1
|
Rizzi M, Sainaghi PP. Vitamin D: A Nutraceutical Supplement at the Crossroad Between Respiratory Infections and COVID-19. Int J Mol Sci 2025; 26:2550. [PMID: 40141190 PMCID: PMC11941853 DOI: 10.3390/ijms26062550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Even though in mid-2023 the World Health Organization declared the end of the public health emergency of international concern status for COVID-19, many areas of uncertainty about SARS-CoV-2 infection pathophysiology remain. Although in the last 4 years pharmaceutical industries widely invested in the development of effective antiviral treatments and vaccines, large disparities in their availability worldwide still exist, thus fostering the investigation of nutritional supplements as adjuvant therapeutic approaches for disease management, especially in resource-limited settings. During the COVID-19 pandemic, vitamin D has been widely used as an over-the-counter solution to improve disease evolution, thanks to its known immunomodulatory and anti-inflammatory actions. Ecological and observational studies support a relationship between hypovitaminosis D and COVID-19 negative outcomes and, according to this evidence, several research groups investigated the role of vitamin D supplementation in protecting from SARS-CoV-2 infection and/or improving disease evolution. This narrative review is intended to offer insights into the existing data on vitamin D's biological effects in respiratory infections, especially in COVID-19. Furthermore, it will also offer a brief overview of the complex interplay between vitamin D and vaccine-elicited immune response, with special attention to anti-COVID-19 vaccines.
Collapse
Affiliation(s)
- Manuela Rizzi
- Department of Health Sciences (DiSS), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
2
|
Vameghestahbanati M, Wang CJ, Sin DD. Food for thought: optimal diet in patients with asthma and chronic obstructive pulmonary disease. Curr Opin Pulm Med 2025; 31:106-116. [PMID: 39607023 DOI: 10.1097/mcp.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW Nutritional intake plays a major role in the management of lung health. This review provides the latest perspective on how dietary choices can modulate lung function in patients with chronic obstructive pulmonary disease (COPD) and asthma. RECENT FINDINGS The pathophysiology of COPD and asthma is driven by oxidative stress and inflammation of the airways, which is exacerbated by modifiable risk factors such as cigarette smoking and diet. Various foods can influence patient symptoms; highly processed foods increase the production of reactive oxygen species that augment airway inflammation, whereas foods rich in antioxidants, fiber and protein combat oxidative stress and muscle wastage. Patients with COPD or asthma are at increased risk of developing metabolic comorbidities, including cachexia and obesity that complicate disease phenotypes, leading to greater symptom severity. While clinical findings suggest a role for antioxidant and macronutrient support of lung function, comprehensive translational and clinical studies are necessary to better understand the mechanisms underlying nutrient interaction and lung structure-function. SUMMARY Understanding the nutritional requirements that protect lung health and support weight management in COPD and asthma is imperative to providing personalized dietary recommendations and reducing patient morbidity.
Collapse
Affiliation(s)
- Motahareh Vameghestahbanati
- Department of Medicine, McGill University and McGill University Health Centre Research, Institute, Montreal, Quebec
| | | | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Liu J, Zhang Y, Yu Y. Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases. Cell Mol Life Sci 2025; 82:33. [PMID: 39751829 PMCID: PMC11699091 DOI: 10.1007/s00018-024-05557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium. A set of critical genes are identified to function in cell proliferation and neuronal differentiation in olfactory epithelium organoids. Besides, nasal epithelium organoids derived from chronic rhinosinusitis patients have been established to reveal the pathogenesis of this disease, potentially applied in drug responses in individual patient. The present article reviews recent research progresses of nasal and olfactory epithelium organoids in fundamental and preclinical researches, and proposes current advances and potential future direction in the field of organoid research and application.
Collapse
Affiliation(s)
- Jinxia Liu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yunfeng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yiqun Yu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
5
|
Chen S, Liu J, Feng Z, Zhou L, Cai Y, Jing Q. Circulating Exosomal microRNA Profiles Associated with Risk of Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res 2024; 17:5619-5631. [PMID: 39193125 PMCID: PMC11348992 DOI: 10.2147/jir.s472963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Background Exosomes carry various types of transcripts and serve as promising biomarkers for inflammatory diseases. However, the role of serum exosomal microRNAs (miRNAs) in chronic rhinosinusitis with nasal polyps (CRSwNP) is poorly clarified. Methods A prospective exploratory cohort of 10 CRSwNP patients was conducted, and the serum exosome samples were subjected to miRNA sequencing. Two independent prospective cohorts, consisting of 40 and 54 patients respectively, were recruited from different medical centers for validation. These cohorts were monitored for over two years, with postoperative recurrence serving as the primary outcome measure. The top 3 differentially exosomal miRNAs were validated in the serum samples, and their predictive values for recurrence were assessed. Results Eight CRSwNP patients completed the follow-up, comprising 4 non-recurrent cases and 4 recurrent cases. Distinctive profiles of serum exosomal miRNAs were identified between the two groups. In the first validation cohort, reverse transcription-polymerase chain reaction results indicated elevated serum exosomal miR-3174 and miR-6750-5p expressions, along with reduced miR-192-3p levels in the recurrence group compared to the non-recurrence group. Receiver operating characteristic (ROC) curves and Kaplan-Meier survival analysis demonstrated significant correlations between expressions of exosomal miR-3174 and miR-192-3p and the risk of postoperative recurrence. These findings were further validated in the second cohort, confirming the elevation of both miRNAs in the recurrence group and their associations with recurrence risk. Additionally, serum exosomal miR-3174 levels increased in recurrent cases compared to their baseline levels. Conclusion Circulating exosomal microRNA signatures may influence the risk of postoperative recurrence in CRSwNP patients. Serum exosomal elevated exosomal miR-3174 and decreased miR-192-3p were correlated with CRSwNP recurrence risk.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Jia Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Zhili Feng
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Liubo Zhou
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Yuexiang Cai
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| | - Qiancheng Jing
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
6
|
Brustad N, Chawes B. Vitamin D Primary Prevention of Respiratory Infections and Asthma in Early Childhood: Evidence and Mechanisms. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1707-1714. [PMID: 38360214 DOI: 10.1016/j.jaip.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Respiratory infections are a leading cause of child morbidity worldwide, and asthma is the most common chronic disorder in childhood. Both conditions associate with high socioeconomic costs and are major reasons for medication prescriptions and hospitalizations in children. Vitamin D deficiency has concomitantly increased with asthma prevalence and is hypothesized to play a key role in the development. Current evidence suggests that high prenatal and early childhood vitamin D could be protective against respiratory infections and asthma in some studies where several mechanisms are proposed. However, other studies have reported no effects on these outcomes. Therefore, future large intervention studies on this topic are warranted. Mechanistic studies have shown that vitamin D holds antimicrobial properties by inducing production of several peptides through altered gene expression. Others have shown a complex interplay between asthma risk genotypes, the sphingolipid pathway, and prenatal vitamin D in early childhood asthma. Vitamin D has also been suggested to change both airway immune and microbiota profiles, which are directly related to asthma risk. Finally, systemic low-grade inflammation seems to be regulated by vitamin D exposure. This review presents the current literature of the primary preventive effect of vitamin D on early childhood asthma and respiratory infections. Mechanisms of actions are discussed, and gaps in knowledge are highlighted to facilitate planning of future intervention trials.
Collapse
Affiliation(s)
- Nicklas Brustad
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
8
|
Hu JJ, Lin YS, Zhang JC, Wang YH. Vitamin D Improves Klebsiella-Induced Severe Pneumonia in Rats by Regulating Intestinal Microbiota. Infect Drug Resist 2024; 17:475-484. [PMID: 38348232 PMCID: PMC10860834 DOI: 10.2147/idr.s442330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Background In the context of progressively uncontrolled drug resistance of bacteria, the difficulty of treating Klebsiella (KP)-induced pneumonia increases. Searching for drugs other than antibiotics has become an urgent task. Vitamin D (VD), meanwhile, is shown to be capable of treating pneumonia. Therefore, we aimed to explore the effects and mechanisms of VD on KP-infected rats. Methods Male Sprague Dawley rats were divided into the Control, VD, KP and KP+VD groups. A rat pneumonia model was induced using an intratracheal drop of 2.4×108 CFU/mL KP. VD treatment was performed by gavage using 5 μg/kg. Subsequently, the survival of the rats was recorded, and the lungs, bronchoalveolar lavage fluid, and feces of the rats were collected 4 days after KP infection. Next, the water content of lung tissues was measured by the wet-to-dry weight ratio. Histopathological changes of lung tissues were observed by Hematoxylin and Eosin staining and the levels of inflammatory factors (TNF-α, IL-1β, MCP1) were detected using ELISA. The feces of rats in each group were also subjected to 16S rDNA gene analysis of intestinal microbiota. Results Compared with the KP group, the KP+VD group showed a significant increase in survival, a significant decrease in water content and bacterial counts in the lungs, a significant improvement in lung injury, and a significant decline in the levels of TNF-α, IL-1β, and MCP1. According to the 16S rDNA sequencing, VD altered the structure of the intestinal bacterial community in the KP-infected rats and made the species richness similar to that of healthy rats. Additionally, the abundance of Anaeroglobus was significantly increased in the KP+VD group. Conclusion VD modulates intestinal microbiota to increase the resistance of rats to pneumonia caused by Klebsiella infection.
Collapse
Affiliation(s)
- Jia-Jia Hu
- Medical Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yu-Sen Lin
- Medical Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Jing-Cong Zhang
- Medical Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yan-Hong Wang
- Medical Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|