1
|
Li J, Sun J, Wang W, Jiang C, Hao J. Purification, immobilization, evolution, and characterization of D-allulose 3-epimerase from Antarctic Microbacterium. Int J Biol Macromol 2025; 310:143294. [PMID: 40253022 DOI: 10.1016/j.ijbiomac.2025.143294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
D-allulose is a rare, low-calorie sugar substitute with multiple physiological functions and is widely used in food and pharmaceutical industries. D-allulose is primarily produced by the catalytic conversion of d-fructose via D-allulose 3-epimerase (DAEase). In this study, a DAEase gene, dpema4, was isolated from an Antarctic bacterium and expressed in Escherichia coli. The recombinant DAEase was a homotetramer with an optimal temperature of 60 °C and pH of 7.5. Its catalytic activity was not strictly dependent on metal ions, making it a safer alternative to the other reported DAEases. The recombinant DAEase showed exhibited the highest activity towards D-allulose, and the bioconversion rate was 29 %. For immobilization, the cellulose-binding domain (CBD) was fused to DAEase, and the fusion protein was immobilized on microcrystalline cellulose. The immobilized DAEase showed highly improved pH stability and maintained approximately 44 % of catalytic activity after 10 continuous reaction cycles. The single-point mutant A248H showed high thermal stability and catalytic activity at 60 °C, and the bioconversion rate of d-fructose reached 32 %. In summary, the recombinant DAEase can serve as a good candidate enzyme for the production of D-allulose, and the establishment of a one-step purification and immobilization of DAEase can facilitate its industrial application.
Collapse
Affiliation(s)
- Jingqi Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| |
Collapse
|
2
|
Xie X, Li C, Ban X, Yang H, Li Z. D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications. Crit Rev Biotechnol 2025; 45:353-372. [PMID: 38973014 DOI: 10.1080/07388551.2024.2368517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 07/09/2024]
Abstract
D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.
Collapse
Affiliation(s)
- Xiaofang Xie
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, P. R. China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, P. R. China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
3
|
Liu H, Xu K, Sun S, Wan Y, Zhang B, Song Y, Guo C, Sui S, Wang R, Li P, Wang J, Xu Z, Wang T. Optimization of fermentation conditions for whole cell catalytic synthesis of D-allulose by engineering Escherichia coli. Sci Rep 2024; 14:30771. [PMID: 39730529 DOI: 10.1038/s41598-024-80561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024] Open
Abstract
D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E. coli strain pET22b(+) was successfully constructed and expressed, providing an efficient whole-cell catalyst for converting inexpensive D-fructose into D-allulose. Subsequently, we optimized the induction and incubation conditions step by step using the single-factor method and used Lactobacillus plantarum(LAB) 217-8 to enhance the purity of D-allulose in the system. Ultimately, the BL21/pET22b(+)-E. coli strain achieved a conversion rate of up to 33.91% under optimal conditions, converting D-fructose to D-allulose. After purification, the purity of D-allulose reached 64.73%. Efficient production of D-allulose is a significant achievement, paving the way for future probiotic applications in its conversion.
Collapse
Grants
- 2022JBZ01-06 Key innovation Project of Qilu University of Technology (Shandong Academy of Sciences)
- 2022JBZ01-06 Key innovation Project of Qilu University of Technology (Shandong Academy of Sciences)
- 2022JBZ01-06 Key innovation Project of Qilu University of Technology (Shandong Academy of Sciences)
- ZR2022MC059 Natural Science oundation of Shandong Province
- ZR2022MC059 Natural Science oundation of Shandong Province
- ZR2022MC059 Natural Science oundation of Shandong Province
- 2020KJE005 The Science and Technology Support Plan for Young People in Colleges and Universities of Shandong Province
- 2020KJE005 The Science and Technology Support Plan for Young People in Colleges and Universities of Shandong Province
- 2020KJE005 The Science and Technology Support Plan for Young People in Colleges and Universities of Shandong Province
- The Basic Research of Pilot Project for the Integration of Science, Education and Industry, Qilu University of Technology, Shandong Academy of Sciences The Basic Research of Pilot Project for the Integration of Science, Education and Industry, Qilu University of Technology, Shandong Academy of Sciences
- The Basic Research of Pilot Project for the Integration of Science, Education and Industry, Qilu University of Technology, Shandong Academy of Sciences The Basic Research of Pilot Project for the Integration of Science, Education and Industry, Qilu University of Technology, Shandong Academy of Sciences
- The Basic Research of Pilot Project for the Integration of Science, Education and Industry, Qilu University of Technology, Shandong Academy of Sciences The Basic Research of Pilot Project for the Integration of Science, Education and Industry, Qilu University of Technology, Shandong Academy of Sciences
- ZR2020QC235 The Natural Science Foundation of Shandong Province for Youth
- ZR2020QC235 The Natural Science Foundation of Shandong Province for Youth
Collapse
Affiliation(s)
- Haoran Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
- Shandong Freda Biotechnology Co. Ltd, Jinan, People's Republic of China
| | - Kang Xu
- Dongxiao Bioengineering (Shandong) Co., Ltd, Jinan, 250300, Shandong, People's Republic of China
| | - ShuQi Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
| | - Yinbiao Wan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
| | - Bojia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
| | - Yang Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
| | - Chuanzhuang Guo
- Dongxiao Bioengineering (Shandong) Co., Ltd, Jinan, 250300, Shandong, People's Republic of China
| | - Songsen Sui
- Dongxiao Bioengineering (Shandong) Co., Ltd, Jinan, 250300, Shandong, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.
| |
Collapse
|
4
|
Zhang K, Luo H, Zhu X, Liu W, Yu X, Tao W, Lin H, Hou M, Wu J. Construction of Bacillus subtilis chassis strain with enhanced α-amylase expression capability based on CRISPRi screening. Int J Biol Macromol 2024; 283:137497. [PMID: 39528193 DOI: 10.1016/j.ijbiomac.2024.137497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Bacillus subtilis has been widely used in the expression of recombinant proteins due to its food safe and powerful secretion characteristic, but the current production level cannot meet the increasing industrial needs. To enhance the production of recombinant protein, we first screened target key genes that are directly or indirectly involved in protein synthesis, using CRISPRi technology targeting the whole genome, with industrial valuable Bacillus stearothermophilus α-amylase as the model protein. Then the screened key genes were combined, yielding a chassis strain that owning enhanced protein expression capability. Following overlaying molecular chaperone GroES/L and peptidoglycan glycosyltransferase PonA, α-amylase activity reached 102,893 U/mL in a 3-L fermenter, the highest level reported till now. Finally, transcriptome analysis showed that the enhanced recombinant expression may be due to more rational allocation of energy and resources. These strategies can be well implicated in engineering other microbial cell factories for higher industrial production.
Collapse
Affiliation(s)
- Kang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hui Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xuyang Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Weiqiong Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xinrui Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wei Tao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Huanliu Lin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Minglei Hou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Zheng LJ, Chen WX, Zheng SH, Ullah I, Zheng HD, Fan LH, Guo Q. Biosynthesis of nonnutritive monosaccharide d-allulose by metabolically engineered Escherichia coli from nutritive disaccharide sucrose. Biotechnol Bioeng 2024; 121:3684-3693. [PMID: 39258327 DOI: 10.1002/bit.28842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Sucrose is a commonly utilized nutritive sweetener in food and beverages due to its abundance in nature and low production costs. However, excessive intake of sucrose increases the risk of metabolic disorders, including diabetes and obesity. Therefore, there is a growing demand for the development of nonnutritive sweeteners with almost no calories. d-Allulose is an ultra-low-calorie, rare six-carbon monosaccharide with high sweetness, making it an ideal alternative to sucrose. In this study, we developed a cell factory for d-allulose production from sucrose using Escherichia coli JM109 (DE3) as a chassis host. The genes cscA, cscB, cscK, alsE, and a6PP were co-expressed for the construction of the synthesis pathway. Then, the introduction of ptsG-F and knockout of ptsG, fruA, ptsI, and ptsH to reprogram sugar transport pathways resulted in an improvement in substrate utilization. Next, the carbon fluxes of the Embden-Meyerhof-Parnas and the pentose phosphate pathways were regulated by the inactivation of pfkA and zwf, achieving an increase in d-allulose titer and yield of 154.2% and 161.1%, respectively. Finally, scaled-up fermentation was performed in a 5 L fermenter. The titer of d-allulose reached 11.15 g/L, with a yield of 0.208 g/g on sucrose.
Collapse
Affiliation(s)
- Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou, People's Republic of China
| | - Wei-Xiang Chen
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Shang-He Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou, People's Republic of China
| | - Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| |
Collapse
|
6
|
Guo Q, Dong ZX, Luo X, Zheng LJ, Fan LH, Zheng HD. Engineering Escherichia coli for D-allulose biosynthesis from glycerol. J Biotechnol 2024; 394:103-111. [PMID: 39181208 DOI: 10.1016/j.jbiotec.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
D-allulose, a naturally occurring monosaccharide, is present in small quantities in nature. It is considered a valuable low-calorie sweetener due to its low absorption in the digestive tract and zero energy for growth. Most of the recent efforts to produce D-allulose have focused on in vitro enzyme catalysis. However, microbial fermentation is emerging as a promising alternative that offers the advantage of combining enzyme manufacturing and product synthesis within a single bioreactor. Here, a novel approach was proposed for the efficient biosynthesis of D-allulose from glycerol using metabolically engineered Escherichia coli. FbaA, Fbp, AlsE, and A6PP were used to construct the D-allulose synthesis pathway. Subsequently, PfkA, PfkB, and Pgi were disrupted to block the entry of the intermediate fructose-6-phosphate (F6P) into the Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PP) pathways. Additionally, GalE and FryA were inactivated to reduce D-allulose consumption by the cells. Finally, a fed-batch fermentation process was implemented to optimize the performance of the cell factory. As a result, the titer of D-allulose reached 7.02 g/L with a maximum yield of 0.287 g/g.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China
| | - Zhen-Xing Dong
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China
| | - Xuan Luo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| |
Collapse
|
7
|
Li Z, Hu Y, Yu C, Fei K, Shen L, Liu Y, Nakanishi H. Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor. Biotechnol J 2024; 19:e2400280. [PMID: 39167550 DOI: 10.1002/biot.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND D-Allulose is one of the most well-known rare sugars widely used in food, cosmetics, and pharmaceutical industries. The most popular method for D-allulose production is the conversion from D-fructose catalyzed by D-allulose 3-epimerase (DAEase). To address the general problem of low catalytic efficiency and poor thermostability of wild-type DAEase, D-allulose biosensor was adopted in this study to develop a convenient and efficient method for high-throughput screening of DAEase variants. RESULTS The catalytic activity and thermostability of DAEase from Caballeronia insecticola were simultaneously improved by semi-rational molecular modification. Compared with the wild-type enzyme, DAEaseS37N/F157Y variant exhibited 14.7% improvement in the catalytic activity and the half-time value (t1/2) at 65°C increased from 1.60 to 27.56 h by 17.23-fold. To our delight, the conversion rate of D-allulose was 33.6% from 500-g L-1 D-fructose in 1 h by Bacillus subtilis WB800 whole cells expressing this DAEase variant. Furthermore, the practicability of cell immobilization was evaluated and more than 80% relative activity of the immobilized cells was maintained from the second to seventh cycle. CONCLUSION All these results indicated that the DAEaseS37N/F157Y variant would be a potential candidate for the industrial production of D-allulose.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yangfan Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Liqun Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yishi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Ding W, Liu C, Huang C, Zhang X, Chi X, Wang T, Guo Q, Wang C. The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability. Int J Mol Sci 2024; 25:6361. [PMID: 38928068 PMCID: PMC11203923 DOI: 10.3390/ijms25126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As a low-calorie sugar, D-allulose is produced from D-fructose catalyzed by D-allulose 3-epimerase (DAE). Here, to improve the catalytic activity, stability, and processability of DAE, we reported a novel method by forming organic-inorganic hybrid nanoflowers (NF-DAEs) and co-immobilizing them on resins to form composites (Re-NF-DAEs). NF-DAEs were prepared by combining DAE with metal ions (Co2+, Cu2+, Zn2+, Ca2+, Ni2+, Fe2+, and Fe3+) in PBS buffer, and were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. All of the NF-DAEs showed higher catalytic activities than free DAE, and the NF-DAE with Ni2+ (NF-DAE-Ni) reached the highest relative activity of 218%. The NF-DAEs improved the thermal stability of DAE, and the longest half-life reached 228 min for NF-DAE-Co compared with 105 min for the free DAE at 55 °C. To further improve the recycling performance of the NF-DAEs in practical applications, we combined resins and NF-DAEs to form Re-NF-DAEs. Resins and NF-DAEs co-effected the performance of the composites, and ReA (LXTE-606 neutral hydrophobic epoxy-based polypropylene macroreticular resins)-based composites (ReA-NF-DAEs) exhibited outstanding relative activities, thermal stabilities, storage stabilities, and processabilities. The ReA-NF-DAEs were able to be reused to catalyze the conversion from D-fructose to D-allulose, and kept more than 60% of their activities after eight cycles.
Collapse
Affiliation(s)
- Wentao Ding
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chensa Liu
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Chi Huang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Xin Zhang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Xinyi Chi
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Tong Wang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Qingbin Guo
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changlu Wang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Zhang W, Ren H, Chen J, Ni D, Xu W, Mu W. Enhancement of the d-Allulose 3-Epimerase Expression in Bacillus subtilis through Both Transcriptional and Translational Regulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8052-8059. [PMID: 38563420 DOI: 10.1021/acs.jafc.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
d-Allulose, a functional bulk sweetener, has recently attracted increasing attention because of its low-caloric-ness properties and diverse health effects. d-Allulose is industrially produced by the enzymatic epimerization of d-fructose, which is catalyzed by ketose 3-epimerase (KEase). In this study, the food-grade expression of KEase was studied using Bacillus subtills as the host. Clostridium sp. d-allulose 3-epimerase (Clsp-DAEase) was screened from nine d-allulose-producing KEases, showing better potential for expression in B. subtills WB600. Promoter-based transcriptional regulation and N-terminal coding sequence (NCS)-based translational regulation were studied to enhance the DAEase expression level. In addition, the synergistic effect of promoter and NCS on the Clsp-DAEase expression was studied. Finally, the strain with the combination of a PHapII promoter and gln A-Up NCS was selected as the best Clsp-DAEase-producing strain. It efficiently produced Clsp-DAEase with a total activity of 333.2 and 1860.6 U/mL by shake-flask and fed-batch cultivations, respectively.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hu Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - JiaJun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
10
|
Tan JH, Chen A, Bi J, Lim YH, Wong FT, Ow DSW. The Engineering, Expression, and Immobilization of Epimerases for D-allulose Production. Int J Mol Sci 2023; 24:12703. [PMID: 37628886 PMCID: PMC10454905 DOI: 10.3390/ijms241612703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The rare sugar D-allulose is a potential replacement for sucrose with a wide range of health benefits. Conventional production involves the employment of the Izumoring strategy, which utilises D-allulose 3-epimerase (DAEase) or D-psicose 3-epimerase (DPEase) to convert D-fructose into D-allulose. Additionally, the process can also utilise D-tagatose 3-epimerase (DTEase). However, the process is not efficient due to the poor thermotolerance of the enzymes and low conversion rates between the sugars. This review describes three newly identified DAEases that possess desirable properties for the industrial-scale manufacturing of D-allulose. Other methods used to enhance process efficiency include the engineering of DAEases for improved thermotolerance or acid resistance, the utilization of Bacillus subtilis for the biosynthesis of D-allulose, and the immobilization of DAEases to enhance its activity, half-life, and stability. All these research advancements improve the yield of D-allulose, hence closing the gap between the small-scale production and industrial-scale manufacturing of D-allulose.
Collapse
Affiliation(s)
- Jin Hao Tan
- Microbial Cell Bioprocessing, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore;
| | - Anqi Chen
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138665, Singapore; (A.C.); (F.T.W.)
| | - Jiawu Bi
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Yee Hwee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138665, Singapore; (A.C.); (F.T.W.)
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Fong Tian Wong
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138665, Singapore; (A.C.); (F.T.W.)
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
| | - Dave Siak-Wei Ow
- Microbial Cell Bioprocessing, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore;
| |
Collapse
|
11
|
Wang L, Chen K, Zheng P, Huo X, Liao F, Zhu L, Hu M, Tao Y. Enhanced production of D-psicose from D-fructose by a redox-driven multi-enzyme cascade system. Enzyme Microb Technol 2023; 163:110172. [DOI: 10.1016/j.enzmictec.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
|
12
|
Zheng LJ, Guo Q, Zhang YX, Liu CY, Fan LH, Zheng HD. Engineering of Escherichia coli for D-allose fermentative synthesis from D-glucose through izumoring cascade epimerization. Front Bioeng Biotechnol 2022; 10:1050808. [PMID: 36338116 PMCID: PMC9633178 DOI: 10.3389/fbioe.2022.1050808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 10/13/2023] Open
Abstract
D-Allose is a potential alternative to sucrose in the food industries and a useful additive for the healthcare products in the future. At present, the methods for large-scale production of D-allose are still under investigation, most of which are based on in vitro enzyme-catalyzed Izumoring epimerization. In contrast, fermentative synthesis of D-allose has never been reported, probably due to the absence of available natural microorganisms. In this work, we co-expressed D-galactose: H+ symporter (GalP), D-glucose isomerase (DGI), D-allulose 3-epimerase (DAE), and ribose-5-phosphate isomerase (RPI) in Escherichia coli, thereby constructing an in vivo Izumoring pathway for yielding D-allose from D-glucose. The carbon fluxes and carbon catabolite repression (CCR) were rationally regulated by knockout of FruA, PtsG, Glk, Mak, PfkA, and PfkB involved in the pathways capable of phosphorylating D-fructose, D-glucose, and fructose-6-phosphate. Moreover, the native D-allose transporter was damaged by inactivation of AlsB, thus driving the reversible Izumoring reactions towards the target product. Fermentation was performed in the M9 medium supplemented with glycerol as a carbon source and D-glucose as a substrate. The results show that the engineered E. coli cell factory was able to produce approximately 127.35 mg/L of D-allose after 84 h. Our achievements in the fermentative production of D-allose in this work may further promote the green manufacturing of rare sugars.
Collapse
Affiliation(s)
- Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China
| | - Ya-Xing Zhang
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China
| | - Chen-Yang Liu
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| |
Collapse
|
13
|
Liu Z, Wang Y, Liu S, Guo X, Zhao T, Wu J, Chen S. Boosting the Heterologous Expression of d-Allulose 3-Epimerase in Bacillus subtilis through Protein Engineering and Catabolite-Responsive Element Box Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12128-12134. [PMID: 36099523 DOI: 10.1021/acs.jafc.2c04800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a natural sweetener with low calories and various physiological activities, d-allulose has drawn worldwide attention. Currently, d-allulose 3-epimerase (DAEase) is mainly used to catalyze the epimerization of d-fructose to d-allulose. Therefore, it is quite necessary to enhance the food-grade expression of DAEase to meet the surging market demand for d-allulose. In this study, initially, the promising variant H207L/D281G/C289R of Clostridium cellulolyticum H10 DAEase (CcDAEase) was generated by protein engineering, the specific activity and the T1/2 of which were 2.24-fold and 13.45-fold those of the CcDAEase wild type at 60 °C, respectively. After that, PamyE was determined as the optimal promoter for the recombinant expression of CcDAEase in Bacillus subtilis, and catabolite-responsive element (CRE) box engineering was further performed to eliminate the carbon catabolite repression (CCR) effect. Lastly, high-density fermentation was carried out and the final activity peaked at 4971.5 U mL-1, which is the highest expression level and could effectively promote the industrial production of DAEase. This research provides a theoretical basis and technical support for the molecular modification of DAEase and its efficient fermentation preparation.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yifan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Shuhan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Xuehong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Tianlong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
14
|
Guo Q, Liu CY, Zheng LJ, Zheng SH, Zhang YX, Zhao SY, Zheng HD, Fan LH, Lin XC. Metabolically Engineered Escherichia coli for Conversion of D-Fructose to D-Allulose via Phosphorylation-Dephosphorylation. Front Bioeng Biotechnol 2022; 10:947469. [PMID: 35814008 PMCID: PMC9257026 DOI: 10.3389/fbioe.2022.947469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
D-Allulose is an ultra-low calorie sweetener with broad market prospects. As an alternative to Izumoring, phosphorylation-dephosphorylation is a promising method for D-allulose synthesis due to its high conversion of substrate, which has been preliminarily attempted in enzymatic systems. However, in vitro phosphorylation-dephosphorylation requires polyphosphate as a phosphate donor and cannot completely deplete the substrate, which may limit its application in industry. Here, we designed and constructed a metabolic pathway in Escherichia coli for producing D-allulose from D-fructose via in vivo phosphorylation-dephosphorylation. PtsG-F and Mak were used to replace the fructose phosphotransferase systems (PTS) for uptake and phosphorylation of D-fructose to fructose-6-phosphate, which was then converted to D-allulose by AlsE and A6PP. The D-allulose titer reached 0.35 g/L and the yield was 0.16 g/g. Further block of the carbon flux into the Embden-Meyerhof-Parnas (EMP) pathway and introduction of an ATP regeneration system obviously improved fermentation performance, increasing the titer and yield of D-allulose to 1.23 g/L and 0.68 g/g, respectively. The E. coli cell factory cultured in M9 medium with glycerol as a carbon source achieved a D-allulose titer of ≈1.59 g/L and a yield of ≈0.72 g/g on D-fructose.
Collapse
Affiliation(s)
- Qiang Guo
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Chen-Yang Liu
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Ling-Jie Zheng
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Shang-He Zheng
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Ya-Xing Zhang
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Su-Ying Zhao
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Hui-Dong Zheng
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Li-Hai Fan
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- *Correspondence: Li-Hai Fan, ; Xiao-Cheng Lin,
| | - Xiao-Cheng Lin
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Li-Hai Fan, ; Xiao-Cheng Lin,
| |
Collapse
|
15
|
Chen Z, Gao XD, Li Z. Recent Advances Regarding the Physiological Functions and Biosynthesis of D-Allulose. Front Microbiol 2022; 13:881037. [PMID: 35495640 PMCID: PMC9048046 DOI: 10.3389/fmicb.2022.881037] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 01/11/2023] Open
Abstract
D-Allulose, a generally regarded as safe (GRAS) sugar, is rare in nature. It is among the most promising sweeteners for future use due to its low caloric content, sucrose-like taste, and unique functions. D-Allulose has many physiological effects, such as antiobesity, antihyperglycemia, antidiabetes, anti-inflammatory, antioxidant, and neuroprotective effects. Therefore, D-allulose has important application value in the food, pharmaceutical, and healthcare industries. However, the high cost of D-allulose production limits its large-scale application. Currently, biotransformation is very attractive for D-allulose synthesis, with the two main methods of biosynthesis being the Izumoring strategy and the DHAP-dependent aldolase strategy. This article reviews recent advances regarding the physiological functions and biosynthesis of D-allulose. In addition, future perspectives on the production of D-allulose are presented.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Zhang W, Chen D, Chen J, Xu W, Chen Q, Wu H, Guang C, Mu W. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit Rev Food Sci Nutr 2021; 63:5661-5679. [PMID: 34965808 DOI: 10.1080/10408398.2021.2023091] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Guo Q, Zheng LJ, Luo X, Gao XQ, Liu CY, Deng L, Fan LH, Zheng HD. Engineering Escherichia coli for d-Allulose Production from d-Fructose by Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13578-13585. [PMID: 34736320 DOI: 10.1021/acs.jafc.1c05200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
d-Allulose is considered an ideal alternative to sucrose and has shown tremendous application potential in many fields. Recently, most efforts on production of d-allulose have focused on in vitro enzyme-catalyzed epimerization of cheap hexoses. Here, we proposed an approach to efficiently produce d-allulose through fermentation using metabolically engineered Escherichia coli JM109 (DE3), in which a SecY (ΔP) channel and a d-allulose 3-epimerase (DPEase) were co-expressed, ensuring that d-fructose could be transported in its nonphosphorylated form and then converted into d-allulose by cells. Further deletion of fruA, manXYZ, mak, galE, and fruK and the use of Ni2+ in a medium limited the carbon flux flowing into the byproduct-generating pathways and the Embden-Meyerhof-Parnas (EMP) pathway, achieving a ≈ 0.95 g/g yield of d-allulose on d-fructose using E. coli (DPEase, SecY [ΔP], ΔFruA, ΔManXYZ, ΔMak, ΔGalE, ΔFruK) and 8 μM Ni2+. In fed-batch fermentation, the titer of d-allulose reached ≈23.3 g/L.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xuan Luo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xin-Quan Gao
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chen-Yang Liu
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| |
Collapse
|
18
|
Hu M, Li M, Jiang B, Zhang T. Bioproduction of D-allulose: Properties, applications, purification, and future perspectives. Compr Rev Food Sci Food Saf 2021; 20:6012-6026. [PMID: 34668314 DOI: 10.1111/1541-4337.12859] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022]
Abstract
D-allulose is the C-3 epimer of D-fructose, which rarely exists in nature, and can be biosynthesized from D-fructose by the catalysis of D-psicose 3-epimerase. D-allulose is safe for human consumption and was recently approved by the United States Food and Drug Administration for food applications. It is not only able be used in food and dietary supplements as a low-calorie sweetener, but also modulates a variety of physiological functions. D-allulose has gained increasing attention owing to its excellent properties. This article presents a review of recent progress on the properties, applications, and bioproduction progress of D-allulose.
Collapse
Affiliation(s)
- Mengying Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
19
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
21
|
Chen J, Wei H, Guo Y, Li Q, Wang H, Liu J. Chaperone-mediated protein folding enhanced D-psicose 3-epimerase expression in engineered Bacillus subtilis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Patel SN, Kaushal G, Singh SP. D-Allulose 3-epimerase of Bacillus sp. origin manifests profuse heat-stability and noteworthy potential of D-fructose epimerization. Microb Cell Fact 2021; 20:60. [PMID: 33663507 PMCID: PMC7934257 DOI: 10.1186/s12934-021-01550-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND D-Allulose is an ultra-low calorie sugar of multifarious health benefits, including anti-diabetic and anti-obesity potential. D-Allulose 3-epimerase family enzymes catalyze biosynthesis of D-allulose via epimerization of D-fructose. RESULTS A novel D-allulose 3-epimerase (DaeB) was cloned from a plant probiotic strain, Bacillus sp. KCTC 13219, and expressed in Bacillus subtilis cells. The purified protein exhibited substantial epimerization activity in a broad pH spectrum, 6.0-11.0. DaeB was able to catalyze D-fructose to D-allulose bioconversion at the temperature range of 35 °C to 70 °C, exhibiting at least 50 % activity. It displaced excessive heat stability, with the half-life of 25 days at 50 °C, and high turnover number (kcat 367 s- 1). The coupling of DaeB treatment and yeast fermentation of 700 g L- 1 D-fructose solution yielded approximately 200 g L- 1 D-allulose, and 214 g L- 1 ethanol. CONCLUSIONS The novel D-allulose 3-epimerase of Bacillus sp. origin discerned a high magnitude of heat stability along with exorbitant epimerization ability. This biocatalyst has enormous potential for the large-scale production of D-allulose.
Collapse
Affiliation(s)
- Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Sector-81 (Knowledge City), 140306, Mohali, India
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Sector-81 (Knowledge City), 140306, Mohali, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Sector-81 (Knowledge City), 140306, Mohali, India.
| |
Collapse
|
23
|
Wang J, Sun J, Qi H, Wang L, Wang J, Li C. High production of d-psicose from d-fructose by immobilized whole recombinant Bacillus subtilis cells expressing d-psicose 3-epimerase from Agrobacterium tumefaciens. Biotechnol Appl Biochem 2021; 69:364-375. [PMID: 33533517 DOI: 10.1002/bab.2115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023]
Abstract
d-Psicose 3-epimerase (DPEase) can catalyze the isomerization of d-fructose to be rare sugar d-psicose, which has wide application prospects in the food and medical fields. In this study, the DPEase gene from Agrobacterium tumefaciens was constructed into plasmid pMA5, and was successfully expressed in the host Bacillus subtilis WB600 (B. subtilis). After optimization of the fermentation conditions, whole recombinant B. subtilis WB600/pMA5-At-DEPase(O) cells produced d-psicose from d-fructose with a conversion rate of 29.01 ± 0.19%, which could be used for the efficient synthesis of d-psicose. To further improve the whole recombinant B. subtilis application, B. subtilis cells were immobilized onto a gel bead biocatalyst by Ca-alginate. After optimization of the biotransformation conditions, the conversion rate of the immobilized biocatalyst reached 20.74 ± 0.39%, which was lower than the free cells. However, the results showed that the immobilized biocatalyst had higher thermal/pH stability and storability, and the gel beads could be recycled for at least six batches. The results showed that the amount of d-psicose generated reached 32.83 ± 2.56 g/L with the immobilized biocatalyst after six times biotransformation, whereas the free cells produced only approximately 10.44 ± 0.07 g/L. The results showed that immobilized recombinant B. subtilis cells are promising to use for the efficient synthesis of d-psicose.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning Province, People's Republic of China
| | - Jiandong Sun
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning Province, People's Republic of China
| | - Hongqing Qi
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning Province, People's Republic of China
| | - Liang Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning Province, People's Republic of China
| | - Jihui Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning Province, People's Republic of China
| | - Cheng Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning Province, People's Republic of China
| |
Collapse
|
24
|
Zhang J, Xu C, Chen X, Ruan X, Zhang Y, Xu H, Guo Y, Xu J, Lv P, Wang Z. Engineered Bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of d-fructose into d-psicose through fermentation. Enzyme Microb Technol 2020; 136:109531. [DOI: 10.1016/j.enzmictec.2020.109531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 12/30/2022]
|
25
|
Wei H, Zhang R, Wang L, Li D, Hang F, Liu J. Expression of d-psicose-3-epimerase from Clostridium bolteae and Dorea sp. and whole-cell production of d-psicose in Bacillus subtilis. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Purpose
d-psicose-3-epimerase (DPEase) catalyses the isomerisation of d-fructose to d-psicose, a rare sugar in nature with unique nutritional and biological functions. An effective industrial-scale method is needed for d-psicose production. Herein, the expression of a neutral and a slightly acidic pH DPEase in Bacillus subtilis was evaluated.
Methods
Two DPEase genes from Clostridium bolteae and Dorea sp. were separately expressed in B. subtilis via plasmid pSTOP1622, and an extra P43 promoter was employed to the expression cassette. The fermentation conditions of the engineered B. subtilis strains were also optimised, to facilitate both cell growth and enzyme production.
Result
The introduction of P43 promoter to the two DPEase genes increased enzyme production by about 20%. Optimisation of fermentation conditions increased DPEase production to 21.90 U/g at 55 °C and 24.01 U/g at 70 °C in B. subtilis expressing C. bolteae or Dorea sp. DPEase, equating to a 94.67% and 369.94% increase, respectively, relative to controls.
Conclusion
Enhanced DPEase production was achieved in B. subtilis expressing C. bolteae or Dorea sp. DPEase genes.
Collapse
|
26
|
Patel SN, Kaushal G, Singh SP. A Novel d-Allulose 3-Epimerase Gene from the Metagenome of a Thermal Aquatic Habitat and d-Allulose Production by Bacillus subtilis Whole-Cell Catalysis. Appl Environ Microbiol 2020; 86:e02605-19. [PMID: 31862716 PMCID: PMC7028978 DOI: 10.1128/aem.02605-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022] Open
Abstract
A novel d-allulose 3-epimerase gene (daeM) has been identified from the metagenomic resource of a hot-water reservoir. The enzyme epimerizes d-fructose into d-allulose, a functional sugar of rare abundance in nature. The metagenomic DNA fragment was cloned and expressed in Escherichia coli The purified recombinant protein (DaeM) was found to be metal dependent (Co2+ or Mn2+). It displayed the maximal levels of catalytic activity in a pH range of 6 to 11 and a temperature range of 75°C to 80°C. The enzyme exhibited remarkably high thermal stability at 60°C and 70°C, with half-life values of 9,900 and 3,240 min, respectively. To the best of our knowledge, this is the highest thermal stability demonstrated by a d-allulose 3-epimerase that has been characterized to date. The enzymatic treatment of 700 mg·ml-1 d-fructose yielded about 217 mg·ml-1 d-allulose, under optimal condition. The catalytic product was purified, and its nuclear magnetic resonance (NMR) spectra were found to be indistinguishable from those of standard d-allulose. For biomolecule production, the whole-cell catalysis procedure avoids the tedious process of extraction and purification of enzyme and also offers better biocatalyst stability. Further, it is desirable to employ safe-grade microorganisms for the biosynthesis of a product. The daeM gene was expressed intracellularly in Bacillus subtilis A whole-cell catalysis reaction performed with a reaction volume of 1 liter at 60°C yielded approximately 196 g·liter-1 d-allulose from 700 g·liter-1 d-fructose. Further, the whole recombinant cells were able to biosynthesize d-allulose in apple juice, mixed fruit juice, and honey.IMPORTANCE d-Allulose is a noncaloric sugar substitute with antidiabetes and antiobesity potential. With several characteristics of physiological significance, d-allulose has wide-ranging applications in the food and pharmacology industries. The development of a thermostable biocatalyst is an objective of mainstream research aimed at achieving industrial acceptability of the enzyme. Aquatic habitats of extreme temperatures are considered a potential metagenomic resource of heat-tolerant biocatalysts of industrial importance. The present study explored the thermal-spring metagenome of the Tattapani geothermal region, Chhattisgarh, India, discovering a novel d-allulose 3-epimerase gene, daeM, encoding an enzyme of high-level heat stability. The daeM gene was expressed in the microbial cells of a nonpathogenic and safe-grade species, B. subtilis, which was found to be capable of performing d-fructose to d-allulose interconversion via a whole-cell catalysis reaction. The results indicate that DaeM is a potential biocatalyst for commercial production of the rare sugar d-allulose. The study established that extreme environmental niches represent a genomic resource of functional sugar-related biocatalysts.
Collapse
Affiliation(s)
- Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, Punjab, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing, Punjab, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Punjab, India
| |
Collapse
|
27
|
Kumar S, Sharma S, Kansal SK, Elumalai S. Efficient Conversion of Glucose into Fructose via Extraction-Assisted Isomerization Catalyzed by Endogenous Polyamine Spermine in the Aqueous Phase. ACS OMEGA 2020; 5:2406-2418. [PMID: 32064401 PMCID: PMC7017403 DOI: 10.1021/acsomega.9b03918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/20/2020] [Indexed: 05/31/2023]
Abstract
In the present study, natural polyamine spermine is demonstrated as a potential basic catalyst for glucose-to-fructose isomerization. For instance, spermine achieves a decent fructose yield (30% wt) and selectivity (74%) during the single-step aqueous phase isomerization under the modest operating conditions (100 °C for 15 min). In addition to the expected reaction byproduct monosugar mannose, spermine also assists in the synthesis of rare and important monosugar, that is, psicose up to 4% wt. Psicose is a zero calorie rare sugar, exhibits a low caloric value, and possesses anti-adipogenic property. A comparative study involving other polyamines concluded that the presence of 20 amines tends to exhibit the most significant impact in improving the target product yield by releasing a higher number of OH- ions, which are responsible for isomerization through the formation of an enediol anion. An attempt was made to further improve the fructose yield through the addition of neutral salts, but it promoted a meager achievement. In an alternate study, a selective extraction strategy was followed for the isolation of fructose from the reaction mixture. The employed aryl monoboronic acid remarkably improved the net fructose concentration, that is, fructose productivity up to 75% wt (cumulative) and 70% selectivity within three consecutive extractions and isomerization cycles, which is comparatively three times shorter than that reported in the literature. Notably, spermine itself provided the essential and necessary basic environment for selective fructose extraction and glucose isomerization, ruling out the use of any external reagents and thus establishing itself as a versatile material suitable for a typical isomerization reaction in an upscaled reactor.
Collapse
Affiliation(s)
- Sandeep Kumar
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing (CIAB), Mohali, Punjab 140306, India
- Dr.
S. S. Bhatnagar Institute Chemical Engineering, Panjab University, Chandigarh 160014, India
| | - Shelja Sharma
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing (CIAB), Mohali, Punjab 140306, India
| | - Sushil Kumar Kansal
- Dr.
S. S. Bhatnagar Institute Chemical Engineering, Panjab University, Chandigarh 160014, India
| | - Sasikumar Elumalai
- Chemical
Engineering Division, Center of Innovative
and Applied Bioprocessing (CIAB), Mohali, Punjab 140306, India
| |
Collapse
|