1
|
Jacob Khoury S, Zoabi Y, Scheinowitz M, Shomron N. Integrating Interpretability in Machine Learning and Deep Neural Networks: A Novel Approach to Feature Importance and Outlier Detection in COVID-19 Symptomatology and Vaccine Efficacy. Viruses 2024; 16:1864. [PMID: 39772174 PMCID: PMC11680429 DOI: 10.3390/v16121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights. We used a dataset consisting of individuals who were tested for COVID-19 during the early stages of the pandemic in 2020. The dataset included self-reported symptoms and test results from a wide demographic, and our goal was to identify the most important symptoms that could help predict COVID-19 infection accurately. By applying interpretability techniques to both machine learning and deep learning models, we aimed to improve understanding of symptomatology and enhance early detection of COVID-19 cases. Notably, even though less than 1% of our cohort reported having a sore throat, this symptom emerged as a significant indicator of active COVID-19 infection, appearing 7 out of 9 times in the top four most important features across all methodologies. This suggests its potential as an early symptom marker. Studies have shown that individuals reporting sore throat may have a compromised immune system, where antibody generation is not functioning correctly. This aligns with our data, which indicates that 5% of patients with sore throats required hospitalization. Our analysis also revealed a concerning trend of diminished immune response post-COVID infection, increasing the likelihood of severe cases requiring hospitalization. This finding underscores the importance of monitoring patients post-recovery for potential complications and tailoring medical interventions accordingly. Our study also raises critical questions about the efficacy of COVID-19 vaccines in individuals presenting with sore throat as a symptom. The results suggest that booster shots might be necessary for this population to ensure adequate immunity, given the observed immune response patterns. The proposed method not only enhances our understanding of COVID-19 symptomatology but also demonstrates its broader utility in medical outlier detection. This research contributes valuable insights to ongoing efforts in creating interpretable models for COVID-19 management and vaccine optimization strategies. By leveraging feature importance and interpretability, these models empower physicians, healthcare workers, and researchers to understand complex relationships within medical data, facilitating more informed decision-making for patient care and public health initiatives.
Collapse
Affiliation(s)
- Shadi Jacob Khoury
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (S.J.K.)
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yazeed Zoabi
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (S.J.K.)
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mickey Scheinowitz
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (S.J.K.)
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (S.J.K.)
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Innovation Laboratories (TILabs), Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Akasov RA, Chepikova OE, Pallaeva TN, Gorokhovets NV, Siniavin AE, Gushchin VA, Savvateeva LV, Vinokurov IA, Khochenkov DA, Zamyatnin AA, Khaydukov EV. Evaluation of molecular mechanisms of riboflavin anti-COVID-19 action reveals anti-inflammatory efficacy rather than antiviral activity. Biochim Biophys Acta Gen Subj 2024; 1868:130582. [PMID: 38340879 DOI: 10.1016/j.bbagen.2024.130582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Riboflavin (vitamin B2) is one of the most important water-soluble vitamins and a coenzyme involved in many biochemical processes. It has previously been shown that adjuvant therapy with flavin mononucleotide (a water-soluble form of riboflavin) correlates with normalization of clinically relevant immune markers in patients with COVID-19, but the mechanism of this effect remains unclear. Here, the antiviral and anti-inflammatory effects of riboflavin were investigated to elucidate the molecular mechanisms underlying the riboflavin-induced effects. METHODS Riboflavin was evaluated for recombinant SARS-CoV-2 PLpro inhibition in an enzyme kinetic assay and for direct inhibition of SARS-CoV-2 replication in Vero E6 cells, as well as for anti-inflammatory activity in polysaccharide-induced inflammation models, including endothelial cells in vitro and acute lung inflammation in vivo. RESULTS For the first time, the ability of riboflavin at high concentrations (above 50 μM) to inhibit SARS-CoV-2 PLpro protease in vitro was demonstrated; however, no inhibition of viral replication in Vero E6 cells in vitro was found. At the same time, riboflavin exerted a pronounced anti-inflammatory effect in the polysaccharide-induced inflammation model, both in vitro, preventing polysaccharide-induced cell death, and in vivo, reducing inflammatory markers (IL-1β, IL-6, and TNF-α) and normalizing lung histology. CONCLUSIONS It is concluded that riboflavin reveals anti-inflammatory rather than antiviral activity for SARS-CoV-2 infection. GENERAL SIGNIFICANCE Riboflavin could be suggested as a promising compound for the therapy of inflammatory diseases of broad origin.
Collapse
Affiliation(s)
- Roman A Akasov
- Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia; Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; Moscow State Pedagogical University, Moscow 119435, Russia.
| | - Olga E Chepikova
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia; Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Tatiana N Pallaeva
- Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia; Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Neonila V Gorokhovets
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrei E Siniavin
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya" of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vladimir A Gushchin
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N F Gamaleya" of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lyudmila V Savvateeva
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ivan A Vinokurov
- Petrovsky National Research Center of Surgery, Moscow 119991, Russia
| | - Dmitry A Khochenkov
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; Togliatti State University, Togliatti 445020, Russia
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354340, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Evgeny V Khaydukov
- Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia; Moscow State Pedagogical University, Moscow 119435, Russia
| |
Collapse
|
3
|
Ng’uni TL, Musale V, Nkosi T, Mandolo J, Mvula M, Michelo C, Karim F, Moosa MYS, Khan K, Jambo KC, Hanekom W, Sigal A, Kilembe W, Ndhlovu ZM. Low pre-existing endemic human coronavirus (HCoV-NL63)-specific T cell frequencies are associated with impaired SARS-CoV-2-specific T cell responses in people living with HIV. Front Immunol 2024; 14:1291048. [PMID: 38343437 PMCID: PMC10853422 DOI: 10.3389/fimmu.2023.1291048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Background Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants. Methods We used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses. Results Regardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn't significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity. Conclusion Our results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous.
Collapse
Affiliation(s)
- Tiza L. Ng’uni
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Vernon Musale
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Jonathan Mandolo
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Memory Mvula
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Clive Michelo
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Farina Karim
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Mohomed Yunus S. Moosa
- Human Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - Kondwani Charles Jambo
- Infection and Immunity Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Willem Hanekom
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Alex Sigal
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
| | - William Kilembe
- Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS), Lusaka, Zambia
- Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Zaza M. Ndhlovu
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa
- Human Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Schinas G, Moustaka V, Polyzou E, Almyroudi MP, Dimopoulos G, Akinosoglou K. Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses 2023; 15:v15051165. [PMID: 37243251 DOI: 10.3390/v15051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Cytomegalovirus (CMV) reactivation has been linked to adverse clinical outcomes in critically ill patients, with emerging evidence suggesting a potential connection with severe COVID-19. Mechanisms driving this association may include primary lung injury, amplification of systemic inflammation, and secondary immunosuppression. Diagnostic challenges in detecting and assessing CMV reactivation necessitate a comprehensive approach to improve accuracy and inform treatment decisions. Currently, there is limited evidence on the efficacy and safety of CMV pharmacotherapy in critically ill COVID-19 patients. Although insights from non-COVID-19 critical illness studies suggest a potential role for antiviral treatment or prophylaxis, the risks and benefits must be carefully balanced in this vulnerable patient population. Understanding the pathophysiological role of CMV in the context of COVID-19 and exploring the advantages of antiviral treatment are crucial for optimizing care in critically ill patients. This review provides a comprehensive synthesis of available evidence, emphasizing the need for additional investigation to establish the role of CMV treatment or prophylaxis in the management of severe COVID-19 and to develop a framework for future research on this topic.
Collapse
Affiliation(s)
| | - Vasiliki Moustaka
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Polyzou
- Medical School, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| | - Maria Panagiota Almyroudi
- Department of Emergency Medicine, University Hospital ATTIKON, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Dimopoulos
- 3rd Department of Critical Care, EVGENIDIO Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Karolina Akinosoglou
- Medical School, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|