1
|
Zhou SY, Du JM, Li WJ, Liu QY, Zhang QY, Su GH, Li Y. The roles and regulatory mechanisms of cigarette smoke constituents in vascular remodeling. Int Immunopharmacol 2024; 140:112784. [PMID: 39083928 DOI: 10.1016/j.intimp.2024.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qi-Yun Liu
- Department of Cardiology, Shandong Second Medical University, Weifang, China
| | - Qun-Ye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Kagemichi N, Umemura M, Ishikawa S, Iida Y, Takayasu S, Nagasako A, Nakakaji R, Akimoto T, Ohtake M, Horinouchi T, Yamamoto T, Ishikawa Y. Cytotoxic effects of the cigarette smoke extract of heated tobacco products on human oral squamous cell carcinoma: the role of reactive oxygen species and CaMKK2. J Physiol Sci 2024; 74:35. [PMID: 38918702 PMCID: PMC11197199 DOI: 10.1186/s12576-024-00928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The increasing prevalence of heated tobacco products (HTPs) has heightened concerns regarding their potential health risks. Previous studies have demonstrated the toxicity of cigarette smoke extract (CSE) from traditional tobacco's mainstream smoke, even after the removal of nicotine and tar. Our study aimed to investigate the cytotoxicity of CSE derived from HTPs and traditional tobacco, with a particular focus on the role of reactive oxygen species (ROS) and intracellular Ca2+. METHODS A human oral squamous cell carcinoma (OSCC) cell line, HSC-3 was utilized. To prepare CSE, aerosols from HTPs (IQOS) and traditional tobacco products (1R6F reference cigarette) were collected into cell culture media. A cell viability assay, apoptosis assay, western blotting, and Fluo-4 assay were conducted. Changes in ROS levels were measured using electron spin resonance spectroscopy and the high-sensitivity 2',7'-dichlorofluorescein diacetate assay. We performed a knockdown of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) by shRNA lentivirus in OSCC cells. RESULTS CSE from both HTPs and traditional tobacco exhibited cytotoxic effects in OSCC cells. Exposure to CSE from both sources led to an increase in intracellular Ca2+ concentration and induced p38 phosphorylation. Additionally, these extracts prompted cell apoptosis and heightened ROS levels. N-acetylcysteine (NAC) mitigated the cytotoxic effects and p38 phosphorylation. Furthermore, the knockdown of CaMKK2 in HSC-3 cells reduced cytotoxicity, ROS production, and p38 phosphorylation in response to CSE. CONCLUSION Our findings suggest that the CSE from both HTPs and traditional tobacco induce cytotoxicity. This toxicity is mediated by ROS, which are regulated through Ca2+ signaling and CaMKK2 pathways.
Collapse
Affiliation(s)
- Nagao Kagemichi
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| | - Soichiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yu Iida
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shota Takayasu
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Taisuke Akimoto
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Makoto Ohtake
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takahiro Horinouchi
- Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tetsuya Yamamoto
- Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
3
|
Sun L, Zhao X, Guo Y, Hou X, Li J, Ren X, Dong L, Liang R, Nie J, Shi Y, Qin X. Predictive Value of Smoking Index Combined with NT-proBNP for Patients with Pulmonary Hypertension Due to Chronic Lung Disease: A Retrospective Study. Int J Chron Obstruct Pulmon Dis 2024; 19:1233-1245. [PMID: 38854590 PMCID: PMC11162191 DOI: 10.2147/copd.s448496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Smoking is a major risk factor for the group 3 PH. NT-proBNP is a biomarker for risk stratification in PH. This study aims to investigate the effects of smoking status and smoking index (SI) on group 3 PH and to evaluate the value of SI and SI combined with NT-proBNP in early diagnosis and prediction of disease severity. Patients and Methods Four hundred patients with group 3 PH at the First Hospital of Shanxi Medical University between January 2020 and December 2021 were enrolled and divided into two groups: mild (30 mmHg ≤ pulmonary artery systolic pressure (PASP)≤50 mmHg) and non-mild (PASP >50 mmHg). The effect of smoking on group 3 PH was analyzed using univariate analysis, and logistic analysis was conducted to evaluate the risk of group 3 PH according to smoking status and SI. Spearman correlation coefficient was used to test the correlation between SI and the index of group 3 PH severity. The predictive value of SI was evaluated using a receiver operating characteristic (ROC) curve. Results Correlation and logistic analyses showed that SI was associated with PH severity. Smoking status (P=0.009) and SI (P=0.039) were independent risk factors for non-mild group 3 PH, and ROC showed that the predictive value of SI (AUC:0.596) for non-mild PH was better than that of the recognized pro-brain natriuretic peptide (NT-proBNP) (AUC:0.586). SI can be used as a single predictive marker. SI and NT-proBNP can be formulated as prediction models for screening non-mild clinical cases (AUC:0.628). Conclusion SI is a potentially ideal non-invasive predictive marker for group 3 PH. SI and NT-proBNP could be used to develop a prediction model for screening non-mild PH cases. This can greatly improve the predictive specificity of the established PH marker, NT-proBNP.
Collapse
Affiliation(s)
- Lin Sun
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xu Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunting Guo
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Taiyuan, Shanxi, People’s Republic of China
| | - Jieru Li
- Department of Foreign Languages, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaoxia Ren
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Lin Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yiwei Shi
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaojiang Qin
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Taiyuan, Shanxi, People’s Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
4
|
Oit-Wiscombe I, Soomets U, Altraja A. Antioxidant Glutathione Analogues UPF1 and UPF17 Modulate the Expression of Enzymes Involved in the Pathophysiology of Chronic Obstructive Pulmonary Disease. Curr Issues Mol Biol 2024; 46:2343-2354. [PMID: 38534765 PMCID: PMC10969540 DOI: 10.3390/cimb46030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Increased oxidative stress (OS) and systemic inflammation are key players in the pathophysiology of chronic obstructive pulmonary disease (COPD). We aimed to clarify the effects of synthetic glutathione (GSH) analogue peptides UPF1 and UPF17 on the mRNA levels of enzymes involved in systemic inflammation and GSH metabolism in peripheral blood mononuclear cells (PBMCs) from patients with acute exacerbation of COPD (AE-COPD) and stable COPD along with non-obstructive smokers and non-smokers. UPF1 and UPF17 increased the expression of enzymes involved in the formation of the antioxidant capacity: superoxide dismutase 1 (SOD1) and the catalytic subunit of glutamyl-cysteine ligase (GCLC) in patients with AE-COPD and stable COPD, but also in non-obstructive smokers and non-smokers. Similarly, both UPF1 and UPF17 increased the expression of inflammatory enzymes poly(ADP-ribose) polymerase-1 (PARP-1), dipeptidyl peptidase 4 (DPP4), and cyclooxygenase-2 (COX-2). Both UPF analogues acted in a gender-dependent manner by increasing the expression of certain anti-inflammatory (histone deacetylase 2 (HDAC2)) and GSH metabolism pathway (SOD1 and GSH reductase (GSR))-related enzymes in females and decreasing them in males. UPF1 and UPF17 are able to increase the expression of the enzymes involved in GSH metabolism and could serve as a lead for designing potential COPD therapies against excessive OS.
Collapse
Affiliation(s)
- Ingrid Oit-Wiscombe
- Department of Pulmonology, University of Tartu, 50406 Tartu, Estonia;
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ursel Soomets
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Alan Altraja
- Department of Pulmonology, University of Tartu, 50406 Tartu, Estonia;
- Lung Clinic, Tartu University Hospital, 50411 Tartu, Estonia
| |
Collapse
|
5
|
Lu T, Guo L, Ma Y, Yao L, Li L, Bian W, Xiu M, Jiang Y, Li Y, Jin H. Identification and Analysis of Differentially Expressed Genes Associated with Ferroptosis and HIV in PASMCs Based on Bioinformatics. Curr HIV Res 2024; 22:308-317. [PMID: 39192637 PMCID: PMC11826917 DOI: 10.2174/011570162x304876240821062047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND HIV-associated pulmonary arterial hypertension (HIV-PAH), a rare and fatal condition within the pulmonary arterial hypertension spectrum, is linked to HIV infection. While ferroptosis, an iron-dependent cell death form, is implicated in various lung diseases, its role in HIVPAH development remains unclear. METHODS Leveraging Gene Expression Omnibus data, we identified differentially expressed genes (DEGs) in pulmonary arterial smooth muscle cells, including HIV-related DEGs (HIV-DEGs) and ferroptosis-related HIV-DEGs (FR-HIV-DEGs). PPI network analysis of FR-HIV-DEGs using CytoHubba in Cytoscape identified hub genes. We conducted functional and pathway enrichment analyses for FR-HIV-DEGs, HIV-DEGs, and hub genes. Diagnostic value assessment of hub genes utilized ROC curve analysis. Key genes were further screened, and external validation was performed. Additionally, we predicted a potential ceRNA regulatory network for key genes. RESULTS 1372 DEGs were found, of which 228 were HIV-DEGs, and 20 were FR-HIV-DEGs. TP53, IL6, PTGS2, IL1B (downregulated), and PPARG (upregulated) were the five hub genes that were screened. TP53, IL6, and IL1B act as ferroptosis drivers, PTGS2 as a ferroptosis marker, and PPARG as a ferroptosis inhibitor. Enrichment analysis indicated biological processes enriched in "response to oxidative stress" and pathways enriched in "human cytomegalovirus infection." Key genes IL6 and PTGS2 exhibited strong predictive value via ROC curve analysis and external validation. The predicted ceRNA regulatory network identified miRNAs (has-mir-335-5p, has-mir-124-3p) targeting key genes and lncRNAs (XIST, NEAT1) targeting these miRNAs. CONCLUSION This study advances our understanding of potential mechanisms in HIV-PAH pathogenesis, emphasizing the involvement of ferroptosis. The findings offer valuable insights for future research in HIV-PAH.
Collapse
Affiliation(s)
- Tong Lu
- College of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Linna Guo
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Lijie Yao
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Li Li
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Wenshan Bian
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Miao Xiu
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Yang Jiang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Yongtao Li
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
6
|
Ye L, Wang B, Xu H, Zhang X. The Emerging Therapeutic Role of Prostaglandin E2 Signaling in Pulmonary Hypertension. Metabolites 2023; 13:1152. [PMID: 37999248 PMCID: PMC10672796 DOI: 10.3390/metabo13111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Mild-to-moderate pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD). It is characterized by narrowing and thickening of the pulmonary arteries, resulting in increased pulmonary vascular resistance (PVR) and ultimately leading to right ventricular dysfunction. Pulmonary vascular remodeling in COPD is the main reason for the increase of pulmonary artery pressure (PAP). The pathogenesis of PH in COPD is complex and multifactorial, involving chronic inflammation, hypoxia, and oxidative stress. To date, prostacyclin and its analogues are widely used to prevent PH progression in clinical. These drugs have potent anti-proliferative, anti-inflammatory, and stimulating endothelial regeneration properties, bringing therapeutic benefits to the slowing, stabilization, and even some reversal of vascular remodeling. As another well-known and extensively researched prostaglandins, prostaglandin E2 (PGE2) and its downstream signaling have been found to play an important role in various biological processes. Emerging evidence has revealed that PGE2 and its receptors (i.e., EP1-4) are involved in the regulation of pulmonary vascular homeostasis and remodeling. This review focuses on the research progress of the PGE2 signaling pathway in PH and discusses the possibility of treating PH based on the PGE2 signaling pathway.
Collapse
Affiliation(s)
- Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China;
| | - Bing Wang
- Department of Endocrinology and Metabolism, The Central Hospital of Dalian University of Technology, Dalian 116000, China;
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Panchal J, Jaiswal S, Jain S, Kumawat J, Sharma A, Jain P, Jain S, Verma K, Dwivedi J, Sharma S. Development of novel bosentan analogues as endothelin receptor antagonists for pulmonary arterial hypertension. Eur J Med Chem 2023; 259:115681. [PMID: 37515921 DOI: 10.1016/j.ejmech.2023.115681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Since decades, bosentan has been in use for the treatment of pulmonary arterial hypertension (PAH). However, chronic exposure to bosentan leads to the development of resistance, tolerance, and serious adverse effects that have restricted its usage in clinical practices. To surmount these limitations, some new bosentan derivatives have been synthesized and evaluated for their therapeutic efficacy in PAH. Molecular docking analyses of all the synthesized derivatives were carried out using the endothelin (ET) receptor. In addition, the inhibitory ability of synthesized derivatives was determined in in vitro assay employing an ET-1 human ELISA kit. Among the synthesized derivatives, three derivatives namely 17d, 16j, and 16h with higher docking scores and lower IC50 values were selected for determination of the magnitude of the binding force between the derivative and ET receptor using molecular dynamics (MD) simulations study. Further, these derivatives were subjected to in vivo studies using monocrotaline (MCT) induced PAH in rat model. Results of in vivo studies inferred that the derivatives exhibit impressive ability to reduce PAH. Besides, its protective role was also evidenced in hemodynamic and right ventricular hypertrophy analyses, histological analysis, cardiac biomarkers, hypoxia-inducible factor 1 alpha (HIF1α) levels, and biochemical studies. Furthermore, gene quantification by quantitative RT-PCR and Western blot analysis was also performed to examine its effect on the expression of key proteins in PAH. Notably, amongst three, derivative 16h exhibited the most encouraging results in molecular docking analysis, in vitro, in vivo, histopathological, biochemical, protein expression, and MD studies. Besides, derivative 16h also showed impressive pharmacokinetic features in ADMET analysis. In conclusion, derivative 16 h could act as a reliable ET receptor antagonist and requires further exploration to attain its therapeutic utility in PAH management.
Collapse
Affiliation(s)
- Jigar Panchal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
| | - Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Ashima Sharma
- Department of Pharmacy, Panjab University, Chandigarh, 160014, Punjab, India
| | - Pankaj Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
| |
Collapse
|
8
|
Xiong S, Liu Q, Zhou S, Xiao Y. Identification of key genes and regulatory networks involved in the Comorbidity of atrial fibrillation and chronic obstructive pulmonary disease. Heliyon 2023; 9:e22430. [PMID: 39811093 PMCID: PMC11731475 DOI: 10.1016/j.heliyon.2023.e22430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2025] Open
Abstract
Background The underlying molecular processes of atrial fibrillation (AF) and chronic obstructive pulmonary disease (COPD) are frequently linked to increased morbidity and mortality when they co-occur. However, their underlying molecular mechanisms are questioned due to their incomplete analysis. Objective This study aimed to identify common differentially expressed genes (DEGs) in AF and COPD patients and investigate their potential biological functions and pathways. We hope to complement and update previous research through clearer figure presentation and different bioinformatic analysis methods with different datasets. Methods We used statistical analysis to identify DEGs in the expression profiles of AF and COPD patients using datasets from the Gene Expression Omnibus database. To ascertain whether the common DEGs were functionally enriched, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used. In addition, we generated protein‒protein interaction networks and identified significant hub genes. Furthermore, the hub genes were used to analyze transcription factor (TF)-gene interactions and TF-miRNA coregulatory networks, and their expression levels were validated in additional datasets. Results We identified a total of 15 DEGs that were upregulated, whereas 36 were downregulated in AF and COPD patients. The DEGs were commonly expressed in both AF and COPD patients, with functional enrichment analysis revealing their involvement in metabolic processes and neuron-to-neuron synapses. We identified significant hub genes, including TGM2, ITPR1, CHL1, ALDOC, RPS3, FBLN2, NDUFS2, ITGA5, CTNNB1, RBP1, CLSTN2, FABP5, EPHA4, LDHA, and HNRNPL, and analyzed their coexpression and biological functions. TF-gene interaction and TF-miRNA coregulatory network analyses revealed the regulatory relationships of the hub genes. Additional datasets were analyzed to validate hub gene expression, and ALDOC, HNRNPL, and NDUFS2 displayed similar processes in AF and COPD patients. Conclusions In our study, we demonstrate that metabolic processes and neuron-to-neuron synaptic connections may contribute to the cooccurrence of AF and COPD. The identified hub genes and regulatory networks may act as potential biomarkers and therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Shan Xiong
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Alqarni AA, Aldhahir AM, Alghamdi SA, Alqahtani JS, Siraj RA, Alwafi H, AlGarni AA, Majrshi MS, Alshehri SM, Pang L. Role of prostanoids, nitric oxide and endothelin pathways in pulmonary hypertension due to COPD. Front Med (Lausanne) 2023; 10:1275684. [PMID: 37881627 PMCID: PMC10597708 DOI: 10.3389/fmed.2023.1275684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 PH, with no current proven targeted therapies. Studies suggest that cigarette smoke, the most risk factor for COPD can cause vascular remodelling and eventually PH as a result of dysfunction and proliferation of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). In addition, hypoxia is a known driver of pulmonary vascular remodelling in COPD, and it is also thought that the presence of hypoxia in patients with COPD may further exaggerate cigarette smoke-induced vascular remodelling; however, the underlying cause is not fully understood. Three main pathways (prostanoids, nitric oxide and endothelin) are currently used as a therapeutic target for the treatment of patients with different groups of PH. However, drugs targeting these three pathways are not approved for patients with COPD-associated PH due to lack of evidence. Thus, this review aims to shed light on the role of impaired prostanoids, nitric oxide and endothelin pathways in cigarette smoke- and hypoxia-induced pulmonary vascular remodelling and also discusses the potential of using these pathways as therapeutic target for patients with PH secondary to COPD.
Collapse
Affiliation(s)
- Abdullah A. Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Abdulelah M. Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sara A. Alghamdi
- Respiratory Care Department, Al Murjan Hospital, Jeddah, Saudi Arabia
| | - Jaber S. Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Rayan A. Siraj
- Department of Respiratory Care, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulkareem A. AlGarni
- King Abdulaziz Hospital, The Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia
| | - Mansour S. Majrshi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Saad M. Alshehri
- Department of Respiratory Therapy, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Linhua Pang
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, Nottingham, United Kingdom
| |
Collapse
|
10
|
Alqarni AA, Aldhahir AM, Bintalib HM, Alqahtani JS, Siraj RA, Majrshi M, AlGarni AA, Naser AY, Alghamdi SA, Alwafi H. Inhaled therapies targeting prostacyclin pathway in pulmonary hypertension due to COPD: systematic review. Front Med (Lausanne) 2023; 10:1217156. [PMID: 37706024 PMCID: PMC10496018 DOI: 10.3389/fmed.2023.1217156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023] Open
Abstract
Background Pulmonary hypertension due to chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) is classified as group 3 pulmonary hypertension. Inhaled treprostinil, a prostaglandin I2 analogue also known as prostacyclin, has recently been approved as a first drug for patients with pulmonary hypertension secondary to ILD. However, due to a lack of evidence, no therapies are currently approved for those with COPD-associated pulmonary hypertension. Thus, this systematic review aims to summarise the current evidence to assess the impact of inhaled prostaglandin I2 analogue use on the pulmonary hemodynamics, exercise function, lung function, and gas exchange in patients with pulmonary hypertension due to COPD. Methods We systematically searched the electronic databases of Medline, Embase, Scopus and Cochrane from inception to 1 February 2023. Studies of adult patients with a confirmed diagnosis of COPD-associated pulmonary hypertension who received inhaled drugs targeting the prostacyclin pathway were included in the systematic review. Case reports, systematic reviews, conference abstracts with no full text, non-full-text articles, non-English manuscripts and book chapters were excluded from this systematic review. A risk-of-bias assessment was carried out for the studies included in this review, using two different Cochrane risk-of-bias tools for randomised and non-randomised clinical trials. Results A total of four studies met our inclusion criteria and were included in this systematic review. The results of one prospective clinical trial showed an improvement in the pulmonary hemodynamics (e.g., cardiac index, cardiac output and mean pulmonary artery pressure) in response to inhaled prostacyclin use in patients with pulmonary hypertension secondary to COPD. However, the severity of dyspnoea, lung function, exercise capacity and gas exchange were not affected when inhaled prostacyclin was used for patients with COPD-related pulmonary hypertension. Conclusion This systematic review demonstrated that although inhaled prostacyclin does not seem to improve COPD-related outcomes (e.g., lung function and exercise capacity), short-term use of inhaled prostacyclin has the potential to reduce mean pulmonary artery pressure and pulmonary vascular resistance without impairing ventilation-perfusion mismatch. Further studies with larger sample sizes are warranted. Systematic review registration CRD42022372803, https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=372803.
Collapse
Affiliation(s)
- Abdullah A. Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Abdulelah M. Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Heba M. Bintalib
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Jaber S. Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Rayan A. Siraj
- Department of Respiratory Care, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mansour Majrshi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Abdulkareem A. AlGarni
- King Abdulaziz Hospital, The Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia
| | - Abdallah Y. Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Sara A. Alghamdi
- Respiratory Care Department, Mediclinic Almurjan Hospital, Jeddah, Saudi Arabia
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
11
|
Kotlyarov S. The Role of Smoking in the Mechanisms of Development of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2023; 24:8725. [PMID: 37240069 PMCID: PMC10217854 DOI: 10.3390/ijms24108725] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tobacco smoking is a major cause of chronic obstructive pulmonary disease (COPD) and atherosclerotic cardiovascular disease (ASCVD). These diseases share common pathogenesis and significantly influence each other's clinical presentation and prognosis. There is increasing evidence that the mechanisms underlying the comorbidity of COPD and ASCVD are complex and multifactorial. Smoking-induced systemic inflammation, impaired endothelial function and oxidative stress may contribute to the development and progression of both diseases. The components present in tobacco smoke can have adverse effects on various cellular functions, including macrophages and endothelial cells. Smoking may also affect the innate immune system, impair apoptosis, and promote oxidative stress in the respiratory and vascular systems. The purpose of this review is to discuss the importance of smoking in the mechanisms underlying the comorbid course of COPD and ASCVD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
12
|
Alqahtani JS, Aldhahir AM, Alanazi Z, Alsulami EZ, Alsulaimani MA, Alqarni AA, Alqahtani AS, AlAyadi AY, Alnasser M, AlDraiwiesh IA, Alghamdi SM, Almarkhan HM, Alsulayyim AS, AlRabeeah SM, AlAhmari MD. Impact of Smoking Status and Nicotine Dependence on Academic Performance of Health Sciences Students. Subst Abuse Rehabil 2023; 14:13-24. [PMID: 36865699 PMCID: PMC9970882 DOI: 10.2147/sar.s393062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Smoking behavior has been associated with poor academic performance among adult students worldwide. However, the detrimental effect of nicotine dependence on several students' academic achievement indicators is still unclear. This study aims to assess the impact of smoking status and nicotine dependence on grade point average (GPA), absenteeism rate and academic warnings among undergraduate health sciences students in Saudi Arabia. METHODS A validated cross-sectional survey was conducted, in which, participants responded to questions evaluated cigarette consumption, urge to consume and dependency, learning performance, days of absentees, and academic warnings. RESULTS A total of 501 students from different health specialties have completed the survey. Of whom, 66% were male, 95% ranging between the age of 18-30 years old, and 81% reported no health issues or chronic diseases. Current smokers estimated to be 30% of the respondents, of which 36% revealed smoking history of 2-3 years. The prevalence of nicotine dependency (high to extremely high) was 50%. Overall, smokers had significantly lower GPA, higher absenteeism rate, and higher number of academic warnings when compared to nonsmokers (p<0.001). Heavy smokers demonstrated significantly less GPA (p=0.036), higher days of absences (p=0.017), and more academic warnings (p=0.021) compared to light smokers. The linear regression model indicated a significant association between smoking history (increased pack-per-year) and poor GPA (p=0.01) and increased number of academic warning last semester (p=0.01), while increased cigarette consumption was substantially linked with higher academic warnings (p=0.002), lower GPA (p=0.01), and higher absenteeism rate for last semester (p=0.01). CONCLUSION Smoking status and nicotine dependence were predictive of worsening academic performance, including lower GPA, higher absenteeism rate and academic warnings. In addition, there is a substantial and unfavorable dose-response association between smoking history and cigarette consumption with impaired academic performance indicators.
Collapse
Affiliation(s)
- Jaber S Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| | - Abdulelah M Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Zaid Alanazi
- Family Medicine Department, Northern Area Armed Forces Hospital (NAAFH), Hafar Al Batin, Saudi Arabia
| | - Emad Zahi Alsulami
- Family Medicine Department, Armed Forces Hospital in King Abdulaziz Airbase, Dhahran, Saudi Arabia
| | - Mujahid A Alsulaimani
- Basic Medical Unit, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| | - Abdullah A Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah S Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| | - Ayadh Yahya AlAyadi
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| | - Musallam Alnasser
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| | - Ibrahim A AlDraiwiesh
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| | - Saeed M Alghamdi
- Respiratory Care Program, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Hussam M Almarkhan
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| | - Abdullah S Alsulayyim
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- National Heart and Lung Institute, Imperial College London, London, SW7 2BX, UK
| | - Saad M AlRabeeah
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| | - Mohammed D AlAhmari
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, 34313, Saudi Arabia
| |
Collapse
|
13
|
Alqarni AA. Increased Thromboxane A 2 Levels in Pulmonary Artery Smooth Muscle Cells Isolated from Patients with Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:165. [PMID: 36676790 PMCID: PMC9861639 DOI: 10.3390/medicina59010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Introduction: Pulmonary hypertension due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 pulmonary hypertension, with no current proven targeted therapies. It has been shown that cigarette smoke, the main risk factor for COPD, can increase thromboxane A2 production in healthy human pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, and that blocking the effect of increased thromboxane A2 using daltroban, a thromboxane A2 receptor antagonist, can inhibit cigarette smoke-induced pulmonary artery cell proliferation. However, it is largely unknown whether thromboxane A2 is increased in smokers with COPD. Therefore, the aim of this study was to assess the level of thromboxane A2 production in patients with COPD who smoke. Methods: Pulmonary artery smooth muscle cells from three smokers with COPD and three healthy donors were cultured in cell culture medium. The culture medium was collected and the thromboxane B2 (a stable metabolite of thromboxane A2) released in the culture medium was quantified using an ELISA kit. The data were normalised with the total protein concentration and then expressed in pg/mg protein. Demographic data were collected and baseline pulmonary function tests of patients with COPD were conducted. Results: The mean age of patients with COPD was 69 ± 7 years. All patients were smokers and had a mean smoking history of 39.66 ± 9.50 packs per year. The mean forced expiratory volume in one second, that is, FEV1%, and the ratio of forced vital capacity (FVC) to FEV1% of COPD patients were 63.33 ± 19.60% and 52.66 ± 14.64%, respectively. The results revealed that thromboxane A2 production was significantly increased in pulmonary artery smooth muscle cells from smokers with COPD (434.56 ± 82.88 pg/mg protein) compared with the thromboxane A2 levels in pulmonary artery smooth muscle cells from healthy donors (160 ± 59.3 pg/mg protein). Conclusions: This is the first report of increased thromboxane A2 production in pulmonary artery smooth muscle cells from smokers with COPD. This observation strongly suggests that thromboxane A2 can be used as a novel therapeutic target for the treatment of patients with COPD-associated pulmonary hypertension.
Collapse
Affiliation(s)
- Abdullah A Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22230, Saudi Arabia
| |
Collapse
|