. CELL INSIGHT 2023; 2:100079. [PMID: 37193064 PMCID: PMC10134199 DOI: 10.1016/j.cellin.2023.100079] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Influenza A virus (IAV) poses a severe threat to the health of animals and humans. The genome of IAV consists of eight single-stranded negative-sense RNA segments, encoding ten essential proteins as well as certain accessory proteins. In the process of virus replication, amino acid substitutions continuously accumulate, and genetic reassortment between virus strains readily occurs. Due to this high genetic variability, new viruses that threaten animal and human health can emerge at any time. Therefore, the study on IAV has always been a focus of veterinary medicine and public health. The replication, pathogenesis, and transmission of IAV involve intricate interplay between the virus and host. On one hand, the entire replication cycle of IAV relies on numerous proviral host proteins that effectively allow the virus to adapt to its host and support its replication. On the other hand, some host proteins play restricting roles at different stages of the viral replication cycle. The mechanisms of interaction between viral proteins and host cellular proteins are currently receiving particular interest in IAV research. In this review, we briefly summarize the current advances in our understanding of the mechanisms by which host proteins affect virus replication, pathogenesis, or transmission by interacting with viral proteins. Such information about the interplay between IAV and host proteins could provide insights into how IAV causes disease and spreads, and might help support the development of antiviral drugs or therapeutic approaches.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
12
|
Yang ML, Chen YC, Wang CT, Chong HE, Chung NH, Leu CH, Liu FT, Lai MMC, Ling P, Wu CL, Shiau AL. Upregulation of galectin-3 in influenza A virus infection promotes viral RNA synthesis through its association with viral PA protein. J Biomed Sci 2023; 30:14. [PMID: 36823664 PMCID: PMC9948428 DOI: 10.1186/s12929-023-00901-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the β-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.
Collapse
Affiliation(s)
- Mei-Lin Yang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan ,grid.413878.10000 0004 0572 9327Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Cheng Chen
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chung-Teng Wang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Hao-Earn Chong
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Nai-Hui Chung
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chia-Hsing Leu
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Fu-Tong Liu
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Michael M. C. Lai
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pin Ling
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan.
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan. .,Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.
| |
Collapse
|
13
|
The Roles of TRAF3 in Immune Responses. DISEASE MARKERS 2023; 2023:7787803. [PMID: 36845015 PMCID: PMC9949957 DOI: 10.1155/2023/7787803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
Seven tumor necrosis factor receptor- (TNFR-) associated factors (TRAFs) have been found in mammals, which are primarily involved in the signal translation of the TNFR superfamily, the Toll-like receptor (TLR) family, and the retinoic acid-inducible gene I- (RIG-I-) like receptor (RLR) family. TRAF3 is one of the most diverse members of the TRAF family. It can positively regulate type I interferon production while negatively regulating signaling pathways of classical nuclear factor-κB, nonclassical nuclear factor-κB, and mitogen-activated protein kinase (MAPK). This review summarizes the roles of TRAF3 signaling and the related immune receptors (e.g., TLRs) in several preclinical and clinical diseases and focuses on the roles of TRAF3 in immune responses, the regulatory mechanisms, and its role in disease.
Collapse
|
14
|
Li W, Wang H, Zheng SJ. Roles of RNA Sensors in Host Innate Response to Influenza Virus and Coronavirus Infections. Int J Mol Sci 2022; 23:8285. [PMID: 35955436 PMCID: PMC9368391 DOI: 10.3390/ijms23158285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus and coronavirus are two important respiratory viruses, which often cause serious respiratory diseases in humans and animals after infection. In recent years, highly pathogenic avian influenza virus (HPAIV) and SARS-CoV-2 have become major pathogens causing respiratory diseases in humans. Thus, an in-depth understanding of the relationship between viral infection and host innate immunity is particularly important to the stipulation of effective control strategies. As the first line of defense against pathogens infection, innate immunity not only acts as a natural physiological barrier, but also eliminates pathogens through the production of interferon (IFN), the formation of inflammasomes, and the production of pro-inflammatory cytokines. In this process, the recognition of viral pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) is the initiation and the most important part of the innate immune response. In this review, we summarize the roles of RNA sensors in the host innate immune response to influenza virus and coronavirus infections in different species, with a particular focus on innate immune recognition of viral nucleic acids in host cells, which will help to develop an effective strategy for the control of respiratory infectious diseases.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Development of a Multi-Epitope Vaccine for Mycoplasma hyopneumoniae and Evaluation of Its Immune Responses in Mice and Piglets. Int J Mol Sci 2022; 23:ijms23147899. [PMID: 35887246 PMCID: PMC9318870 DOI: 10.3390/ijms23147899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma hyopneumoniae (Mhp), the primary pathogen causing Mycoplasma pneumonia of swine (MPS), brings massive economic losses worldwide. Genomic variability and post-translational protein modification can enhance the immune evasion of Mhp, which makes MPS prone to recurrent outbreaks on farms, even with vaccination or other treatments. The reverse vaccinology pipeline has been developed as an attractive potential method for vaccine development due to its high efficiency and applicability. In this study, a multi-epitope vaccine for Mhp was developed, and its immune responses were evaluated in mice and piglets. Genomic core proteins of Mhp were retrieved through pan-genome analysis, and four immunodominant antigens were screened by host homologous protein removal, membrane protein screening, and virulence factor identification. One immunodominant antigen, AAV27984.1 (membrane nuclease), was expressed by E. coli and named rMhp597. For epitope prioritization, 35 B-cell-derived epitopes were identified from the four immunodominant antigens, and 10 MHC-I and 6 MHC-II binding epitopes were further identified. The MHC-I/II binding epitopes were merged and combined to produce recombinant proteins MhpMEV and MhpMEVC6His, which were used for animal immunization and structural analysis, respectively. Immunization of mice and piglets demonstrated that MhpMEV could induce humoral and cellular immune responses. The mouse serum antibodies could detect all 11 synthetic epitopes, and the piglet antiserum suppressed the nuclease activity of rMhp597. Moreover, piglet serum antibodies could also detect cultured Mhp strain 168. In summary, this study provides immunoassay results for a multi-epitope vaccine derived from the reverse vaccinology pipeline, and offers an alternative vaccine for MPS.
Collapse
|
16
|
Park ES, Dezhbord M, Lee AR, Kim KH. The Roles of Ubiquitination in Pathogenesis of Influenza Virus Infection. Int J Mol Sci 2022; 23:ijms23094593. [PMID: 35562987 PMCID: PMC9105177 DOI: 10.3390/ijms23094593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 01/14/2023] Open
Abstract
The ubiquitin system denotes a potent post-translational modification machinery that is capable of activation or deactivation of target proteins through reversible linkage of a single ubiquitin or ubiquitin chains. Ubiquitination regulates major cellular functions such as protein degradation, trafficking and signaling pathways, innate immune response, antiviral defense, and virus replication. The RNA sensor RIG-I ubiquitination is specifically induced by influenza A virus (IAV) to activate type I IFN production. Influenza virus modulates the activity of major antiviral proteins in the host cell to complete its full life cycle. Its structural and non-structural proteins, matrix proteins and the polymerase complex can regulate host immunity and antiviral response. The polymerase PB1-F2 of mutated 1918 IAV, adapts a novel IFN antagonist function by sending the DDX3 into proteasomal degradation. Ultimately the fate of virus is determined by the outcome of interplay between viral components and host antiviral proteins and ubiquitination has a central role in the encounter of virus and its host cell.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
17
|
Al Hamrashdi M, Brady G. Regulation of IRF3 activation in Human Antiviral Signalling Pathways. Biochem Pharmacol 2022; 200:115026. [PMID: 35367198 DOI: 10.1016/j.bcp.2022.115026] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.
Collapse
Affiliation(s)
- Mariya Al Hamrashdi
- Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin, Ireland.
| | - Gareth Brady
- Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin, Ireland.
| |
Collapse
|