1
|
Plouviez M, Brown N. Polyphosphate accumulation in microalgae and cyanobacteria: recent advances and opportunities for phosphorus upcycling. Curr Opin Biotechnol 2024; 90:103207. [PMID: 39303380 DOI: 10.1016/j.copbio.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phosphorus (P) must continuously be added to soils as it is lost in the food chain and via leaching. Unfortunately, the mining and import of P to produce fertiliser is unsustainable and costly. Potential solutions to the global issues of P rock depletion and pollution lie in microalgae and cyanobacteria. With an ability to intracellularly store P as polyphosphates, microalgae and cyanobacteria could provide the basis for removing P from water streams, thereby mitigating eutrophication, and even enabling P recovery as P-rich biomass. Metabolic engineering or changes in growing conditions have been demonstrated to improve P removal and recovery by triggering polyphosphates synthesis in the laboratory. This now needs to be replicated at full scale.
Collapse
Affiliation(s)
| | - Nicola Brown
- College of Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
2
|
Ranjbar S, Malcata FX. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022; 27:1473. [PMID: 35268582 PMCID: PMC8911655 DOI: 10.3390/molecules27051473] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process-with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Gao F, Miao Y, Guo W, Zeng M. Microalgal nanosized polyphosphate bodies as novel iron supplements for iron-deficiency anemia treatment in rats. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Using Microbial Aggregates to Entrap Aqueous Phosphorus. Trends Biotechnol 2020; 38:1292-1303. [DOI: 10.1016/j.tibtech.2020.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
|
5
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Wood NJ, Camargo-Valero MA, Baker A. Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates. FRONTIERS IN PLANT SCIENCE 2020; 11:982. [PMID: 32695134 PMCID: PMC7339613 DOI: 10.3389/fpls.2020.00982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Phosphorus (P), in the form of phosphate derived from either inorganic (Pi) or organic (Po) forms is an essential macronutrient for all life. P undergoes a biogeochemical cycle within the environment, but anthropogenic redistribution through inefficient agricultural practice and inadequate nutrient recovery at wastewater treatment works have resulted in a sustained transfer of P from rock deposits to land and aquatic environments. Our present and near future supply of P is primarily mined from rock P reserves in a limited number of geographical regions. To help ensure that this resource is adequate for humanity's food security, an energy-efficient means of recovering P from waste and recycling it for agriculture is required. This will also help to address excess discharge to water bodies and the resulting eutrophication. Microalgae possess the advantage of polymeric inorganic polyphosphate (PolyP) storage which can potentially operate simultaneously with remediation of waste nitrogen and phosphorus streams and flue gases (CO2, SOx, and NOx). Having high productivity in photoautotrophic, mixotrophic or heterotrophic growth modes, they can be harnessed in wastewater remediation strategies for biofuel production either directly (biodiesel) or in conjunction with anaerobic digestion (biogas) or dark fermentation (biohydrogen). Regulation of algal P uptake, storage, and mobilization is intertwined with the cellular status of other macronutrients (e.g., nitrogen and sulphur) in addition to the manufacture of other storage products (e.g., carbohydrate and lipids) or macromolecules (e.g., cell wall). A greater understanding of controlling factors in this complex interaction is required to facilitate and improve P control, recovery, and reuse from waste streams. The best understood algal genetic model is Chlamydomonas reinhardtii in terms of utility and shared resources. It also displays mixotrophic growth and advantageously, species of this genus are often found growing in wastewater treatment plants. In this review, we focus primarily on the molecular and genetic aspects of PolyP production or turnover and place this knowledge in the context of wastewater remediation and highlight developments and challenges in this field.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Wood
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Centre for Doctoral Training in Bioenergy, School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: A Multifunctional Metabolite in Cyanobacteria and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:938. [PMID: 32670331 PMCID: PMC7332688 DOI: 10.3389/fpls.2020.00938] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 05/19/2023]
Abstract
Polyphosphate (polyP), a polymer of orthophosphate (PO4 3-) of varying lengths, has been identified in all kingdoms of life. It can serve as a source of chemical bond energy (phosphoanhydride bond) that may have been used by biological systems prior to the evolution of ATP. Intracellular polyP is mainly stored as granules in specific vacuoles called acidocalcisomes, and its synthesis and accumulation appear to impact a myriad of cellular functions. It serves as a reservoir for inorganic PO4 3- and an energy source for fueling cellular metabolism, participates in maintaining adenylate and metal cation homeostasis, functions as a scaffold for sequestering cations, exhibits chaperone function, covalently binds to proteins to modify their activity, and enables normal acclimation of cells to stress conditions. PolyP also appears to have a role in symbiotic and parasitic associations, and in higher eukaryotes, low polyP levels seem to impact cancerous proliferation, apoptosis, procoagulant and proinflammatory responses and cause defects in TOR signaling. In this review, we discuss the metabolism, storage, and function of polyP in photosynthetic microbes, which mostly includes research on green algae and cyanobacteria. We focus on factors that impact polyP synthesis, specific enzymes required for its synthesis and degradation, sequestration of polyP in acidocalcisomes, its role in cellular energetics, acclimation processes, and metal homeostasis, and then transition to its potential applications for bioremediation and medical purposes.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
7
|
Perin G, Yunus IS, Valton M, Alobwede E, Jones PR. Sunlight-driven recycling to increase nutrient use-efficiency in agriculture. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Gao F, Guo W, Zeng M, Feng Y, Feng G. Effect of microalgae as iron supplements on iron-deficiency anemia in rats. Food Funct 2019; 10:723-732. [DOI: 10.1039/c8fo01834k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microalgae are functional iron nutritive fortifiers that can supply more intestinal nanosized iron.
Collapse
Affiliation(s)
- Fengzheng Gao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Wei Guo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Mingyong Zeng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yinong Feng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Guangxin Feng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|
9
|
Feng G, Feng Y, Guo T, Yang Y, Guo W, Huang M, Wu H, Zeng M. Biogenic Polyphosphate Nanoparticles from Synechococcus sp. PCC 7002 Exhibit Intestinal Protective Potential in Human Intestinal Epithelial Cells In Vitro and Murine Small Intestine Ex Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8026-8035. [PMID: 29975063 DOI: 10.1021/acs.jafc.8b03381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyphosphates are one of the active compounds from probiotics to maintain gut health. The current research extracted and purified intact biogenic polyphosphate nanoparticles (BPNPs) from Synechococcus sp. PCC 7002 cells. BPNPs were near-spherical anionic particles (56.9 ± 15.1 nm) mainly composed of calcium and magnesium salt of polyphosphate and were colloidally stable at near-neutral and alkaline pH. BPNPs survived gastrointestinal digestion in mice and could be absorbed and transported by polarized Caco-2 cell monolayers. They dose-dependently increased the tightness of intercellular tight junction and the expression of claudin-4, occludin, zonula occludens-1, and heat shock protein 27 in Caco-2 cell monolayers. BPNPs also effectively attenuated H2O2-induced cell death, plasma membrane impairment, and intracellular superoxide production in NCM460 cells. In addition, they conferred resistance to H2O2-induced barrier disruption in freshly excised mouse small intestine. Our results suggest that BPNPs are a promising postbiotic nanomaterial with potential applications in gut health maintenance.
Collapse
Affiliation(s)
- Guangxin Feng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Yinong Feng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Tengjiao Guo
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Yisheng Yang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Wei Guo
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Min Huang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Haohao Wu
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Mingyong Zeng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| |
Collapse
|