1
|
Jalil JE, Gabrielli L, Ocaranza MP, MacNab P, Fernández R, Grassi B, Jofré P, Verdejo H, Acevedo M, Cordova S, Sanhueza L, Greig D. New Mechanisms to Prevent Heart Failure with Preserved Ejection Fraction Using Glucagon-like Peptide-1 Receptor Agonism (GLP-1 RA) in Metabolic Syndrome and in Type 2 Diabetes: A Review. Int J Mol Sci 2024; 25:4407. [PMID: 38673991 PMCID: PMC11049921 DOI: 10.3390/ijms25084407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This review examines the impact of obesity on the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and focuses on novel mechanisms for HFpEF prevention using a glucagon-like peptide-1 receptor agonism (GLP-1 RA). Obesity can lead to HFpEF through various mechanisms, including low-grade systemic inflammation, adipocyte dysfunction, accumulation of visceral adipose tissue, and increased pericardial/epicardial adipose tissue (contributing to an increase in myocardial fat content and interstitial fibrosis). Glucagon-like peptide 1 (GLP-1) is an incretin hormone that is released from the enteroendocrine L-cells in the gut. GLP-1 reduces blood glucose levels by stimulating insulin synthesis, suppressing islet α-cell function, and promoting the proliferation and differentiation of β-cells. GLP-1 regulates gastric emptying and appetite, and GLP-1 RA is currently indicated for treating type 2 diabetes (T2D), obesity, and metabolic syndrome (MS). Recent evidence indicates that GLP-1 RA may play a significant role in preventing HFpEF in patients with obesity, MS, or obese T2D. This effect may be due to activating cardioprotective mechanisms (the endogenous counter-regulatory renin angiotensin system and the AMPK/mTOR pathway) and by inhibiting deleterious remodeling mechanisms (the PKA/RhoA/ROCK pathway, aldosterone levels, and microinflammation). However, there is still a need for further research to validate the impact of these mechanisms on humans.
Collapse
Affiliation(s)
- Jorge E. Jalil
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Luigi Gabrielli
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - María Paz Ocaranza
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Paul MacNab
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Rodrigo Fernández
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Bruno Grassi
- Pontificia Universidad Católica de Chile, School of Medicine, Department of Nutrition and Diabetes, Santiago 8330055, Chile; (B.G.); (P.J.)
| | - Paulina Jofré
- Pontificia Universidad Católica de Chile, School of Medicine, Department of Nutrition and Diabetes, Santiago 8330055, Chile; (B.G.); (P.J.)
| | - Hugo Verdejo
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Monica Acevedo
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Samuel Cordova
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Luis Sanhueza
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Douglas Greig
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| |
Collapse
|
2
|
Devkota R, Small JC, Carbone K, Glass MA, Vetere A, Wagner BK. KD025 Is a Casein Kinase 2 Inhibitor That Protects Against Glucolipotoxicity in β-Cells. Diabetes 2024; 73:585-591. [PMID: 38211571 PMCID: PMC10958584 DOI: 10.2337/db23-0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Glucolipotoxicity (GLT), in which elevated levels of glucose and fatty acids have deleterious effects on β-cell biology, is thought to be one of the major contributors in progression of type 2 diabetes. In search of novel small molecules that protect β-cells against GLT, we previously discovered KD025, an inhibitor of Rho-associated coiled-coil-containing kinase isoform 2 (ROCK2), as a GLT-protective compound in INS-1E cells and dissociated human islets. To further understand the mechanism of action of KD025, we found that pharmacological and genetic inhibition of ROCK2 was not responsible for the protective effects of KD025 against GLT. Instead, kinase profiling revealed that KD025 potently inhibits catalytic subunits of casein kinase 2 (CK2), a constitutively active serine/threonine kinase. We experimentally verified that the inhibition of one of the catalytic subunits of casein kinase 2, CK2A1, but not CK2A2, improved cell viability when challenged with GLT. We conclude that KD025 inhibits CK2 to protect β-cells from GLT. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Ranjan Devkota
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | - Jonnell C. Small
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | - Kaycee Carbone
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | - Michael A. Glass
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | - Amedeo Vetere
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | - Bridget K. Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| |
Collapse
|
3
|
Arinami H, Suzuki Y, Watanabe Y, Tajiri M, Tsuneyama N, Someya T. Association between insulin resistance and serum insulin-like growth factor 1 levels in patients with non-remitting major depressive disorder. J Affect Disord 2024; 344:612-616. [PMID: 37802324 DOI: 10.1016/j.jad.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is linked to an increased risk of diabetes; however, the underlying pathomechanism remains unknown. Although insulin-like growth factor 1 (IGF-1) is involved in the pathogenesis of both insulin resistance (IR) and MDD, no studies have investigated the relationship between IGF-1 and IR in patients with MDD. METHODS We recruited 120 patients with MDD (84 non-remitting patients and 36 remitting patients) and 99 control participants. Blood samples were collected after overnight fasting to investigate associations between serum and clinical factors, such as serum IGF-1 levels and homeostasis model assessment-insulin resistance (HOMA-IR). RESULTS Serum IGF-1 levels were higher in patients with non-remitting MDD than in control participants and patients with remitting MDD (P = 0.001 and P = 0.007, respectively). There were no significant differences in HOMA-IR between the three groups. HOMA-IR was positively correlated with serum IGF-1 levels in patients with non-remitting MDD (R = 0.355; P= 0.001) but not in control participants or patients with remitting MDD. A stepwise multiple regression analysis with various clinical factors revealed a positive association of serum IGF-1 levels and body mass index with HOMA-IR in patients with non-remitting MDD. LIMITATIONS This is a cross-sectional study and therefore we cannot draw firm conclusions about causal associations. CONCLUSIONS Serum IGF-1 levels may play a role in IR in patients with MDD who fail to achieve remission. Further studies, including longitudinal studies, are needed to determine the relationship between high serum IGF-1 levels and subsequent IR and diabetes risk.
Collapse
Affiliation(s)
- Hiroshi Arinami
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Yutaro Suzuki
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan.
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Misuzu Tajiri
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Nobuto Tsuneyama
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
4
|
Lessieur EM, Liu H, Saadane A, Du Y, Kiser J, Kern TS. ICAM-1 on the luminal surface of endothelial cells is induced to a greater extent in mouse retina than in other tissues in diabetes. Diabetologia 2022; 65:1734-1744. [PMID: 35852587 PMCID: PMC9481679 DOI: 10.1007/s00125-022-05719-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Induction of intercellular adhesion molecule-1 (ICAM-1) has been implicated in the development of macrovascular and microvascular diseases such as diabetic retinopathy. Lesions of diabetic retinopathy are unique to the retina but the reason for this is unclear, as all tissues are exposed to the same hyperglycaemic insult. We tested whether diabetes induces ICAM-1 on the luminal surface of endothelial cells to a greater extent in the retina than in other tissues and the role of vision itself in that induction. METHODS Experimental diabetes was induced in C57Bl/6J, P23H opsin mutant and Gnat1-/- × Gnat2-/- double knockout mice using streptozotocin. The relative abundance of ICAM-1 on the luminal surface of endothelial cells in retina and other tissues was determined by conjugating anti-ICAM-1 antibodies to fluorescent microspheres (2 μm), injecting them intravenously and allowing them to circulate for 30 min. After transcardial perfusion, quantification of microspheres adherent to the endothelium in tissues throughout the body was carried out by fluorescent microscopy or flow cytometry. Mice injected with lipopolysaccharide (LPS) were used as positive controls. The difference in leucostasis between retinal and non-retinal vasculature was evaluated. RESULTS Diabetes significantly increased ICAM-1-mediated adherence of microspheres to retinal microvessels by almost threefold, independent of sex. In contrast, diabetes had a much smaller effect on endothelial ICAM-1 in other tissues, and more tissues showed a significant induction of endothelial ICAM-1 with LPS than with diabetes. The diabetes-induced increase in endothelial ICAM-1 in retinal vasculature was inhibited by blocking phototransduction in photoreceptor cells. Diabetes significantly increased leucostasis in the retina by threefold compared with a non-ocular tissue (cremaster). CONCLUSIONS/INTERPRETATION The diabetes-induced upregulation of ICAM-1 on the luminal surface of the vascular endothelium varies considerably among tissues and is highest in the retina. Induction of ICAM-1 on retinal vascular endothelial cells in diabetes is influenced by vision-related processes in photoreceptor cells. The unique presence of photoreceptors in the retina might contribute to the greater susceptibility of this tissue to vascular disease in diabetes.
Collapse
Affiliation(s)
- Emma M Lessieur
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.
| | - Haitao Liu
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aicha Saadane
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Yunpeng Du
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Jianying Kiser
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
- Veterans Administration Medical Center Research Service, Long Beach, CA, USA
| |
Collapse
|
5
|
Yang S, Liu Y, Huang S, Jin F, Qi F. Sevoflurane and isoflurane inhibit KCl-induced, Rho kinase-mediated, and PI3K-participated vasoconstriction in aged diabetic rat aortas. BMC Anesthesiol 2021; 21:212. [PMID: 34470604 PMCID: PMC8408970 DOI: 10.1186/s12871-021-01425-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The mechanism of volatile anesthetics on vascular smooth muscle (VSM) contraction in the setting of diabetes mellitus (DM) remains unclear. The current study was designed to determine the effects of sevoflurane (SEVO) and isoflurane (ISO) on phosphoinositide 3-kinase (PI3K) and Rho kinase (ROCK) mediated KCl-induced vasoconstriction in aged type 2 diabetic rats. METHODS KCl-induced (60 mM) contractions were examined in endothelium-denuded aortic rings from aged T2DM Otsuka Long-Evans Tokushima Fatty (OLETF) rats (65-70 weeks old), control age-matched nondiabetic Long-Evans Tokushima Otsuka (LETO) rats and young Wistar rats (6-8 weeks old). The effects of SEVO or ISO (1-3 minimum alveolar concentration, MAC) on KCl-induced vasoconstriction, as well as those of LY294002 (PI3K inhibitor) and Y27632 (ROCK inhibitor) were measured in aortic rings from the three groups using an isometric force transducer. RESULTS KCl induced rapid and continuous contraction of aortic smooth muscle in the three groups, and the contraction was more obvious in OLETF rats. SEVO and ISO inhibited KCl-induced vasoconstriction in a concentration-dependent manner and were suppressed by LY294002 (10 µM) and Y27632 (1 µM). SEVO had a stronger inhibitory effect on the aortas of young Wistar rats than ISO, especially at 2 MAC and 3 MAC (P < 0.05). In aged rats, the inhibitory effect of ISO was stronger than that of SEVO, especially OLETF rats. There was no significant difference in the effects of different concentrations of ISO on arterial contraction among the three groups (P > 0.05). The effects of 1 MAC SEVO on Wistar rats and 3 MAC SEVO on OLETF rats, however, were noticeably and significantly different (P < 0.05). Compared with the control condition, LY294002 and Y27632 had the most noticeable effect on the KCl-induced contraction of aortic rings in OLETF rats (P < 0.01). CONCLUSION SEVO (3 MAC), ISO (1, 2, 3 MAC), LY294002 and Y27632 have more significant inhibitory effect on the contraction of vascular smooth muscle in aged T2MD rats. The mechanism of SEVO and ISO in vascular tension in T2DM is partly due to changes in PI3K and/or Rho kinase activity.
Collapse
Affiliation(s)
- Shaozhong Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhua West Road, Jinan, 250012, Shandong, China
| | - Yu Liu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhua West Road, Jinan, 250012, Shandong, China
| | - Shanshan Huang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhua West Road, Jinan, 250012, Shandong, China
| | - Feihong Jin
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhua West Road, Jinan, 250012, Shandong, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107, Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|