1
|
Li XM, Shi R, Shen MT, Yan WF, Jiang L, Min CY, Liu XJ, Guo YK, Yang ZG. Impact of Type 2 Diabetes Mellitus on Left Atrioventricular Coupling and Left Atrial Deformation in Patients with Essential Hypertension: An MRI Feature Tracking Study. J Magn Reson Imaging 2025; 61:321-334. [PMID: 38703135 DOI: 10.1002/jmri.29427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hypertension (HTN) and type 2 diabetes mellitus (T2DM) are both associated with left ventricular (LV) and left atrial (LA) structural and functional abnormalities; however, the relationship between the left atrium and ventricle in this population is unclear. PURPOSE To identify differences between hypertensive patients with and without T2DM as the basis for further investigation the atrioventricular coupling relationship. STUDY TYPE Cross-sectional, retrospective study. POPULATION 89 hypertensive patients without T2DM [HTN (T2DM-)] (age: 58.4 +/- 11.9 years, 48 male), 62 hypertensive patients with T2DM [HTN (T2DM+)] (age: 58.5 +/- 9.1 years, 32 male) and 70 matched controls (age: 55.0 +/- 9.6 years, 37 male). FIELD STRENGTH/SEQUENCE 2D balanced steady-state free precession cine sequence at 3.0 T. ASSESSMENT LA reservoir, conduit, and booster strain (εs, εe, and εa) and strain rate (SRs, SRe, and SRa), LV radial, circumferential and longitudinal peak strain (PS) and peak systolic strain rate and peak diastolic strain rate (PSSR and PDSR) were derived from LA and LV cine images and compared between groups. STATISTICAL TESTS Chi-square or Fisher's exact test, one-way analysis of variance, analysis of covariance, Pearson's correlation, multivariable linear regression analysis, and intraclass correlation coefficient. A P value <0.05 was considered significant. RESULTS Compared with controls, εs, εe, SRe and PS-longitudinal, PDSR-radial, and PDSR-longitudinal were significantly lower in HTN (T2DM-) group, and they were even lower in HTN (T2DM+) group than in both controls and HTN (T2DM-) group. SRs, εa, SRa, as well as PS-radial, PS-circumferential, PSSR-radial, and PSSR-circumferential were significantly lower in HTN (T2DM+) compared with controls. Multivariable regression analyses demonstrated that: T2DM and PS-circumferential and PS-longitudinal (β = -4.026, -0.486, and -0.670, respectively) were significantly associated with εs; T2DM and PDSR-radial and PDSR-circumferential were significantly associated with εe (β = -3.406, -3.352, and -6.290, respectively); T2DM and PDSR-radial were significantly associated with SRe (β = 0.371 and 0.270, respectively); T2DM and PDSR-longitudinal were significantly associated with εa (β = -1.831 and 5.215, respectively); and PDSR-longitudinal was significantly associated with SRa (β = 1.07). DATA CONCLUSION In hypertensive patients, there was severer LA dysfunction in those with coexisting T2DM, which may be associated with more severe LV dysfunction and suggests adverse atrioventricular coupling. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Jing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li XM, Shi K, Jiang L, Wang J, Yan WF, Gao Y, Shen MT, Shi R, Zhang G, Liu XJ, Guo YK, Yang ZG. Assessment of subclinical LV myocardial dysfunction in T2DM patients with diabetic peripheral neuropathy: a cardiovascular magnetic resonance study. Cardiovasc Diabetol 2024; 23:217. [PMID: 38915040 PMCID: PMC11197260 DOI: 10.1186/s12933-024-02307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is the most prevalent complication of diabetes, and has been demonstrated to be independently associated with cardiovascular events and mortality. This aim of this study was to investigate the subclinical left ventricular (LV) myocardial dysfunction in type 2 diabetes mellitus (T2DM) patients with and without DPN. METHODS One hundred and thirty T2DM patients without DPN, 61 patients with DPN and 65 age and sex-matched controls who underwent cardiovascular magnetic resonance (CMR) imaging were included, all subjects had no symptoms of heart failure and LV ejection fraction ≥ 50%. LV myocardial non-infarct late gadolinium enhancement (LGE) was determined. LV global strains, including radial, circumferential and longitudinal peak strain (PS) and peak systolic and diastolic strain rates (PSSR and PDSR, respectively), were evaluated using CMR feature tracking and compared among the three groups. Multivariable linear regression analyses were performed to determine the independent factors of reduced LV global myocardial strains in T2DM patients. RESULTS The prevalence of non-infarct LGE was higher in patients with DPN than those without DPN (37.7% vs. 19.2%, p = 0.008). The LV radial and longitudinal PS (radial: 36.60 ± 7.24% vs. 33.57 ± 7.30% vs. 30.72 ± 8.68%; longitudinal: - 15.03 ± 2.52% vs. - 13.39 ± 2.48% vs. - 11.89 ± 3.02%), as well as longitudinal PDSR [0.89 (0.76, 1.05) 1/s vs. 0.80 (0.71, 0.93) 1/s vs. 0.77 (0.63, 0.87) 1/s] were decreased significantly from controls through T2DM patients without DPN to patients with DPN (all p < 0.001). LV radial and circumferential PDSR, as well as circumferential PS were reduced in both patient groups (all p < 0.05), but were not different between the two groups (all p > 0.05). Radial and longitudinal PSSR were decreased in patients with DPN (p = 0.006 and 0.003, respectively) but preserved in those without DPN (all p > 0.05). Multivariable linear regression analyses adjusting for confounders demonstrated that DPN was independently associated with LV radial and longitudinal PS (β = - 3.025 and 1.187, p = 0.014 and 0.003, respectively) and PDSR (β = 0.283 and - 0.086, p = 0.016 and 0.001, respectively), as well as radial PSSR (β = - 0.266, p = 0.007). CONCLUSIONS There was more severe subclinical LV dysfunction in T2DM patients complicated with DPN than those without DPN, suggesting further prospective study with more active intervention in this cohort of patients.
Collapse
Affiliation(s)
- Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Jing Wang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Meng-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Ge Zhang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Xiao-Jing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Cao L, Liu C, Ou C, Ma Q, Xu H, Li X, Bao Y, Chen R, Yang Y, Wu M, Liu H. Impact of pretransplant T2DM on left ventricular deformation and myocardial perfusion in heart transplanted recipients: a 3.0 T cardiac magnetic resonance study. Cardiovasc Diabetol 2024; 23:216. [PMID: 38907259 PMCID: PMC11193171 DOI: 10.1186/s12933-024-02323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Pretransplant type 2 diabetes mellitus (T2DM) is associated with increased cardiovascular and all-cause mortality after heart transplant (HT), but the underlying causes of this association remain unclear. The purpose of this research was to examine the impact of T2DM on left ventricular (LV) myocardial deformation and myocardial perfusion following heart transplantation using cardiovascular magnetic resonance imaging. METHODS We investigated thirty-one HT recipients with pretransplant T2DM [HT(DM+)], thirty-four HT recipients without pretransplant T2DM [HT(DM-)] and thirty-six controls. LV myocardial strains, including the global longitudinal, radial, and circumferential strain (GLS, GRS and GCS, respectively), were calculated and compared among groups, as were resting myocardial perfusion indices, which included time to peak myocardial signal intensity (TTM), maximum signal intensity (MaxSI), and Upslope. The relationships between LV strain parameters or perfusion indices and biochemical indicators were determined through Spearman's analysis. The impact of T2DM on LV strains in HT recipients was assessed using multivariable linear regression analyses with backward stepwise selection. RESULTS In the HT(DM+) group, the LV GLS, GRS, and GCS exhibited significantly lower magnitudes than those in both the HT(DM-) and control groups. TTM was higher in the HT(DM+) group than in both the HT(DM-) and control groups, while no significant differences were observed among the groups regarding Upslope and MaxSI. There was a negative correlation between glycated hemoglobin and the magnitude of strains (longitudinal, r = - 0.399; radial, r = - 0.362; circumferential, r = - 0.389) (all P < 0.05), and a positive correlation with TTM (r = 0.485, P < 0.001). Regression analyses that included both pretransplant T2DM and perfusion indices revealed that pretransplant T2DM, rather than perfusion indices, was an independent determinant of LV strain (β = longitudinal, - 0.508; radial, - 0.370; circumferential, - 0.371) (all P < 0.05). CONCLUSION In heart transplant recipients, pretransplant T2DM has a detrimental effect on subclinical left ventricular systolic function and could potentially impact myocardial microcirculation following HT.
Collapse
Affiliation(s)
- Liqi Cao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chang Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chulan Ou
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Quanmei Ma
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Huanwen Xu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yingying Bao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The First Affiliate Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Min Wu
- Deparment of Heart Transplantation and VAD surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
4
|
Shen LT, Shi R, Yang ZG, Gao Y, Jiang YN, Fang H, Min CY, Li Y. Progress in Cardiac Magnetic Resonance Feature Tracking for Evaluating Myocardial Strain in Type-2 Diabetes Mellitus. Curr Diabetes Rev 2024; 20:98-109. [PMID: 38310480 PMCID: PMC11327751 DOI: 10.2174/0115733998277127231211063107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 02/05/2024]
Abstract
The global prevalence of type-2 diabetes mellitus (T2DM) has caused harm to human health and economies. Cardiovascular disease is one main cause of T2DM mortality. Increased prevalence of diabetes and associated heart failure (HF) is common in older populations, so accurately evaluating heart-related injury and T2DM risk factors and conducting early intervention are important. Quantitative cardiovascular system imaging assessments, including functional imaging during cardiovascular disease treatment, are also important. The left-ventricular ejection fraction (LVEF) has been traditionally used to monitor cardiac function; it is often preserved or increased in early T2DM, but subclinical heart deformation and dysfunction can occur. Myocardial strains are sensitive to global and regional heart dysfunction in subclinical T2DM. Cardiac magnetic resonance feature-tracking technology (CMR-FT) can visualize and quantify strain and identify subclinical myocardial injury for early management, especially with preserved LVEF. Meanwhile, CMR-FT can be used to evaluate the multiple cardiac chambers involvement mediated by T2DM and the coexistence of complications. This review discusses CMR-FT principles, clinical applications, and research progress in the evaluation of myocardial strain in T2DM.
Collapse
Affiliation(s)
- Li-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Ning Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Han Fang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhu J, Xie Z, Huang H, Li W, Zhuo K, Bai Z, Huang R. Association of Epicardial Adipose Tissue With Left Ventricular Strain and MR Myocardial Perfusion in Patients With Known Coronary Artery Disease. J Magn Reson Imaging 2023; 58:1490-1498. [PMID: 36794488 DOI: 10.1002/jmri.28619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) may have a paracrine effect on coronary microcirculation and myocardium. However, it is unclear whether EAT is linked to cardiac function and perfusion. PURPOSE To investigate the association of EAT with left ventricular (LV) strain and myocardial perfusion in patients with coronary artery disease (CAD). STUDY TYPE Retrospective. POPULATION A total of 78 patients with CAD and 20 healthy controls. The patients were further divided into high (n = 39) and low EAT volume (n = 39) groups according to median EAT volume. FIELD STRENGTH/SEQUENCE A 1.5 T, balanced steady-state free precession, inversion recovery prepared echo-planar, and segmented-turbo fast low-angle shot (FLASH) phase-sensitive inversion recovery (PSIR) sequences. ASSESSMENT EAT volume was measured by manually tracing the epicardial border and the visceral layer of pericardium on the short-axis cine stacks. LV strain parameters included global radial (GRS), circumferential (GCS), and longitudinal peak strain (GLS). Perfusion indices included upslope, perfusion index, time-to-maximum signal intensity (TTM), and maximum signal intensity (MaxSI). STATISTICAL TESTS One-way analysis of variance or Kruskal-Wallis rank tests, Chi-squared or Fisher exact tests. Multivariate linear regression analyses. A P value < 0.05 was considered statistically significant. RESULTS The parameters of GRS GCS, GLS, upslope, perfusion index, and MaxSI were significantly lower in the patients when compared to the controls. Moreover, the high EAT volume group presented significantly longer TTM values and lower GRS, GCS, GLS, upslope, perfusion index, and MaxSI than the low EAT volume group. Multivariate linear regression analyses demonstrated that EAT was independently associated with GRS, GCS, GLS, upslope, perfusion index, TTM, and MaxSI in patients. EAT and upslope were independently associated with GRS, while EAT and perfusion index were both independently associated with GCS and GLS. DATA CONCLUSION EAT was associated with parameters of LV function and perfusion, and myocardial perfusion was independently associated with LV strain in patients with CAD. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhen Xie
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hao Huang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjia Li
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kaimin Zhuo
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhicheng Bai
- Department of Radiology, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Ruijue Huang
- Department of Basic Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| |
Collapse
|
6
|
Tang SS, Shi R, Yang ZG, Wang J, Min CY, Yan WF, Zhang Y, Li Y. Incremental Effect of Mitral Regurgitation on Left Atrial Dysfunction and Atrioventricular Interaction in Hypertensive Patients by MRI. J Magn Reson Imaging 2023; 58:1125-1136. [PMID: 36733221 DOI: 10.1002/jmri.28604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mitral regurgitation may occur when hypertension causes left ventricular (LV) and left atrial (LA) remodeling. However, its role in LA function in hypertensive patients remains unclear. PURPOSE To explore how mitral regurgitation affects LA function in hypertension and to investigate atrioventricular interaction in hypertensive patients with mitral regurgitation. STUDY TYPE Retrospective. POPULATION A total of 193 hypertensive cases and 64 controls. FIELD STRENGTH/SEQUENCE A 3.0 T/balanced steady-state free precession. ASSESSMENT LA volume (LAV), LA strain (reservoir, conduit, and active), LA ejection fraction, and LV strain (global peak longitudinal [GLS], circumferential [GCS], and radial strain [GRS]) were evaluated and compared among groups. Regurgitant fraction (RF) was evaluated in regurgitation patients and used to subdivide patients into mild (RF: 0%-30%), moderate (RF: 30%-50%), and severe (RF: >50%) regurgitation categories. STATISTICAL TESTS One-way analysis of variance, Spearman and Pearson's correlation coefficients (r), and multivariable linear regression analysis. A P value <0.05 was considered statistically significant. RESULTS Hypertensive patients without mitral regurgitation showed significantly impaired LA reservoir and conduit functions and significantly decreased LV GLS but preserved pump function and LAV compared to controls (P = 0.193-1.0). Hypertensive cases with mild regurgitation (N = 22) had significantly enlarged LAV and further reduced LA reservoir function, while the group with moderate regurgitation (N = 20) showed significantly reduced LA pump function, further impaired conduit function, and significantly reduced LV strain. The severe regurgitation (N = 13) group demonstrated significantly more severely impaired LA and LV functions and LAV enlargement. Multivariable linear regression showed that regurgitation degree, GRS, GCS, and GLS were independently correlated with the LA reservoir, conduit, and active strain in hypertensive patients with mitral regurgitation. DATA CONCLUSION Mitral regurgitation may exacerbate LA and LV impairment in hypertension. Regurgitation degree, LV GRS, GCS, and GLS were independent determinants of the LA strain in hypertensive patients with mitral regurgitation, which demonstrated atrioventricular interaction. EVIDENCE LEVEL 4. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Si-Shi Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Li XM, Shi R, Shen MT, Yan WF, Jiang L, Min CY, Liu XJ, Guo YK, Yang ZG. Subclinical left ventricular deformation and microvascular dysfunction in T2DM patients with and without peripheral neuropathy: assessed by 3.0 T cardiac magnetic resonance imaging. Cardiovasc Diabetol 2023; 22:256. [PMID: 37735418 PMCID: PMC10514942 DOI: 10.1186/s12933-023-01981-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) has been shown to be independently associated with cardiovascular events and mortality. This study aimed to evaluate changes in left ventricular (LV) microvascular perfusion and myocardial deformation in type 2 diabetes mellitus (T2DM) patients with and without DPN, as well as to investigate the association between myocardial perfusion and LV deformation. METHODS Between October 2015 and July 2022, one hundred and twenty-three T2DM patients without DPN, fifty-four patients with DPN and sixty age‑ and sex‑matched controls who underwent cardiovascular magnetic resonance imaging were retrospectively analyzed. LV myocardial perfusion parameters at rest, including upslope, time to maximum signal intensity (TTM), max signal intensity (max SI), and myocardial strains, including global radial, circumferential and longitudinal strain (GRS, GCS and GLS, respectively), were calculated and compared among the groups with One‑way analysis of variance. Univariable and multivariable linear regression analyses were performed to explore the independent factors influencing LV myocardial perfusion indices and LV strains in diabetes. RESULTS The LV GLS, upslope and max SI were significantly deteriorated from controls, through patients without DPN, to patients with DPN (all P < 0.001). Compared with controls, TTM was increased and LV GRS and GCS were decreased in both patient groups (all P < 0.05). Multivariable regression analyses considering covariates showed that DPN was independently associated with reduced upslope, max SI and LV GLS (β = - 0.360, - 2.503 and 1.113, p = 0.021, 0.031 and 0.010, respectively). When the perfusion indices upslope and max SI were included in the multivariable analysis for LV deformation, DPN and upslope (β = 1.057 and - 0.870, p = 0.020 and 0.018, respectively) were significantly associated with LV GLS. CONCLUSION In patients with T2DM, there was more severe LV microvascular and myocardial dysfunction in patients with complicated DPN, and deteriorated subclinical LV systolic dysfunction was associated with impaired myocardial circulation.
Collapse
Affiliation(s)
- Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Meng-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Xiao-Jing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| |
Collapse
|
8
|
Pan JC, Lyu LJ, Liu QD, Yang W, Li XH, Han YM, Sun JY, Dong M, Zhang PF, Zhang M. Association between resting myocardial work indices and stress myocardial perfusion in patients with angina and non-obstructive coronary artery disease. Quant Imaging Med Surg 2023; 13:4563-4577. [PMID: 37456330 PMCID: PMC10347314 DOI: 10.21037/qims-22-321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 03/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Myocardial work (MW) indices and longitudinal strain (LS) are sensitive markers of early left ventricular systolic dysfunction. Stress computed tomography myocardial perfusion imaging (CT-MPI) can assess early myocardial ischemia. The association between resting MW indices and stress myocardial perfusion remains unclear. This study compares resting MW indices with LS to assess stress myocardial perfusion in angina patients with non-obstructive coronary artery disease (CAD). METHODS Eighty-four patients who underwent resting echocardiography, coronary computed tomography angiography, and stress CT-MPI were reviewed. Seventeen myocardial segments were divided into three regions according to the epicardial coronary arteries. Global indices included global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE). Regional indices included regional longitudinal strain (RLS), regional work index (RWI), and regional work efficiency (RWE). Reduced global perfusion was defined as an average stress myocardial blood flow (MBF) <116 mL/100 mL/min for the whole heart. Reduced regional perfusion was defined as an average stress MBF <116 mL/100 mL/min for the coronary territories. No patients demonstrated obstructions in the epicardial coronary arteries (stenosis diameter <50%). The MW indices and LS were compared. Receiver operating characteristic curves were constructed and logistic regression analyses were used to investigate the predictors of reduced myocardial perfusion. RESULTS Patients with reduced stress perfusion demonstrated reduced GLS, GWI, GCW, and GWE (P<0.05) and increased GWW (P<0.05). After adjustment for age and sex, GWE was still independently associated with reduced myocardial perfusion (odds ratio =0.386, 95% confidence interval: 0.214-0.697; P<0.05). Receiver operating characteristic curves reflected the good diagnostic ability of GWE and its superiority to GLS (area under the curve: 0.858 vs. 0.741). The optimal cutoff GWE value was 95% (sensitivity, 70%; specificity, 90%). Regions with lower stress perfusion showed lower RLS, RWI, and RWE (P<0.05). The optimal cutoff value of RWE for predicting reduced regional perfusion was 95%, with an area under the curve of 0.780, a sensitivity of 62%, and a specificity of 83%. CONCLUSIONS Resting MW indices perform well in assessing global and regional stress myocardial perfusion in angina patients with non-obstructive CAD, and GWE is superior to GLS in the global evaluations.
Collapse
Affiliation(s)
- Ji-Chen Pan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li-Juan Lyu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Quan-De Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Yang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Hao Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ye-Ming Han
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun-Yan Sun
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Dong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng-Fei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Li XM, Yan WF, Jiang L, Shi K, Ren Y, Han PL, Peng LQ, Guo YK, Yang ZG. Impact of T2DM on right ventricular systolic dysfunction and interventricular interactions in patients with essential hypertension: evaluation using CMR tissue tracking. Cardiovasc Diabetol 2022; 21:238. [DOI: 10.1186/s12933-022-01678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Previous studies reported that there was right ventricular (RV) systolic dysfunction in patients with hypertension. The aim of this study was to evaluate the impact of type 2 diabetes mellitus (T2DM) on RV systolic dysfunction and interventricular interactions using cardiac magnetic resonance feature tracking (CMR-FT) in patients with essential hypertension.
Methods and methods
Eighty-five hypertensive patients without T2DM [HTN(T2DM −)], 58 patients with T2DM [HTN(T2DM +)] and 49 normal controls were included in this study. The biventricular global radial, circumferential and longitudinal peak strains (GRS, GCS, GLS, respectively) and RV regional strains at the basal-, mid- and apical-cavity, were calculated with CMR-FT and compared among controls and different patient groups. Backward stepwise multivariable linear regression analyses were used to determine the effects of T2DM and left ventricular (LV) strains on RV strains.
Results
The biventricular GLS and RV apical longitudinal strain deteriorated significantly from controls, through HTN(T2DM-), to HTN(T2DM +) groups. RV middle longitudinal strain in patient groups were significantly reduced, and LV GRS and GCS and RV basal longitudinal strain were decreased in HTN(T2DM +) but preserved in HTN(T2DM-) group. Multivariable regression analyses adjusted for covariates demonstrated that T2DM was independently associated with LV strains (LV GRS: β = − 4.278, p = 0.004, model R2 = 0.285; GCS: β = 1.498, p = 0.006, model R2 = 0.363; GLS: β = 1.133, p = 0.007, model R2 = 0.372) and RV GLS (β = 1.454, p = 0.003, model R2 = 0.142) in hypertension. When T2DM and LV GLS were included in the multiple regression analysis, both T2DM and LV GLS (β = 0.977 and 0.362, p = 0.039 and < 0.001, model R2 = 0.224) were independently associated with RV GLS.
Conclusions
T2DM exacerbates RV systolic dysfunction in patients with hypertension, which may be associated with superimposed LV dysfunction by coexisting T2DM and suggests adverse interventricular interactions.
Collapse
|
10
|
Relationship Between Epicardial Adipose Tissue and Biventricular Longitudinal Strain and Strain Rate in Patients with Type 2 Diabetes Mellitus. Acad Radiol 2022; 30:833-840. [PMID: 36115736 DOI: 10.1016/j.acra.2022.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) has been reported to be increased in patients with type 2 diabetes mellitus (T2DM). EAT thickness may impact left ventricular (LV) diastolic function. However, the association between EAT and right ventricular (RV) function in T2DM is unclear. We hypothesized an association between EAT volume and biventricular longitudinal strain and strain rate in patients with T2DM. MATERIALS AND METHODS A total of 20 controls and 69 T2DM patients with preserved LV ejection fraction (EF) who underwent cardiac magnetic resonance (CMR) were included. Biventricular function was evaluated by CMR Tissue-Tracking derived strain analysis, including LV global peak systolic longitudinal strain (LVGLS), peak diastolic longitudinal strain rate (LVLSR), RVGLS and RVLSR. RESULTS Compared to controls, patients with T2DM had significantly higher EAT volumes with lower LVGLS, LVLSR, RVGLS and RVLSR (all p<0.05). EAT volume was significantly correlated with LVGLS, LVLSR, RVGLS and RVLSR in T2DM patients (r=-0.45, -0.39, -0.59, -0.50, all p<0.001). Multivariate linear regression analysis revealed that EAT volume was significantly associated with LVGLS (β=0.38, p=0.001), LVLSR (β=-0.35, p=0.003), RVGLS (β=0.64, p<0.001) and RVLSR (β=-0.43, p<0.001) independently of traditional risk factors in patients with T2DM. CONCLUSION Patients with T2DM had higher EAT levels and lower biventricular function than controls. EAT volume was independently associated with biventricular longitudinal strain and strain rate in T2DM patients.
Collapse
|
11
|
Zhang G, Shi K, Yan WF, Li XM, Li Y, Guo YK, Yang ZG. Effects of diabetes mellitus on left ventricular function and remodeling in hypertensive patients with heart failure with reduced ejection fraction: assessment with 3.0 T MRI feature tracking. Cardiovasc Diabetol 2022; 21:69. [PMID: 35524215 PMCID: PMC9077817 DOI: 10.1186/s12933-022-01504-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Heart failure with reduced ejection fraction (HFrEF) is a major health burden worldwide with high morbidity and mortality. Comorbidities of HFrEF complicate treatment and lead to poor prognosis, among which hypertension (HTN) and diabetes mellitus (DM) are common and frequently cooccur. DM was found to have additive effects on cardiac function and structure in hypertensive patients, while its effects on the HFrEF cohort in the context of HTN remain unclear. METHODS A total of 171 patients with HFrEF were enrolled in our study, consisting of 51 HFrEF controls, 72 hypertensive HFrEF patients (HTN-HFrEF [DM-]) and 48 hypertensive HFrEF patients with comorbid DM (HTN-HFrEF [DM+]). Cardiac MRI-derived left ventricular (LV) strains, including global radial (GRPS), circumferential (GCPS) and longitudinal (GLPS) peak strain, and remodeling parameters were measured and compared among groups. The determinants of impaired LV function and LV remodeling in HFrEF patients were investigated by multivariable linear regression analyses. RESULTS Despite a similar LV ejection fraction, patients in the HTN-HFrEF (DM+) and HTN-HFrEF (DM-) groups showed a higher LV mass index and LV remodeling index than those in the HFrEF control group (all p < 0.05). Compared with the HTN-HFrEF (DM-) and HFrEF control groups, the HTN-HFrEF (DM+) group exhibited the most severe GLPS impairment (p < 0.001). After adjustment for covariates in HFrEF patients, DM was found to be an independent determinant of impaired LV strains in all three directions (GRPS [β = - 0.189; p = 0.011], GCPS [β = 0.217; p = 0.005], GLPS [β = 0.237; p = 0.002]). HTN was associated with impaired GLPS (β = 0.185; p = 0.016) only. However, HTN rather than DM was associated with LV remodeling in HFrEF patients in the multivariable regression analysis (p < 0.05). CONCLUSIONS DM aggravated LV longitudinal dysfunction in hypertensive HFrEF patients without further changes in LV remodeling, indicating that HFrEF patients with comorbid HTN and DM may have a hidden high-risk phenotype of heart failure that requires more advanced and personalized management.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue-Ming Li
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Han PL, Li XM, Jiang L, Yan WF, Guo YK, Li Y, Li K, Yang ZG. Additive Effects of Obesity on Myocardial Microcirculation and Left Ventricular Deformation in Essential Hypertension: A Contrast-Enhanced Cardiac Magnetic Resonance Imaging Study. Front Cardiovasc Med 2022; 9:831231. [PMID: 35402539 PMCID: PMC8987987 DOI: 10.3389/fcvm.2022.831231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The combination of hypertension and obesity is a major cause of cardiovascular risk, and microvascular changes and subclinical dysfunction should be considered to illustrate the underlying mechanisms and early identification, thereby developing targeted therapies. This study aims to explore the effect of obesity on myocardial microcirculation and left ventricular (LV) deformation in hypertensive patients by cardiac magnetic resonance (CMR). Methods This study comprised 101 hypertensive patients, including 54 subjects with a body mass index (BMI) of 18.5–24.9 kg/m2 and 47 subjects with a BMI ≥25 kg/m2, as well as 55 age- and sex-matched controls with a BMI of 18.5–24.9 kg/m2. Myocardial perfusion indicators [upslope, time to maximum signal intensity (TTM), maximum signal intensity (Max SI)] and LV strains [radial, circumferential, and longitudinal global peak strain (PS), peak systolic strain rate (PSSR), and peak diastolic strain rate (PDSR)] were measured. Results Upslope was numerically increased in obese patients but statistically decreased in non-obese patients compared with controls. Longitudinal PS deteriorated significantly and gradually from controls to non-obese and obese hypertensive patients. Longitudinal PSSR and PDSR were significantly decreased in obese hypertensive patients compared with the other two groups. BMI was associated with upslope (β = −0.136, P < 0.001), Max SI (β = −0.922, P < 0.001), longitudinal PSSR (β = 0.018, P < 0.001), and PDSR (β = −0.024, P = 0.001). Myocardial perfusion was independently associated with longitudinal PSSR (TTM: β = 0.003, P = 0.017) and longitudinal PDSR (upslope: β = 0.067, P = 0.020) in hypertension. Conclusion Obesity had adverse effects on microvascular changes and subclinical LV dysfunction in hypertension, and BMI was independently associated with both myocardial perfusion and LV deformation. Impaired myocardial perfusion was independently associated with subclinical LV dysfunction in hypertension.
Collapse
Affiliation(s)
- Pei-Lun Han
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Kun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Kang Li,
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Zhi-Gang Yang,
| |
Collapse
|
13
|
Liao L, Shi B, Ding Z, Chen L, Dong F, Li J, Zhong Y, Xu J. Echocardiographic study of myocardial work in patients with type 2 diabetes mellitus. BMC Cardiovasc Disord 2022; 22:59. [PMID: 35172745 PMCID: PMC8851829 DOI: 10.1186/s12872-022-02482-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/29/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND A noninvasive left ventricular (LV) pressure-strain loop (PSL) provides a new method to quantify myocardial work (MW) by combining global longitudinal strain (GLS) and LV pressure, which exerts potential advantages over traditional GLS. We studied the LV PSL and MW in patients with type 2 diabetes mellitus (T2DM). METHODS This cross-sectional study included 201 subjects (54 healthy controls and 147 T2DM patients) who underwent complete two-dimensional echocardiography (2DE), including 2D speckle-tracking echocardiography (STE), as well as brachial artery pulse pressure measurement. The PSL was used to determine the global myocardial work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE) of all study participants. The association between T2DM and LV function was evaluated according to these MW indices. RESULTS The GLS was significantly lower in the T2DM group than in the control group (P < 0.001), indicating that the LV myocardium had been damaged, although the LV ejection fraction (LVEF) was still normal. The GWI and GWE were decreased (P = 0.022) and the GWW was increased (P < 0.001) in diabetic patients compared with controls, but the GCW was comparable in the two groups (P = 0.160). In all diabetic patients, age, body mass index, systolic blood pressure, smoking history, and LVEF were correlated with GWI, GWW and GWE. CONCLUSIONS The use of LV PSL is a novel noninvasive technique that could help to depict the relationship between LV myocardial damage and MW in patients with T2DM.
Collapse
Affiliation(s)
- Lisi Liao
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China
- Department of Ultrasound, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Bobo Shi
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China
- Department of Ultrasound, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhimin Ding
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China
- Department of Ultrasound, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Lixin Chen
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China
- Department of Ultrasound, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Fajin Dong
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China
- Department of Ultrasound, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Jian Li
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China
- Department of Ultrasound, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yulin Zhong
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China
- Department of Ultrasound, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Jinfeng Xu
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China.
- Department of Ultrasound, Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
14
|
Effect of diabetes mellitus on the development of left ventricular contractile dysfunction in women with heart failure and preserved ejection fraction. Cardiovasc Diabetol 2021; 20:185. [PMID: 34521391 PMCID: PMC8442278 DOI: 10.1186/s12933-021-01379-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with sex-specific pathophysiology. Estrogen deficiency is believed to be responsible for the development of HFpEF in women. However, estrogen deficiency does not seem to be completely responsible for the differences in HFpEF prevalence between sexes. While diabetes mellitus (DM) frequently coexists with HFpEF in women and is associated with worse outcomes, the changes in myocardial contractility among women with HFpEF and the DM phenotype is yet unknown. Therefore, we aimed to investigate sex-related differences in left ventricular (LV) contractility dysfunction in HFpEF comorbid with DM. Methods A total of 224 patients who underwent cardiac cine MRI were included in this study. Sex-specific differences in LV structure and function in the context of DM were determined. LV systolic strains (global longitudinal strain [GLS], circumferential strain [GCS] and radial strain [GRS]) were measured using cine MRI. The determinants of impaired myocardial strain for women and men were assessed. Results The prevalence of DM did not differ between sexes (p > 0.05). Despite a similar LV ejection fraction, women with DM demonstrated a greater LV mass index than women without DM (p = 0.023). The prevalence of LV geometry patterns by sex did not differ in the non-DM subgroup, but there was a trend toward a more abnormal LV geometry in women with DM (p = 0.072). The magnitudes of systolic strains were similar between sexes in the non-DM group (p > 0.05). Nevertheless, in the DM subgroup, there was significant impairment in women in systolic strains compared with men (p < 0.05). In the multivariable analysis, DM was associated with impaired systolic strains in women (GLS [β = 0.26; p = 0.007], GCS [β = 0.31; p < 0.001], and GRS [β = −0.24; p = 0.016]), whereas obesity and coronary artery disease were associated with impaired systolic strains in men (p < 0.05). Conclusions Women with DM demonstrated greater LV contractile dysfunction, which indicates that women with HFpEF comorbid with DM have a high-risk phenotype of cardiac failure that may require more aggressive and personalized medical treatment.
Collapse
|
15
|
Triposkiadis F, Xanthopoulos A, Bargiota A, Kitai T, Katsiki N, Farmakis D, Skoularigis J, Starling RC, Iliodromitis E. Diabetes Mellitus and Heart Failure. J Clin Med 2021; 10:3682. [PMID: 34441977 PMCID: PMC8396967 DOI: 10.3390/jcm10163682] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a major risk factor for new-onset heart failure (HF) and vice versa. The pathogenesis of new-onset HF in DM is complex and has been largely attributed to the toxic cardiovascular effects of hyperglycemia and relevant metabolic abnormalities (diabetic cardiomyopathy) as well as the frequently coexisting morbidities such as hypertension (HTN), coronary artery disease (CAD), and diabetic nephropathy. In patients with type 1 DM (T1DM), HF develops in the setting of a dysregulated immune response, whereas in most patients with type 2 DM (T2DM), against a background of overweight/obesity. HF prevention in DM is feasible with rigorous treatment of cardiovascular risk factors and selective antidiabetic agents. Conversely, development of new-onset T2DM in HF (cardiogenic DM) is common and has been attributed to an increase in the resistance to insulin, especially in the skeletal muscle, liver, and adipose tissue as well as in diminished insulin secretory response to hyperglycemia by pancreatic β-cells. Cardiogenic DM further deteriorates cardiac dysfunction and adversely affects outcome in HF. Novel lifesaving medications employed in HF management such as sacubitril/valsartan and sodium glucose cotransporter 2 inhibitors (SGLT-2i) have a favorable metabolic profile and lower the incidence of cardiogenic diabetes. Whether mitigation of cardiogenic DM should be a treatment target in HF deserves further investigation.
Collapse
Affiliation(s)
- Filippos Triposkiadis
- Department of Cardiology, University General Hospital of Larissa, 411 10 Larissa, Greece; (A.X.); (J.S.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University General Hospital of Larissa, 411 10 Larissa, Greece; (A.X.); (J.S.)
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University General Hospital of Larissa, 411 10 Larissa, Greece;
| | - Takeshi Kitai
- National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan;
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54124 Thessaloniki, Greece;
| | - Dimitrios Farmakis
- University of Cyprus Medical School, P.O. Box 20537, Nicosia 1678, Cyprus;
| | - John Skoularigis
- Department of Cardiology, University General Hospital of Larissa, 411 10 Larissa, Greece; (A.X.); (J.S.)
| | - Randall C. Starling
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Efstathios Iliodromitis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| |
Collapse
|
16
|
Soufi Taleb Bendiab N, Ouabdesselam S, Henaoui L, Lopez-Sublet M, Monsuez JJ, Benkhedda S. Impact of Diabetes on Cardiac Function in Patients with High Blood Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126553. [PMID: 34207036 PMCID: PMC8296398 DOI: 10.3390/ijerph18126553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
Background: Although the combination of high blood pressure (HBP) and type 2 diabetes (T2DM) increases the risk of left ventricular (LV) dysfunction, the impact of T2DM on LV geometry and subclinical dysfunction in hypertensive patients and normal ejection fraction (EF) has been infrequently evaluated. Methods: Hypertensive patients with or without T2DM underwent cardiac echocardiography coupled with LV global longitudinal strain (GLS) assessment. Results: Among 200 patients with HBP (mean age 61.7 ± 9.7 years) and EF > 55%, 93 had associated T2DM. Patients with T2DM had a higher body mass index (29.9 ± 5.1 kg/m2 vs. 29.3 ± 4.7 kg/m2, p = 0.025), higher BP levels (158 ± 23/95 ± 13 vs. 142 ± 33/87 ± 12 mmHg, p = 0.003), a higher LV mass index (115.8 ± 32.4 vs. 112.0 ± 24.7 g/m2, p = 0.004), and higher relative wall thickness (0.51 ± 0.16 vs. 0.46 ± 0.12, p = 0.0001). They had more frequently concentric remodeling (20.4% vs. 16.8%, p < 0.001), concentric hypertrophy (53.7% vs. 48.6%, p < 0.001), elevated filling pressures (25.8 vs. 12.1%, p = 0.0001), indexed left atrial volumes greater than 28 mL/m2 (17.2 vs. 11.2%, p = 0.001), and a reduced GLS less than −18% (74.2 vs. 47.7%, p < 0.0001). After adjustment for BP and BMI, T2DM remains an independent determinant factor for GLS decline (OR = 2.26, 95% CI 1.11–4.61, p = 0.023). Conclusions: Left ventricular geometry and subclinical LV function as assessed with GLS are more impaired in hypertensive patients with than without T2DM. Preventive approaches to control BMI and risk of T2DM in hypertensive patients should be emphasized.
Collapse
Affiliation(s)
- Nabila Soufi Taleb Bendiab
- Department of Cardiology, Faculty of Medicine Aboubekr Belkaid, University Hospital Tlemcen, Tlemcen 13000, Algeria;
| | - Souhila Ouabdesselam
- Department of Cardiology, Mustapha University Hospital Center Algiers, Algiers 16000, Algeria; (S.O.); (S.B.)
- Cardiology Oncology Research Collaborative Group (CORCG), Faculty of Medicine BENYOUCEF BENKHEDDA University, Algiers 16000, Algeria
| | - Latefa Henaoui
- Department of Epidemiology, Faculty of Medicine Aboubekr Belkaid, University Hospital Tlemcen, Tlemcen 13000, Algeria;
| | - Marilucy Lopez-Sublet
- APHP Hôpital R Muret, Hôpitaux Universitaires de Paris Seine Saint Denis, 93270 Sevran, France;
- Centre d’HTA, Hôpital Avicenne,93000 Bobigny, France
| | - Jean-Jacques Monsuez
- APHP Hôpital R Muret, Hôpitaux Universitaires de Paris Seine Saint Denis, 93270 Sevran, France;
- Correspondence: ; Tel.: +33-1-41525832; Fax: +33-1-141525816
| | - Salim Benkhedda
- Department of Cardiology, Mustapha University Hospital Center Algiers, Algiers 16000, Algeria; (S.O.); (S.B.)
- Cardiology Oncology Research Collaborative Group (CORCG), Faculty of Medicine BENYOUCEF BENKHEDDA University, Algiers 16000, Algeria
| |
Collapse
|
17
|
Yan WF, Gao Y, Zhang Y, Guo YK, Wang J, Jiang L, Li Y, Yang ZG. Impact of type 2 diabetes mellitus on left ventricular diastolic function in patients with essential hypertension: evaluation by volume-time curve of cardiac magnetic resonance. Cardiovasc Diabetol 2021; 20:73. [PMID: 33766020 PMCID: PMC7993470 DOI: 10.1186/s12933-021-01262-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Background Essential hypertension and type 2 diabetes mellitus (T2DM) are two common chronic diseases that often coexist, and both of these diseases can cause heart damage. However, the additive effects of essential hypertension complicated with T2DM on left ventricle (LV) diastolic function have not been fully illustrated. This study aims to investigate whether T2DM affects the diastolic function of the LV in patients with essential hypertension using the volume-time curve from cardiac magnetic resonance (CMR). Methods A total of 124 essential hypertension patients, including 48 with T2DM [HTN(T2DM +) group] and 76 without T2DM [HTN(T2DM-) group], and 52 normal controls who underwent CMR scans were included in this study. LV volume-time curve parameters, including the peak ejection rate (PER), time to peak ejection rate (PET), peak filling rate (PFR), time to peak filling rate from end-systole (PFT), PER normalized to end-diastolic volume (PER/EDV), and PFR normalized to EDV (PFR/EDV), were measured and compared among the three groups. Multivariate linear regression analyses were performed to determine the effects of T2DM on LV diastolic dysfunction in patients with hypertension. Pearson correlation was used to analyse the correlation between the volume-time curve and myocardial strain parameters. Results PFR and PFR/EDV decreased from the control group, through HTN(T2DM −), to HTN(T2DM +) group. PFT in the HTN(T2DM-) group and HTN(T2DM +) group was significantly longer than that in the control group. The LV remodelling index in the HTN(T2DM −) and HTN(T2DM +) groups was higher than that in the normal control group, but there was no significant difference between the HTN(T2DM −) and HTN(T2DM +) groups. Multiple regression analyses controlling for covariates of systolic blood pressure, age, sex, and heart rate demonstrated that T2DM was independently associated with PFR/EDV (β = 0.252, p < 0.05). The volume-time curve method has good repeatability, and there is a significant correlation between volume-time curve parameters (PER/EDV and PFR/EDV) and myocardial peak strain rate, especially circumferential peak strain rate, which exhibited the highest correlation (r = − 0.756 ~ 0.795). Conclusions T2DM exacerbates LV diastolic dysfunction in patients with essential hypertension. The LV filling model changes reflected by the CMR volume-time curve could provide more information for early clinical intervention.
Collapse
Affiliation(s)
- Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yi Zhang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Zhang Y, Wang J, Ren Y, Yan WF, Jiang L, Li Y, Yang ZG. The additive effects of kidney dysfunction on left ventricular function and strain in type 2 diabetes mellitus patients verified by cardiac magnetic resonance imaging. Cardiovasc Diabetol 2021; 20:11. [PMID: 33413395 PMCID: PMC7792094 DOI: 10.1186/s12933-020-01203-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2DM) are susceptible to coexisted with chronic kidney disease (CKD), which may increase cardiovascular mortality in these patients. The present study aimed to verify whether CKD aggravates the deterioration of left ventricular (LV) myocardial strain in T2DM patients and to explore the risk factors associated with LV strain. Materials and methods In total, 105 T2DM patients and 52 healthy individuals were included and underwent cardiac magnetic resonance examination. Patients were divided into the following two groups: T2DM with CKD (n = 33) and T2DM without CKD (n = 72). The baseline clinical and biochemical indices were obtained from hospital records before the cardiac magnetic resonance scan. Cine sequences, including long-axis views (2-chamber and 4-chamber) and short-axis views, were acquired. LV function and global strain parameters were measured based on cine sequences and compared among three groups. Pearson’s analysis was performed to investigate the correlation between LV strain parameters and clinical indices. Multiple linear regression analysis was used to identify the independent indicators of LV strain. Results Compared with normal controls, T2DM patients without CKD had a significantly decreased magnitude of peak strain (PS; radial), peak systolic strain rate (radial), and peak diastolic strain rate (radial and circumferential) (all P < 0.05). Furthermore, T2DM patients with CKD displayed markedly lower magnitudes of PS (radial, circumferential, and longitudinal) and peak diastolic strain rate (circumferential and longitudinal) than both normal controls and T2DM patients without CKD (all P < 0.05). The eGFR was positively associated with the magnitude of PS (R = radial, 0.392; circumferential, 0.436; longitudinal, 0.556), while uric acid was negatively associated with the magnitude of PS (R = radial, − 0.361; circumferential, − 0.391; longitudinal, − 0.460) (all P < 0.001). Multivariable linear regression indicated that the magnitude of PS was independently associated with eGFR (β = radial, 0.314; circumferential, 0.292; longitudinal, 0.500) and uric acid (β = radial, − 0.239; circumferential, − 0.211; longitudinal, − 0.238) (all P < 0.05). Conclusions Kidney dysfunction may aggravate the deterioration of LV strain in T2DM patients. LV strain is positively associated with the estimated glomerular filtration rate and negatively associated with uric acid, which may be independent risk factors for predicting reduction of LV strain.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Jin Wang
- Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Li Jiang
- Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yuan Li
- Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|